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ABSTRACT

The primary aim of this thesis is to investigate the characterization of robust
solution sets for uncertain convex optimization problems without convexity of con-
straint data uncertainty. In order to do this we study first such problems in the
absence of data uncertainty and establish the weakest constraint qualification for
guaranteeing the Lagrange multiplier conditions to be necessary and sufficient for
optimality. After introducing the so-called pseudo-Lagrangian function, we then
establish the constant pseudo-Lagrange property and employ it to derive a charac-
terization of the solution set, which is expressed in terms of convex subdifferentials,
tangential subdifferentials and Lagrange multipliers. Afterwards, with slightly con-
sideration, characterizations of the robust optimal solution set for uncertain convex
optimization problems with a robust convex constraint set described by locally Lips-
chitz constraints are derived. Beside, by means of linear scalarization, characteriza-
tions of weakly robust eflicient solution set and properly robust efficient solution set
of uncertain convex multi-objective optimization problems are also shown. Finally,
we conclude our investigations by making an analysis to weaken the differentiabil-
ity and the convexity assumptions considered in non-convex optimization problems

and multi-objective optimization problems with cone constraints, respectively.
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CHAPTER 1
INTRODUCTION

Constrained optimization problems concern the minimization or maximiza-
tion of functions over some set of conditions called constraints, and play a vital
role in many fields of science as diverse as economics, accounting, computer sci-
ence, engineering and others to select an optimal solution in many decisions based
on computational methods. The original treatment of constrained optimization
problems was to deal only with equality constraints via the introduction of the
Lagrange multiplier method which consists of transforming a constrained problem
into an unconstrained one. Later on, it was realized that constraints in the form of
inequalities play a predominant role in modeling real world, and, therefore; it leads
to more challenging necessary conditions for global optimality of an optimization
problem in terms of a system of inequalities. Mathematically, let us consider the

following optimization problem:

m%gn{f(:v) tgilz) <0, i=1,2,...,m}, (P)
xeERT
where f,g; : R = R, i = 1,2,...,m, are given functions. Johns paper [1] first

brought the Lagrange multiplier rule to the domain of inequality constraint. An-
other key contribution in this way is due to Kuhn and Tucker [2]. They amended
the defect of the Lagrange multiplier rule for convex and other nonlinear optimiza-
tion problems involving differentiable functions as laid down by John. That is in
order to guarantee the existence of Lagrangian multipliers, one is in need of im-
posing certain conditions on the constraints, known as constraint qualifications.
Later, it was discovered that similar results were presented by Karush [3] back in
1939. These lead to the now famous Karush-Kuhn-Tucker (shortly, KK'T) condi-
tions which play a very fundamental role both in the theory of optimization and

the analysis of optimization algorithms for constrained problems.

Admittedly, convexity is a very important hypothesis and is a natural frame-
work for studying in mathematical optimization problems due to the fact that when
a convex function is minimized over a convex feasible set which is commonly rep-

resented by convex inequality constraints, Lagrange multiplier condition becomes



sufficient for global optimality.

Taken from another viewpoint, characterizations and properties of the optimal
solution sets of optimization problems are of great interest, as they play an im-
portant role for understanding the behavior of solution methods for mathematical
programs that have multiple optimal solutions. Mangasarian [4] initially presented
several simple and elegant characterizations of the optimal solution sets of differ-
entiable convex programs provided that a fixed minimizer is known and applied
them to study monotone linear complementarity problems in [5]. This study was
further extended to nensmooth cases by Burke and Ferris [6]. Subsequently, such
results were applied to characterize the problems that have weak sharp minimum (7]
and to analyze properties of proximal bundle methods for finding global solutions
of convex optimization problems (8]. Since then, by employing Lagrange multipli-
ers and its properties, many interesting results on characterizations of the optimal
solution sets of various classes of optimization problems have been obtained, see;
cone—constr.ained convex programming problems in [9,10], pseudo-linear programs
in [11-14], pseudoconvex minimization problems in [15-17}, variational inequality
problems in [18,19], quasi-convex programming problems in [20-22], nonconvex op-
timization problems with psendo-invex functions in [23-25|, semi-infinite optimiza-
tion problems in [26-28] and cone constrained convex vector optimization problems
in [29].

As we know, the majority of many practical constrained optimization problems
often involve input data that are noisy or uncertain due to modeling, estimation
errors, prediction errors as well as measurement errors [30-33]. Therefore, it is
imperative to study the optimization problems with data uncertainty. Precisely
stated, the problem (P) in the face of constraint data uncertainty can be captured

by the following optimization problem:
Illgl{f(a),u) iz, v) <0, 1=1,2,...,m}, (UP)
zclR™

where f :R"xU - Rand g, : R*"xV; - R, i=1,2,...,m, are given functions,
and v and v; are the uncertain parameters that are not exactly known, but are only
known to reside in certain uncertainty sets &/ C R% and V; € R¥%, respectively. In
addition, in many situations often we need to make decisions now before we can

know the true values or have better estimations of the parameters, for instance,



optimization problems arising in industry or commerce might involve various costs,
financial returns, and future demands that might be unknown at the time of the
decision. If the uncertainties are ignored while solving the optimization problem, it
may lead to solutions which are suboptimal or even infeasible. As an illustration,
we now consider the following uncertain linear program:

(mlfﬂ}éw{z”l + 3wy =2y — 229+ 1 <0, =32y — 225 +2 <0}, (ULP)
when (assume that) the datas in constraints are only estimates and can be inaccu-

rate, 1.e.,

-1 -2 1 N +0.05 £0.05 =0.05
-3 -2 2 40.056 +0.06 -40.06

The optimal solution of the problem that have constraints —z; — 229+ 1 < 0 and
=31 — 22y + 2 < 0, is (23, 23) := (0.5,0.25) with an objective function value of

1.75. Unfortunately, a matrix of actual values that realize is

—1.06 —2.06 1.05
-3 -2 2,

and therefore, the optimal solution (z3, 2%) is no longer feasible for this realization.

Consequently, how to explicate mathematical approaches that are capable of
treating data uncertainty in constrained optimization has become a critical question
in mathematical optimization. As we have seen the problematic situations where a
decision based on a model has to be taken here and now, we need naturally to the
additional requirement that any feasible vectors must satisfy all constraints includ-
ing each set of constraints corresponding to a possible realization of the uncertain
parameters from the set uncertainty set. In this way, we refer to the so-called ro-
bust (worst case) counterpart and therefore its robust counterpart of (ULP) reads

as follows:

min {2z + 32y ¢ 41121 + a0y + by 0, anzy + agre + b <0
(z1,w2)€R?

V[an 12 51] € U, [(121 dos 52] Euz}: (RLP)

where

U :={[—0.95 —1.95 0.95},[—1 -2 1],[—1.05 —2.05 1.05]},



Uy 1= {[—2.95 —-1.95 1.95] ) [HB —2 2] ; [“3.05 —2.05 2.05] }

Robust optimization, which is its robust counterpart of an uncertain optimiza-
tion problem, has emerged as a powerful deterministic approach for studying opti-
mization problems with data uncertainty in the sense that it minimizes the objective
function value in the worst case of all scenarios and gets a solution that works well
even in the worst-case scenario, but also is immunized against the data uncertainty.
For instance, we can see that the optimal solution of (RLP) is (0.5000, 0.2560) with
a corresponding objective function value of 1.7683. So, the solution has the advan-
tage of satisfying all of the constraints without increasing the objective function
too much, that is, the solution is robust or immune to uncertainty. In general,

the robust counterpart of the problem (UP) which, by parametric reformulation of
(UP) (see, {30]), is given by

min = {a: flz,u) —a <0, gz,) <0, Yuel, v,e€V, 1=1,2,...,m},
(z,0)cRN+1

or equivalently,

min{sup f(z,u) : g;(z,v;) <0, v, €V, i=1,2,...,m}, (RP)
TER™ “yels

where the uncertain constraint are enforced for every possible value of the param-
eters within their prescribed uncertainty and the global minimizer of the problem
(RP) is known as robust optimal solution of the problem (UP). Over the years, a
great deal of attention has been attracted to treat uncertain optimization problems
by using robust optimization methodology. For issues related to optimality con-
ditions and duality properties, see {34-40] and other references therein. Here, we
specially mention the works on characterizations of robust optimal solution sets for
optimization problems with data uncertainty due to [41-45]. More precisely, by us-
ing a robust Slater-type condition, some properties and characterizations of robust
optimal solution sets of an uncertain convex optimization problem are obtained
in [41]. Then, the main results of [41] are investigated in [42] under a new robust
FarkasMinkowski constraint qualification which is strictly weaker than the robust
Slater-type condition, and generalized to uncertain general programming problems;
pseudo-convex robust optimization problem with constraint involving data uncer-

tainty in [43], cone-constrained convex optimization problem with data uncertainty



in both the objective and constraint functions in [44] and an uncertain fractional op-
timization problem in [45]. Beside, in almost all existing literature on robust convex
optimization, the convexity assumption on the functions g;(-,v:), i = 1,2,...,m,
for all v; € V;, is principle and restrictive. In fact, even if g;(-, %), 2 = 1,2,...,m,
are not convex for all v; € V;, it may happen that the so-called robust feasible sel
{xeR": zeC, gle,n) <0, Vo€V, 1=1,2,...,m} is convex. For a simple
example, let V := [0,1] and g(2,v) =2 —vad forallz € R and v € V. It can
be observed that {z € R: g(z,v) <0, Vv € V} = [-1,0], which is convex, while
g(-,v) are not convex for each v € V. So, the aforementioned papers may go awry.
How we do in this case? In order to motivate our study, it will be meaningful to
consider the convex constraint set without uncertainties does not admit a convez
representation in the sense that the constraint functions to represent the convex

constraint set are non-necessarily convex.

Convex optimization problems without convex representation was discussed by
Lasserre [46] in 2010 where the involving functions are differentiable. It covers
a broad class of nonlinear programming problems, including the classical convex
programming problems as well as convex minimization problems with guasi-convex
constraint functions due to the quasi-convexity of constraint functions ensures that
the constraint set is a convex set. Further study has been done about optimality
conditions for some classes of smooth/non-smooth constrained optimization prob-
lems [47-50). As far as we know, characterizations of the optimal solution set for
convex optimization problem without convexity of constraints in the absence of
data uncertainty have not also been studied yet. So, at first, we will investigate the
characterization of the optimal solution sets of the following convex optimization
problem:

min{f(z):z € C}, (CP)

LERN

where [ : R™ — R is a convex function, the constraint set C, defined by

C:={zeR": g(z)<0, i€}, (1.0.1)

is a nonempty convex subset of the Euclidean space R™ and ¢; : R® — R, ¢ €
I:={1,2,...,m}, are continuous functions, but they are not assumed to be convex

functions. It is remarkable that the characterization of solution sets of (CP) is done



by applying [27, Corollary 3.10.] if the functions g; : R* — R, ¢ € I, are restricted
to be locally Lipschitz and regular in the sense of Clarke {51] and additionally the
pseudoconvexity in the first argument of the Lagrange function,
LEAY = OV Ag() YA = (A, dayo s Am) ERT,
iel
is satisfied. However, the pseudoconvexity assumption of L(-, A) for every A € R7
often fails (see Remark 3.1.23). Further, regularity requirements of gjs may fail
even if gs are differentiable functions due to the fact that differentiable functions

are not necessarily regular unless they are continuously differentiable.

All in all, the optimality conditions, which as we shall see, are at the root of
the development for mathematical optimization problems in many aspects. It is
also worth maintaining here that optimality conditions have a relationship with
the representation of the constraint set. Recently, Ho [52) went further in the
case of scalar differentiable problems but moreover without the convexity of the
constraint set and of the functions that are involved, and showed that necessary and
sufficient KK'T optimality conditions are then considered in relation to the presence
of convexity of the level sets of objective function. In view of [47] and (53], the main
results in [52] also suggest a way and motivate us to investigate KKT optimality
conditions in (1) non-smooth optimization problems with inequality comstraints
without the presence of convexity of objective function, of constraint functions and
of feasible set, and (2) differentiable multi-objective optimization problems over
cone constraints without the convexity of the feasible set, and the cone-convexity

of objectives and constraint functions.

Motivated and inspired by all above contributions, in this thesis, our aim is
to perform study of theoretical side of optimization problems related to optimality
conditions and characterizations of the optimal solution sets for convex optimiza-
tion problems as well as robust convex optimization problems without convexity of
constraints. More than that, in the absence of data uncertainty and convexity of
constraint sets, we arve going to consider {scalar) non-smooth optimization problems

and differentiable multi-objective optimization problems over cone constraints.

In the following, we give a description of how is this thesis organized.

Chapter I1. We will include several notions and preliminary results in order



to make this thesis as self-contained as possible,

Chapter III. We draw our attention to the investigation of optimality con-
ditions and characterizations of the optimal solution sets for convex optimization
without convex representation. The chapter contains two different parts, the first
one devoted to give characterizations of the solution set of (CP) without the pseu-
doconvexity assumption of Lagrange function. In order to make use of the obtained
results for both the differentiable setting and the regular locally Lipschitz setting,
we deal with the problem (CP) with continuous tangentially convex constraint func-
tions (see [48]). First, we give the weakest constraint qualification for guaranteeing
the Lagrange multiblier conditions to be necessary and sufficient for optimality of
(CP). After introducing the so-called pseudo-Lagrange function, we then establish
the constant pseudo-Lagrange property and employ it to derive a characterization
of the solution set of (CP). These are expressed in terms of convex subdifferentials,
tangential subdifferentials and Lagrange multipliers. Moreover, Lagrange multiplier
characterizations of the solution set for optimization problems with a pseudoconvex
locally Lipschitz objective function, without convexity of the constraint functions
are given. With a slight consideration of the first part, the second one devotes to
examine a robust optimization framework for studying characterizations of the ro-
bust optimal solution set for uncertain convex optimization problems with a robust
convex feasible set described by locally Lipschitz constraints. In addition, the re-
sults are then applied to derive characterizations of weakly robust efficient solution
set and properly robust efficient solution set of uncertain convex multi-objective

optimization problems without convexity assumption on constraint functions.

Chapter IV, Along the line of Ho [52], the first part of this chapter is to the
study of non-smooth optimization problems with inequality constraints without the
presence of convexity of objective function, of constraint functions and of feasible
set. We present necessary and suflicient KKT optimality conditions for these prob-
lems in terms of tangential subdifferentials. Our results contain and improve some
recent ones in the literature. Many examples are also given to explain the advan-
tages of our main results. In the second part of the chapter we deal with a class of
differentiable multi-objective optimization problems (MOP) over cone constraings
without the convexity of the feasible set, and the cone-convexity of objectives and

constraint functions. We present relationships among constraint qualifications of



multi-objective optimization problem (MOP) over cone constraint and establish
necessary and sufficient KKT optimality conditions for a feasible point under the
question to be a weak Pareto minimum of (MOP). We finally give sufficient con-
ditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of the

problem (MOP).

Chapter V. We give the concluding remarks.



CHAPTER II
PRELIMINARIES

In this chapter, we will review the certain notations, basic definitions, and
preliminary results that are related to our research. Throughout this thesis, all
spaces under consideration are the n-dimensional Euclidean space R®. All vectors
are considered to be column vectors which can be transposed to a row vector by
the superscript 7". For vectors = = (21,29,...,2,) and ¥ = (¥1,%2,-. ., ¥a) In
R”, the (usual) inner product of @ and y is denoted by (z,¥) = Y., =¥, while
the norm of z is given by ||z} = \m . The closed (resp. open, left closed
right open) interval between o, € R with o < § is denoted by [«, 8] (resp.
loo B], [, B). The non-negative orthant of R” is denoted by R% and is defined
by R? = {(z1,22,...,2,) € R* : 2; > 0, 4 = 1,2,...,n}. For any two sets
Ay, Ay C R", define Ay + Ay .= {a1+a; € R : a1 € Ay, ay € Az}, For any set
A CR" and any scalar o € R, oA := {aa € R* . a € A}.

2.1 Basic concepts

Definition 2.1.1. A sequence {z; € R:{=1,2,...} or simply {2} C R is said to

converge if there exists z € R such that for every € > 0, we have
|y — z| <&, VI >1,

for some integer [, (that depend on ). The scalar @ is said to be the limit of {x;},
and the sequence {x;} is said to converge to z. Symbolically, it is expressed as

zp—zor lim x ==,
[ Mo}

Definition 2.1.2. A scalar sequence {x;} is said to be bounded above (resp.
below) if there exists some scalar v such that 2; < o (resp. 2; > o) foralll € N. It
is said to be bounded if it is bounded above and bounded below. The sequence {z,}
is said to be monotonically nonincreasing (resp. nondecreasing) if 2,1 < a;
(resp. 241 > @) for all € N. If 2; — = and {z;} is monotonically nonincreasing

(resp. nondecreasing), we also use the notation x; | = (resp. 2; 1 z).
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Given a sequence {x;} C R, let %, :=sup{a; : | > r}, z,:=inf{z; : { > r}. Note
that the sequences {y,} and {z,} are nonincreasing and nondecreasing, respectively,
and therefore have a limit whenever {z,} is bounded above or is bounded below,

respectively.

Definition 2.1.3. The limit of {y,} is denoted by limsup; ,, ., 2, and is referred
to as the upper limit of {z;}. The limit of {#.} is denoted by liminf;. ..., 2, and

is referred to as the lower limit of {z}.

Definition 2.1.4. A sequence {z;} of vectors in R” is said to converge to some
z &€ R”™ if the i-th component of &; converges to the i-th component of x for every ¢ =
1,2,...,n. We use the notations 2; — z or lim;_, ;. 2y = 2 to indicate convergence

for vector sequences as well.

Definition 2.1.5. The sequence {z;} C R” is bounded if there exists M > 0 such
that {|2;]] < M for every | € N. A subsequence of {2;} CR" is a sequence {a,},
4=1,2,..., where each a; - is a member of the original sequence and the order of

the elements as in the original sequence is maintained.
By B(z,r) we means an open ball of radius r > 0 with center at z, ie.,
Bla,7) ={yeR": |ly—z| <r}.

Definition 2.1.6. We say that  is a closure point of a subset A of R™ if there
exists a sequence {%;} € A that converges to 2. The closure of A, denoted cl(A),
is the set of all closure points of A, We also say that 2 is an interior point of a
subset A of R" if there exists r > 0 such that B(z,7) C A. The interior of A,
denoted int(A), is the set of all interior points of A.

Definition 2.1.7. A subset A of R” is called

(i) closed if A = cl(A),
(ii) open if its complement, R*\ A, is closed, or equivalently, A = int(A).
(iii} bounded if there exists a scalar M such that |jz|| < M for all & € A,

(iv) compact if it is closed and bounded.
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Wholesale, we prefer to deal with functions that are real-valued and are de-
fined over R™". However, in some situations, prominently arising in the context of
optimization, we will encounter operations on real-valued functions that produce
extended real-valued functions, that is, functions that take values in R := RU{=4oc0}.

As an example, a function of the form

f(z) = sup fi(x),

il
where [ is an infinite index set, can take the value co even if the functions f; are
real-valued. Most rules with infinity are intuitively clear except possibly 0 x (+c0)
and co — 0o. Because we will be dealing mainly with minimization problems, we

will follow the convention
0 X (400) = (+00) X 0 = 0 and 00 — 00 = 00,

Definition 2.1.8. An extended real-valued function f : R* — R is said to be a

proper function if f(z) > —oo for every z € R® and the domain of f,
dom f = {z € R": f(z) < +o0},
i nonempty.
Now we move on to define the semicontinuities of a real-valued function that
involve the limit infimum and limit supremum of the function.

Definition 2.1.9. A function f : R” — R is said to be lower semicontinuous

(Isc) at Z € R™ if for every sequence {;} C R” converging to Z,
f(Z) < liminf f(a).
=400
Equivalently,

f(@) <liminf f(z) :=lim inf f(2).

T 810 z€B(z,8)

The function f is lsc over a set A C R™ if f is Isc at every & € A,

In tandem with the concept of lower semicontinuity and limit infimum, we next

define the upper semicontinuity and the limit supremum of a function.
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Definition 2.1.10. A function f : R* — KK is said to be upper semicontinuous

(usc) at £ € R™ if for every sequence {2;} C R™ converging to Z,

f(&) = limsup f(z).

=400

Equivalently,

f(Z) =2 limsup f(z) :=1lim sup f(z).
w3 30 zem(z,8)

The function f is usc over a set A C R™ if [ is usc at every T € A,

Definition 2.1.11. A function f: R” — R is said to be continuous at ¥ if it is

lsc as well as usc at Z, that is,

lim f(z) = f(%).

3T

The next result, a generalization of the classical theorem of Weierstrass, sug-

gests a way that whether an optimal solution exists.

Theorem 2.1.12. {54, p. 86] Let A be a nonempty closed subset of R* and

f iR = R be lsc over A. Assume that one of the following conditions holds:

(i) A is bounded.
(i) Some level set {x € R™: f(z) < a} is nonempty and bounded.

(ili) For every sequence {x;} C A such that ||z} = +oco, we have f(x;) = o0 as

[ — Jco.

Then, the set of mintma (or mintmizer) of f over A, ie, {z € A f(z) <

f(y), Yy € A}, is nonempty and compact.

Next we go through the notions of differentiability for real-valued functions as

well as vector-valued functions, We begin with by recalling the partial derivative.

Definition 2.1.13. For f : R® -—» R be some function, fix some z € R", and

consider the expression

lim He +te) - f(z)

150 f '
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where e; is the 4-th unit vector (all components are 0 except for the -th component
which is 1). If the above limit exists, it is called the i-th partial derivative of f

at the vector = and it is denoted by %‘%?1.

Definition 2.1.14. Let f be a function from R™ to R, and let = be a point where
f is finite. We say that f is (Fréchet) differentiable at z if and only if there
exists a vector £ (necessarily unique) with the property that

fly) = fl2)— (L y—m)

yi ly — |

= 0.

Definition 2.1.15. For a proper function f : R* — R, we define the one-sided

directional derivative of f at ¥ € dom f in the direction d € R" to be

e v F(E 1) — f(E)
fi(z;d) = 1]&%1 ; ,

provided that +co and —oo are allowed as limits,

Remark 2.1.16. If f : R* = R is differentiable at # with corresponding vector £
and f(z) € R, we have

F(®d) = {£,d), Vd € R™

Moreover,

€= Vf(z) = (51‘ (z) 0(2) af(:v))'

8331 } BCBQ o 6a:n

Proof. Suppose that f is differentiable at Z. It then follows from the definition that
there exists £ € R”" such that for any d # 0,

0 = lim fz+td) ~ (@) (& td)
Ho tf|dl]
f(zd) — (£, d)
[l '

Therefore, f'(Z, d) exists and is a linear function of d:
(@ d) = (,d), Vd e R™,

In particular, for ¢ =1,2,...,n,

e~ (ERG = - 528

which in turn implies that £ = V f(z). d
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As can be seen, such a £, if it exists, without loss of generality, is called the
gradient of f at 2 and is denoted by Vf(z). In addition, if f is continuously
differentiable; that is, Vf is continuous over R, then f is called a smooth

function. If f is not smooth, it is referred to as being nonsmooth.

Example 2.1.17. [Differentiable but nonsmooth function| Consider the following
real-valued function
0, if z = 0;

z?sin(1), ohterwise.

flz) =

It is clear that the function f is differentiable at 2 # 0 and its derivative is
J'(z) = 2zsin(1/z) — cos(1/z), Yz # 0.

Since f(0 + z) — f(0) = 2?sin(2) for any = # 0 and lim, o zsin(1/z) = 0, the
function f is differentiable at & = 0 and f’(0) = 0. Therefore, f is differentiable
on R, However, f is not continuously differentiable because the limit limg. o f/(z)

does not exist.

Definition 2.1.18. A vector-valued function f : R* — RP? is called differentiable
(or smooth) if each component f; of f, j =1,2,...,p, is differentiable (or smooth,
respectivelty). The Jacobian of f, denoted V f(z), is the p x n matrix and can be

expressed as

V@) = (Vfi(z), Vi(z),..., Vi)

Let f: R® — RP and g : R® — R™ he differentiable vector-valued functions,
and let A be their composition, i.e.,
hiz) = g(f(z)), Vo € R".
Then, the chain rule for differentiation [54, p. 19] states that
Vh(z) = Vf(z)TVg(f(2)), Vo € R (2.1.1)

- Definition 2.1.19. A set-valued map @ from R* to R™ associates every 2 € R”
to a set in R™; that is, for every z € R*, &(z) C R™. Symbolically, it is expressed
as @ : R* 3 R™,

A set-valued map ® : R® =4 R™ is said to be upper semicontinuous (usc)
at x € R" if for any sequences {§} and {2} tending to £ and 2 respectively, and if
& € O(z;) for each ! € N, then £ € B(x).
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2.2 Convex and nonsmooth analysis

We start this section by recalling the notions of a convex set and an affine set.

Definition 2.2.1. A set A C R” is said to be

(i) convex if aay + (1 — ajas € A, Vay, ap € 4, Yo € [0, 1].

(ii) affine if gy + (1 — a)ay € A, Vay, as € A, Va € R,

a1 a
L 1\",2‘:?* 2 2= —0.2a; + 1.2a4
#T a=0, - 5o
T
]

&1

Figure 1: Example of affine sets on a two-dimensional space,

Next we state some important properties of convex scts.

Proposition 2.2.2 (Operations on convex sets).

(i) The intersection of an arbitrary collection of conver sels is convex.

(ii) For a convezx set A C R™ and sealar oy > 0 and g = 0, (v + ag)A =

1 Ay + aa Ay which 1s conven.

Theorem 2.2.3. [55, Theorem 3.16] Let A and B be nonempty convex subsets of
R® withint A £ 0. Thenint ANB = 0 if and only if there exist a vector & € R™\{0}

and a real number o with
(£,a0) <a<{b) forallac A and allbe B
and

{&,a) < « for all a € int A,
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Definition 2.2.4. The convex hull of a set A € R", is denoted by co A, is the

smallest convex set containing A and can be expressed as
m T
coA=<zeR" :ax= E o, ¢; €A a; >0, 1=1,2,...,m, E a; =173,
i=1 i=1
for some m € N,

ay 5] as

® '\e
co A

Figure 2: Tllustration of a convex hull.

Another important property of a convex set is the line segment principle. To
arrive there, we now need the notions of the affine hull and the relative interior of

convex sets,
Definition 2.2.5. The affine hull of a set A C R", is denoted by aff A, is the

smallest affine set containing A and can be expressed as

m m
&ﬁ'A:{mERn:m:Zaiai: a‘ieA: CY{ER, ixl,Q,...,m, Zai: }a

=1 i=1

for some m € N.

ay (s (\ai\ Qs aff A
- 5 *——_‘\

Figure 3: Illustration of an affine hull.
Definition 2.2.6. [56, p. 44] The relative interior of a convex set A CR", ri A,
is the interior of A relative to the affine hull of A, that is,
1A= {zeAd:de>0st Blz,e)naff AC A}

For an n-dimensional convex set A C R", i.e., the dimension of a subspace which
H )

parallel to aff A, aff A =R” and thus1i A =int A,
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HE),

aff ANB((0,0.5),0.5) C A

A
7

Figure 4: Illustration of a relative inferior of a one-dimensional convex

set on a two-dimensional space.

Proposition 2.2.7. [56, p. 45| Consider a nonempty convezr set A C R™. Then,

the following assertions hold:

(i) ri A is nonempty.

(i) [66, Theorem 6.1, Line Segment Principle] Let x € ri A and y € cl A. Then
for a €[0,1],

(1-a)z+ayeri A

On the one hand, a special class of convex sets is a convex cone. So, we shall

begin by recalling the concept of cones.

Definition 2.2.8. A set K C R” is said to be a cone if for every x € I, ax € K
for every a > 0. For any sct A C R, the cone generated by A is denoted by
cone A and is defined as

coneA::UaA:{a:EIEE”:fz::cm, a € A, o> 0}

a>0

(2,2)

O [ )]

A= {(1,1),(2,2)} . cone A
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A={(-1,1),(1,1)} oL cone A o

Figure 5: Illustration of the cone generated by the nonconvex set A.

From now on, we moving on to the notion of the convex cones.

Definition 2.2.9. The set K C R" is said to be convex cone if it is convex as
well as a cone. For any set A C R™, the convex cone generated by A is denoted

by cone co A and is expressed as

Tt
cone co A = {Q:EIP@.””::U:Z%&,;, uEeA 020 i=12,...,m, meN}.
i=1

€2, &9
[ ] ®
A={(-1,1),(1,1)} EVA P AT e

Figure 6: Illustration of a convex cone generated by a nonconvex set A.

In addition, for a collection of convex sets A; CR* i=1,2,...,m, the convex
cone generated by A;, i = 1,2,...,m, can be shown to be expressed as
m "
colle co U A= U o A (2.2.1)
i=1 ;>0 i=1
i=1,2,....m

See, [57, p. 97], for more details.

The following theorem suggests a way that whether a given cone is convex.

Theorem 2.2.10. A cone K € R" is convez if and only if K + K C K.
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Definition 2.2.11. Consider a set A € IR™. The cone defined as
A ={EcR": ({,2) <0, Vo c A}
is called the polar cone of A. Note that the polar cone of the set A is a closed

COonvex cone.

Hi) °

A= {(1,1),(2,2)} #1

Figure 7: Polar cones of the sets.

Now we present some properties of polar and bipolar cones.

Proposition 2.2.12. [54, Proposition 3.2.1(a)] Let ai, as,. .., a,, be vectors in R"..
Then, the finitely generated cone

A= cone{ay, ag, ..., 0y}
is closed and its polar cone is the polyhedral cone given by
A ={deR": {0;,d) <0, i=1,2,...,m}.

Proposition 2.2.13.

(i} Consider two sets Ay, Ay CR"™ such that Ay C Ay, Then A5 C AS.
(ii) [The bipolar conc theorem] Consider a nonempty set A C R*. Then

A = ¢l cone co A.
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Definition 2.2.14. Consider a set A C R”. The positive polar cone (dual
cone) to the set A is defined as

AT ={EeR": (& 2y > 0, Vo e A}

Observe that A* = (—A)° = —A°.

P

F 3

E.
Y

Figure 8: Dual cone of the set.
Lemma 2.2.15. [55, Lemma 3.21, p. 77| Let K be a convex cone in IRP.

(1) If K is closed, then K = {x ¢ R? : (£,2) > 0 for oll £ € K*}.
(i) If intK £ 9, then mtK = {& € RP : (£, 2) > 0 for oll € € K*\{0}}.

Definition 2.2.16. Consider aset A C R" and z € A. The (Bouligand) tangent
cone to the set A at @, T(A, %), is defined by

-
T(A z) = {d eR": Mz} C A, oy — 7, 4] 0s.t. ?('Lg —Zy-rdasl- +oo} .
!

y\.
. \\:EI
‘\\\ ~ &y N
S T(4,0) = {(d,0) € R? : d < 0}

=2
3]
ik

Figure 9: Illustration of the behavior of the vector in a tangent cone.
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In view of the definition, to construct a tangent cone we consider all the se-
quences {a;} in A the converge to the given point T € A, and then calculate all
the directions d ¢ R” that are tangential to the sequences at . However, if A is a

convex set, the tangent cone can be obtained by the following way.

Theorem 2.2.17. Consider a set A CR" and & € A. Then the following hold:

(i) T(A,z) is closed.

(i) If A is convez, T(A, %) = cl cone(A — 2) and hence T(A, &) is convez.

)

Figure 10: Tllustration of a tangent cone of a convex set.
Definition 2.2,18. Consider a convex seb A C R” and & € A. The normal cone
to the set A at z, N(A, &), is given by

N(A,Z) ={dcR": {d,x—7) <0, Vo € A}
By employing the polarity, we have the following connection between the con-
tingent cone and the normal cone.

Proposition 2.2.19. Consider a convex set A CTR™. Then,

N(A,5) = (T(A,7))° and T(A,5) = (N(A, 7).
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Figure 11: Tangent cone and normal cone of a convex set.

With all these background on convex sets, we now move on to consider the

convexity of a function.

Definition 2.2.20. A function f : R* — R is said to be convex if for any , y € R”

and « € [0, 1f we have

Sz +ay) < (1-a)f(z) +af(y).

Figure 12: Geometric interpretation of convex functions.

Example 2.2.21. Consider a set A C R". The indicator function, d, : R* — R,
to the set A is defined as

0, if z € A

dalz) =
+c0, ohterwise,

It can be easily shown that 4,4 is lsc and convex if and only if A is closed and convex,

respectively.
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Proposition 2.2.22 (Operations that preserve convexity).
(i) Consider proper convex functions f; : R® -+ R and o; > 0, i = 1,2,...,m.
Then f =73 0, o fi s also a convex function.

(ii) Consider a family of proper convexs functions f; : R® — R, 4 € Z, where T is

an arbitrary index set. Then [ :=sup,e; fi 15 a convew function.

Theorem 2.2.23. [56, Theorem 10.1] A proper convez function f : R* — R is

continuous on ri dom f.

A special class of convex functions is a sublinear function.

Definition 2.2.24. A proper function f : R* — R is said to be a sublinear

function if f is subadditive and positively homogeneous, that is,
flzy +22) < flz1) + f(z3), V21,25 € R® (subadditive property)
floz) = af(z), Yz € R", Yo > 0 (positively homogeneous property).

Lemma 2.2.25. [48, Lemma 8] Let f : R* — RU {--00} be a sublinear function.

If f vanishes on an open set, then it is nonnegative everywhere.

We now consider some properties related to the directional derivative of convex

functions.

Theorem 2.2.26. [56, Theorem 23.1] Consider a proper conves function f : R* —
R and 7 € dom f. Then for every d € R, the directional derivative f'(%;d) exists.

Moreover, f'(Z;d) is o sublinear function in d for every d € R™.

Next we recall the subgradient and the subdifferential of a convex function.

Definition 2.2.27. [56, p. 214] Consider a proper convex function f : R* — R
and Z € dom f. Then £ € R"™ is said to be the subgradient of the function f at
if

f@)— f(z) =2 {2 —1), Vo e R™

The collection of all such vectors constitute the subdifferential of f at & and is
denoted by 0f(%). For & ¢ dom f, df(%) is empty.



24

1
I
I
- 1
1
I

Figure 13: Geometric interpretation of subdifferentials.

Remark 2.2.28. [56, p. 215] For a convex set A, 89.4(-) = N(4,").

Several elementary facts about the subdifferential will now be listed.

Theorem 2.2.29. [56, Theorem 23.2] Consider o proper convex function f : R® —
R and & ¢ dom f. Then

Of(z) = {¢£ e B f(%;d) > {£,d), Vd € R}

Proposition 2.2.30. [56, Theorem 25.1] Consider a convez function f: R* - R
differentiable at & with gradient V f(z). Then, 9f(z) = {Vf(Z)}.

Proposition 2.2.31. [66, Theorem 23.4] Consider a proper convex function [ :
B* » R and & € dom f. Then 8f(z) is closed and convex. For & ¢ 1i dom f,
Of(x) # 0. Furthermore, if & € int dom f, 8f(&) is nonempty and compact.

Theorvem 2.2.32. [56, Theorem 23.8, Moreau-Rockafellar Sum Rule| Consider fwo
proper convex function fi, fa : R® — R. Suppose that ri dom f; N1l dom fy # 0.
Then

Ofi + fo)(2) = 0fs(w) + O fa()
for every x € dom(fs + fa).

Lemma 2.2.33. [41, Lemma 2.1] Let i C R? be o conver compact set, and let
f i R*x R® = R be a function such that for each fived w € U, f(+,u) is o convex
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function on R™ and for each fived 22 € R*, f(z,) is @ concave function on R%®,
Then,

) (lung f(-,u)) (z) = uey@ af (-, u)(@),

where U(Z) = {1 € U : f(T,T) = maxyey f(T, 1)}

As we also deal with a class of nonconvex functions instead of convex functions
for constraint functions, we shall need generalized subdifferential to nonconvex func-
tion. In what follows we firstly refer to the notion of local Lipschitz continuity and

the basic properties.

Definition 2.2.34, A function f : R" — R is said to be locally Lipschitz at
2 € R™, if there exist an open neighborhood U and a constant L such that, for all

1 and z in U, one has

|/ (y) — f(2)] < Ly — =||.

If the function f is locally Lipschitz at every point @ € R”, one says that f is a

locally Lipschitz function on R™.

Proposition 2.2.35. [51, Corollary, p. 32| Let f : R® — R be continuously
differentiable at x, then f is a locally Lipschitz ot x.

Theorem 2.2.36. Consider a proper convex function f : R* — R, Then f is

locally Lipschitz at x for every x € ri dom f.

We are now ready to state a generalization of the ordinary directional derivative

which always exists for locally Lipschitz continuous functions.

Definition 2.2.37. [51, p. 25| Let f : R* — R be locally Lipschitz at a given
point z € R*, The Clarke generalized directional derivative of f at  in the
direction d € R", denoted f°(z;d), is defined as

So(z; d) :=limsup [y +td) = Jy)

YT t '
o0+

Moreover, f°(z;d) is a sublinear function in d for every d € R™ (see [51, Proposition
2.1.1(a))).
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Now, in analogous to the property in Theorem 2.2.29 for convex functions,
we are in the position to define the subdifferential to nonconvex locally Lipschitz

continuous functions.

Definition 2.2.38. {51, p. 27] Let f : R® — R be locally Lipschitz at a given
point © € [R". The Clarke generalized subdifferential of f at z, denoted by
0°f(x), is defined as

flz) :={£ cR": fox;d) > {¢£,d), Vd € R"}.

If f: R"™ - R is locally Lipschitz at z, it is well known that the Clarke generalized
subdifferential of f at z is a nonempty, convex and compact subsct of R” (see [51,
Proposition 2.1.2(a}]), and

°(z;d) = max (£,d), Vd € R™
fo(z; d) . é?f}ﬁ)@ )

(see [51, Propoition 2.1.2(b)]). Moreover, 8°f is upper semicontinuous at « (see [51,
Proposition 2.1.5(d}}}.

Remember that max-functions are always encountered in the robust optimiza-
tion. We shall need the results of differential calculus for max-functions. In what

follows, we need the following regularity property.

Definition 2.2.39. [51, Definition 2.3.4] Let f: R” — R be locally Lipschitz at a
given point 2 € R™. The function f is said to be regular at € R™ if f'(z;.) and

F(z;-) both exist and coincide.

We now note some sufficient conditions for a function to be regular.
Proposition 2.2.40. [51, Proposition 2.3.6 together with Corollary (p. 32)] A
function f : R™ = R is regular at a given point x if

(i) f 1s continuously differentiable at x, or
(it) f is convex.

The continuous differentiability is critical in the regularity as the next example

shows.
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Example 2,2.41. [51, Example 2.2.3] Remember that the function f in the Kx-
ample 2.1.17 is differentiable but it is not continuously differentiable. In addition,

F2(0; d) = |d| and f'(0;d) = 0 for all d € R. Therefore, f is not regular at @ = 0.

//ﬂ,..m._\
Differentiabili T

Figure 14: Relationship among differentiability, smoothness, convexity,

and local Lipschitzian and regularity.

In order to formulate a differential calculus rule for max-functions, the following

agsumptions will be considered in the sequel.

Assumptions [68, Theorem 2.1] (see also [37, p. 2041]) Let V be a compact
subset of R4. Suppose g : R* x ¥V — R, is a function satisfying the following

conditions:

(A1) g{x,v) is upper scmicontinuous in {z,v);

(A2) g is locally Lipschitz in the first argument uniformly in the second argument,
i.e. for all z € R", there exist neighborhood U of z and a constant L > 0

such that for all y and z U , and v € V, one has
l9(y,v) — g(z,v)| = Ly — 2|;

(A3) g is regular with respect to x;

(Ad) The generalized gradient 82g(a, v) with respect to the first component is upper

semicontinuous in {(x,v).

Remark 2.2.42. [58, Remark of Theorem 2.1] Note that, if one of the following
conditions holds, then the conditions (A2), (A3), and (A4) hold:
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(1) The function g is convex in z and continuous in .

(i) The derivative Vog(z,v) with respect to @ exists and is continuous in (z, ).

The following lemma will be useful in our later analysis especially a differential

calculus rule for max-functions.

Lemma 2.2.43. [58, Theorem 2.1, Danskin theorem in nonsmooth setting](see also
[59, Theorem 2]) Let V be a nonempty compact subset of R and let g : R*xV = R
be such that the conditions (A1)-(A4) are fulfilled. Let (z) = sup,ey g(z,v).
Denote V(z) := {v € V: g(z,v) = ¥(z)}. Then the function 1 is locally Lipschitz,

directionally differentiable, reqular for each x € R™ and

Yo(x,d) = max{gi(z,v;d):veV(x)}
= max{({,d) : £ € O2g(z,v),v € V(2)}, Vd € R".

Lemma 2.2.44. [36] Let V be a nonempty compact convex subset of R? and let
g:R* xV = R be such that the conditions (A1)-(A4) are fulfilled. In addition,
suppose that g{x, ) is concave on V, for each x € . Then the following statements
hold:

(i) The set V(x)} is convez and compact.

(i) The set O%(z, V(x)) = {{ e R*: Jv € V(z) s.t. £ € B2g(x,v)} is convex and

compact.

(iii) &°Y(x) = 0°%(x, V(x)), where o is defined in Lemma 2.2.48.

Observe that the notion of regularity plays a pivotal role and it does not gen-
eralize differentiable function. However, it is possible to unify the differentiability

and the local Lipschitz regularity based on the following notion.

Definition 2.2.45. The function f : R" — R is said to be tangentially convex
at z € R" (see [60] and [61]) if for every d € IR™ the one-sided directional derivative

of f at z, f'{z;d), exists, is finite, and is a convex function of d.
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Note also that if f is tangentially convex at 2, the function f(x; ) is a sublinear

funetion.

Remark 2.2.46. [Classes of tangentially convex functions| The following points

are taken from [48].

(1)

(i)

(i)

Fvery convex function which has an open domain is tangentially convex at

each point of its domain.

Every function which is Gdteaux differentiable at a point @, the directional
derivative at @ exists in all directions and is a linear function, is tangentially

convex at © by the linearity of the directional derivative f'(z;-).

Every locally Lipschitz function which is regular in the sense of Clarke at a
point x is tangentially convex at 2, since in such a case the classical one-sided
dircctional derivative is convex because it coincides with the Clarke directional

derivative.

The class of tangentially convex functions at a given point is a real vector
space, and hence some tangentially convex functions (not necessarily con-
vex and differentiable) will follow from the sum of a convex function with a

differentiable function as the next example shows.

Example 2.2.47. A function f : R — R, defined as f(z) := |z| — 2 for all z € R,

is a tangentially convex function at 0.

Y
21 7'(0;)
*,\‘% 1 T ’¢’?
42 ;1 2 T
-1
_2 .

Figure 15: Example of a tangentially convex function.
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The concept of subdifferential for tangentially convex function is implicitly

given in [60].

Definition 2.2.48. The tangential subdifferential of (a tangentially convex

function) f at @ € R™ is the set Orf () given as
Orf(z) ={E cR": f'(a;d) > (£,d), Vd € R"},

which is & nonempty compact convex set.

It is important to note that if f is tangentially convex at € R™ such that
f(z) € R, the function f'(=;°) is the support function of the tangential subdiffer-

ential, that is,

I ) — . n
[z d) = 561(19%}&)(5,61), for all d € R™. (2.2.2)

Let f : R® = R be tangentially convex at = € R". Surprisingly, the tangential
subdifferentials enjoy nice calculus properties including the positive homogeneous

rule and the sum rule, i.e.,

() for every 0 > 0, 0p(0f)(z) = 00rf(2);
(ii) if f and g is tangeniially convex at the same point z, one has

Or(f + g)(z) = Orf(z) -+ Org(x).

Remark 2.2.49. For a given tangentially convex function f: R" - R at z € R",

it is easily to verify that the function y — f/(2;y — 2} is convex and
Orf(z) = 0f' (x;- — a)(z) = 8f'(z;-)(0).

Example 2.2.50. Let f: R? — R be defined as f(z1,23) = /23 + 22 — 2§ — 3.

Then, for every (dy, d;) € R?, we can verify that

f 0:0 +tdlad —f0,0
(0,0 (tZ)) ( ):\/d%—l—d%—t?df—t?dgforallt>0.

Letting ¢ — 0%, we get f'((0,0);(dy,ds)) = +/d% + d%, from which it follows that
(d1,do) — f'{{0,0); (d1,dy)) is convex. So, f is tangentially convex at (0,0) and

its tangential subdifferential at (0, 0) is

Br(0,0) = 3/((0,0); (0, 0)) = [~1,1] x [-1, 1.
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2.3 Lagrange multiplier theory revisited

Consider the problem (P) where f,g; : R® > R, i = 1,2,...,m, are differentiable
functions. The main draw back of the necessary optimality conditions for the

problem (P) to attain its global minimizer laid down by John [1] as stated below.

Theorem 2.3.1. Consider the problem (P) where f,g; ' R* - R, i =1,2,...,m,
are differentiable functions and let a be a point of global minimizer of (P). Then

there exist \; 2 0,1=0,1,2,...,m, not all simultaneously zero, such that

MV f(a) + Z AVgi(a) =0 and \jgi(a) =0, i =1,2,...,m.
=1

In view of Theorem 2.3.1, a multiplier that associated with the gradient of
the objective function can also become zero. Consequently, making the objective
function play no role in the optimization process. In addition, however, even if a
feasible point a satisfies two conditions above and f,g;, ¢ = 1,2,...,m, are convex,
we can not conclude that a is a point of minimizer of (P). To see this, for every

z € R” such that g;(z) <0foralli=1,2,...,m,

m

0 = M{Vf(a),z—a)-+ Z)\i(Vgi(a),m - a)

i=1
m

Mo(f(2) — fla)) + Z)\i(_ (z) — gi(a)) (by convexity of f and g;)
< Jolf(2) — fla).

IA

So, one needs a positive multiplier associated with the gradient of the objective
function. Kuhn and Tucker {2] realized that in order to achieve this one needs to
impose certain conditions on the constraints, known as constraint qualifications,
and then the Fritz-John optimality conditions become in the form of Lagrange
multiplier rule or KK'T' conditions. One of such constraint qualification, due fo
Slater (62], was introduced in 1950 and it still plays a very central role especially
in convex optimization theory. So, it will be useful to briefly state the Slater’s

constraint qualification.
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Definition 2.3.2. The Slater’s constraint qualification is said to hold for the
system z € R, g;(z) < 0,4 = 1,2,...,m, if there exists o € R™ such that
gi(zg) < Oforalli=1,2,...,m,

In the recent past, there has been a renewed interest in the study of KKT
optimality conditions for a convex optimization problem (CP), whose constraint
set C' is described as in (1.0.1) and every constraint functions are not necessarily
convex. Ag a breakthrough to this, Lassere [46] considered in differentiable problem
fulfilling Slater’s constraint qualification and non-degeneracy condition: For all ¢ =

1,2,...,m,
Vai(z) # 0, whenever 2 € C and g;(z) = 0.

He showed that as far as KK'T optimality conditions are concerned, the convexity
of constraint functions can be replaced by the convexity of the constraint set. This
result has been obtained by Dutta and Lalitha [47] for the non-differentiable case
involving Lipschitzian data of g; which meet a regular condition in the sense of
Clarke. In the discussion in [47], g;, 4 = 1,2,...,m, are only need to be continuous
[48]. We now give a description of some results in the aforementioned papers which

will be useful in our later analysis.

Proposition 2.3.3. [47, Proposition 2.2] Let ¢; : R* - R, i = 1,2,...,m, be
locally Lipschitz and regular in the sense of Clarke. Let C = {zx € R* : gi(z) <

0, i=1,2,...,m} be nonempty. If C is convezx, then, for eachi=1,2,...,m,
g (z,y —x) <0, Vz,y € C with g;(z) = 0. (2.3.1)

Moreover, if Slater’s constraint qualification holds, and 0 ¢ 8°g;(x) wheneverz € C

and gi(x) =0 (non-degeneracy condition), then, (2.3.1) implies that C' is convez.
Theorem 2.3.4. [47, Theorem 2.4] Let us consider the problem (CP). Let us
assume that each g; is locally Lipschitz and regular in the sense of Clarke. Further
assume that the Slater’s constraint qualification holds and non-degeneracy condition
is satisfied. Then T € C is a global minimizer of f over C and only if there exist
A >0,9=1,2,...,m, such that

1) 0€af(&) + >, M0°g:(E),
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11) Algt(i) = 0, Vi = 1,2, v, T

We next recall the notion of psendoconvexity in tangentially convex setting.

Definition 2.3.5. [48, Definition 7] A function f : R® — R U {400} which is
tangentially convex at 2 € dom f is said to be pseudoconvex at z if f(y) > f(z)

for every y € R™ such that f'(z;y — 2} > 0.

Theorem 2.3.6. [48 Theorem 9] Suppose that functions g; : R* — R U {400},
i =1,2,...,m, are continuous, the system 2 € R*, g;(z) < 0,7 = 1,2,...,m,
satisfies the Slater's constraint qualification, and for every ¢ € C = {x € R* ;
g:(z) <0, ¢ =1,2,...,m} and i € {1,2,...,m} such that g;(x) = O the function
g; 18 tangentially convez at x and Opg;(x) # {0}. Assume further that the set C is
convez, and the function f : R™ — R U {+o0} is tangentially conver at T € C. If
either g;(Z) < 0 for every i € {1,2,...,m} or for every i € {1,2,...,m} such that
9:(Z) =0, 0 ¢ Orgi(T), then a necessary condition for T to be a global minimizer of

f over C is the existence of real numbers \; > 0,1=1,2,...,m, such that
i) 0€drf(@) + D211, \iOrai(),
ii) Atgz(f) 20 (= 1,2,...,m.
We have already seen that Fritz-John optimality conditions are one of the key

regults to obtain the KKKT conditions. To the end of this subsection, we now present

a generalization of Fritz-John optimality conditions due to {60, p. 88, Corollary].

Theorem 2.3.7, Let ¢;, 1 =0,1,2,...,m, are real-valued functions on R*, Let &

be a solution to the fellowing problem.
11:51%?1711{(,00(:1:) cpi(z) <0, 1=1,2,...,m}.

Suppose that there exist conver functions h;, 1=0,1,2,...,m, such that

lim %’(93 + td) — (sc)
t10 i

< hy(d), Vd ¢ R™.

Then, there exist A; > 0,41=0,1,2,...,m, not all zero, such that

> " Aihy(d) 2 0, Vd € R™

i=0



34

2.4 Multi-objective optimization problems

Multi-objective (vector-valued) optimization is a subject of mathematical program-
ming that extensively studied and applied in various decision-making contexts like
economics, human decision making, control engineering, transportation and many
others. We refer the reader to [63-66]. For comprehensive treatment of theoreti-
cal issues concerning multi-objective optimization can be found in [55,67-69]. A
multi-objective optimization problem can be formulated in mathematical terms as:

RE — min{/(z) = (f1(2), fal@h s fy(a)) 10 € D), (MOP)

zERD

where the integer p > 2 is the number of objectives, each f; : R — R, § =

1,2,...,p, is a scalar function, the set € is the constraint set of decision vectors.

An element z* € (1 is called a feasible solution or a feasible decision. A vector
*

z* = f(z*) € R? for a feasible solution z* is called an objective vector or an

outcome,

In the multi-objective setting, the scalar concept of optimality does not apply
directly due to the fact that all the objectives can not be simultaneously optimized
with a single solution. To this effect, some of the objective vectors can be extracted
for examination in a way that such vectors are those where none of the components
can be improved without deteriorating their performance in at least one of the rest.
In this way, we refer to a Pareto minimum [70] which usually uses coordinate-wise
ordering {induced by the positive orthant as ordering cone) to examine the objective

vectors. A more formal definition of Pareto optimality is the following:

Definition 2.4.1. A feasible point z* € {2 is said to be a Pareto minimum
point (or an efficient solution or a nondominated point) of problem (MOP),

if there is no feasible point x € () such that
fi(x) < fi(a®) for all j = 1,2,...,p,

and
fe(z) < ful2*) for some k € {1,2,...,p},

or equivalently, ({f(z*)} — RE\{0}) N F(9) = 0.
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Figure 16: A geometric view of Pareto minimality.

In addition to Pareto optimality, the necessary optimality conditions for the
problem (MOP) to attain its Pareto minimum rely on the way to establish necessary
optimality conditions of the following weakly Pareto optimal solutions, which are
often relevant from a technical point of view because they are sometimes easier
to genecrate than Pareto optimal points. However, they are not always useful in

practice, because they have no meaning on the economic scene.

Definition 2.4.2. A feasible point z* € ) is called a weak Pareto minimum
point (or a weakly efficient solution of (MOP) if there does not exist another

feasible point & € £} such that

fi(x) < fi{a*) forall j =1,2...,p,

or equivalently, ({f(z*)} —int RY) N f(Q) = 0.

Figure 17: Geometric interpretation of a weak Pareto minimality.
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Interestingly, when comparing two Pareto minimum points, they either obtain
the same performance (all objectives equal), or, each beats the other in at least
one objective. The latter case leads to the study of how much worse we must do
in one or more objectives in order to do better in some other objectives. As an
illustration, consider a bi-criterion problem. We might ask how much we must pay
in the second objective to obtain an improvement in the first objective. T'his notion

refors to the proper Pareto optimality due to Geoffrion [71].

—1 Acdarge Bereass v fy st be accepted

toy repbive o small decrease In 5

Figure 18: Tllustration of the behavior of non-proper Pareto minimality.

Definition 2.4.3. A feasible point 2* € {2 is said to be a proper Pareto mini-
mum point (or a properly efflicient solution) of problem of (MOP) if it is a
Pareto minimum point and there exists A4 > 0 such that, for each 2 € {2 and each
j € {.1,2, ..., p} satisying fi{e) < f;(2*), there exists & € {1,2,...,p} such that
Ju(2) > fi(2*) and

Sile') — fi(=)

ful@) ~ fula)
or equivalently, ¢l cone(f(Q) +RE — f(z*)) N (—RE) = {0} (see [67, Theorem 3.1.4,
p. 40}).

< M,

In other words, a solution is properly Pareto optimal if there is at least one
pair of objectives for which a finite decrement in one objective is possible only at

the expense of some reasonable increment in the other objective.
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Figure 19: llustration of proper Pareto minimality.

As far as we know, the search for weak Pareto minimum (resp. Pareto min-
imum) to (MOP) has been carried out through via scalarization. Scalarization
means that the problem is converted into a single (scalar) or a family of single
objective optimization problems, possibly depending on some parameters. After
the multi-objective optimization problems has been scalarized, the widely devel-
oped theory and methods for single objective optimization can be used. Among
the contributions on this way we remind the papers of [72], where the authors
employ the linear scalarization, which is almost the most well-known scalariza-
tion technique in multi-objective optimization problems, to characterize the set of
weak Pareto minimum and proper Pareto minimum under convexity assumptions
of objective function and of constraint set. Before presenting let us consider the fol-
lowing scalar parameterized convex problem of (MOP) depending on a parameter
6:=(0,6a,...,0,) € RE:

P
min {Z;Hj.fj(ﬂ?) T € Q} : (Po)
J:
Assume that the solution set of problem (Fs), denoted by Sy, is nonempty. So, the
set of weakly efficient solutions (W (£2)) and the set of properly eflicient solutions
(P(£2)} for (MOP) can be characterized as follows:

i) xz* € W(Q) if and only if there exists & € RE\{0} such that z* € 5.
+

(i) 2* € P(Q) if and only if there exists 6 € int R such that z* € Sy,



CHAPTER III
CHARACTERIZATIONS OF THE SOLUTION SETS

3.1 Convex optimization problems without convexity of con-

straints

In this section, we aim to give characterizations of the solution set of (CP) without

the pseudoconvexity assumption of Lagrange function. We begin by the following

lemma.

Lemma 3.1.1. Let C be defined as in (1.0.1), 2 € C and I(z) :={i € I : gi(z) =
0}. Assume that for every i € I(x) the function g; is tangentially convez ot . If

the set C' is conves, then for any y € C, one has
gilz;y— ) <0, Vi € I{x). (3.1.1)

Moreover, for eachi € I{z), Orgi(z) € N(C,z).

Proof. Suppose that the set C' is convex. For any y € C, the convexity of C' implies
that z +t(y — z) € C for any t € [0,1]. Consequently, for each ¢ € I,

gi(z +t(y —2)) <0 for all t € [0, 1}

Therefore, for every ¢ € I{z), one has

gilz +tly — o)) —gil@) _ gi(z +t(y —a))
t

; < 0 for all £ €]0, 1].

By passing the last inequalities to the limit as ¢t — 01, as each g; being continuous,
we get (3.1.1).

Furthermore, (2.2.2) and (3.1.1) yield, for any £ € dpg;(2), (§,¥—2) <0,Vy €
C, which gives that £ € N{C, z), thereby establishing the desired result. O

Remark 3.1.2. In view of Lemma 3.1.1, we can see that for every A; > 0, ¢ € I(Z),
D ier@) M0r9i(T) € Yiepe MN(Crz) € N(C, ) due to N(C,z) is a convex cone
(see, Theorem 2.2.10 also). '
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It should be noted that, in convex programs, Slaters constraint qualification
is usually used o obtain the Lagrange multiplier conditions which characterize
optimality (see (9,12, 14,24, 26, 27] and other references thercin). However, the
Lagrange multiplier conditions for the convex optimization problems without con-
vexity of the constraint functions may fail under the Slaters constraint qualification.
Recently, Lagrange multiplier conditions have been obtained under the Slaters con-
straint qualification together with an additional condition on the constraints. Some
constraint qualifications, which are also necessary for the existence of Lagrange
multipliers for convex optimization problems without convexity of the constraint
functions, has been introduced in [49,73]. In an analogous manmer as [49], we
introduce the following constraint qualification in terms of tangential subdifferen-
tials and show that it is the weakest constraint qualification for gnaranteeing the

Lagrange multiplier conditions to be necessary and sufficient for optimality of (CP).

Definition 3.1.3. [74] Let 2 € C and g;, i € I(z), be tangentially convex at z.

The normal cone condition is satisfied at z if
N(C,z) = cone co U Orgi(x).
icl(x)

Theorem 3.1.4. [74, Weakest CQ for Lagrange multiplier conditions] Let
Z € C be given, and for every ¢ € I(T) the functions g; be tangentially convex at X.

Then, the following assertions are equivalent:

(i) The normal cone condition is satisfied at T,

(ii) For each convex function f : R"™ — R atteining its global minimizer over C

at T, there exist A; > 0, i € I, such that

0€af (@) + Z AiOrgi(2), (3.1.2)
iel
and
)\,gt(i) = 0, Vi el (3.1.3)

Proof. {(i) = (ii)]. Suppose that (i) holds. Let f : IR® — R be any convex function

such that Z € C is a global minimizer of (CP). It then follows from the convexity
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of C that, for each t € [0, 1],
f(@ < f(Z 4+ t(x — 7)), Yz c C,
which gives
fi(Z:z—-7)=0< f'(7,2 - %), Ve € C. (3.1.4)

It means that  is a minimizer of the convex function f/(Z;- — Z)} over C' and it can
be equivalently expressed as 0 € &(f'(Z; — T) + 8¢)(&). In view of Theorem 2.2.26,
we have domf(z;- — ) = R" and so, ri domf’(Z;- — Z) Nri dom 8¢ =1l C # P
(see, Proposition 2.2.7(i)). By Theorem 2.2.32, Remark 2.2.28 and Remark 2.2.49,

we arrive at the assertion that
0€ 0f'(&;: — 7)(@) + N(C,7) = Bf(%) + N(C, &), (3.1.5)
The condition (i) yields that there exists A; > 0, ¢ € I(Z), such that
0€df(@)+ ) Ndrgi(@).
tcI(E)
Setting ; = 0 for ¢ ¢ I{%#), the above expression can be rewritten as
0 € 3f(Z)+ D NOrgi(z) and Xigy(z) =0, Vi € I,
icl

and hence (ii) has been justified.

[(il} = (i)]. Suppose that (ii} holds. By the virtue of Remark 3.1.2, we only

need to prove that

N(C,Z} C cone co U Orgi(T).

iel(T)

In fact, let £ € N(C, ) be given. The definition of N(C, ) yields that (—¢€,Z) <
(=€, z) for all z € C. It can be seen that f(z) = (=, z), * € R", is a convex
function attaining its global minimizer over C' at Z. So, from (ii) and 8f(z) = {—¢},
there exist X; > 0, ¢ € I, such that

0e {—5} + Z/\t‘afpgi(ﬁ) and )\Qt(’f) = 0, Viel

iel

This together with (2.2.1) in turn implies that

£e 2 Ai0rg; (&) C cone co U Org:(T),

iel(E) ieI(E)

thereby leading to the desired result. Cl
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Remark 3.1.5. [Sufficient condition for the normal cone condition| As seen before,
for each £ € N(C, ), f(z) := (=€, 2), x € R, is a convex function attaining its
global minimizer over C' at Z. Thus, if the system g;(z) < 0, ¢ € I, satisfies the
Slater’s constraint qualification and the non-degeneracy condition at z, ie., for

every i € I(7),
0 ¢ Org:(%),
then Theorem 2.3.6 guarantees the existence of multipliers A; > 0, ¢ € I, such that
0e{-£}+ Z XiOrgi(Z) and Agi(E) =0, Vi ¢ I,
iel

consequently, £ € cone co Uiel(j) Orgi(Z). Therefore, the normal cone condition

holds at Z.

Remark 3.1.6. In view of the proof of (3.1.4) and (3.1.5) in the proof of Theorem
3.1.4, one can notice that if For each convex function f : R® — R attaining its global
minimizer over C' at T is replaced by For each tangentially convex and pseudoconvex
function f : R® — R at Z attaining its global minimizer over C' at Z, then its
conclusions hold also true when the convex subdifferential 9f(Z) is replaced by the

tangential subdifferential or f(Z).

The following example illustrates that if the normal cone condition, condition
(i) in Theorem 3.1.4, does not hold, then the optimality condition in Theorem 3.1.4

is not derived for a convex objective function.

Example 3.1.7. {Failure of Multiplier Characterization] Let us denote « := (1, 23)
e R, gi(z) == /2l +al — 2t -2 goz) = —ad + max{—w,, —23}, g:(x) =
wp A Lmy— 12— 1, Ci={z e R®: g(2) <0, s € ]:={1,2,3}} and Z := (0,0).
It is easy to verify that C = {z € R*: \/2? + 2 —a} —2<0, —~@y— 22 <0, 21 +
Hap—1)?—2 < 0}, 1(Z) = {2,3}, Orga(E) = {0} x [~1,0] and Jrga(Z) = {(1, ~1)}-
It can be observed that

N(C,z) = cone co{(—1,-1),(1,-1)}
and

cone co{Orgz (%) U Orgs(Z)) = cone co {(0,—1),(1,1)}.
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Hence, we have that condition (i) of Theorem 3.1.4 does not hold. Thus for some
convex function f : B2 — R, it may happen that the KKT optimality conditions
may go awry at Z even if it is a global minimizer. To see this, let f(z) 1= e*! + .

We see that
flay=e"Yapze™—a>1=f(z) forallacC.

So, & is a global minimizer of the convex funection f over €. However, in this
circumstance, we cannot find out Aj, Ag, Ag > 0 such that (3.1.2) and (3.1.3) hold.

In fact, for A1, Az, Az = 0 such that \;jg;(&) == 0, 1 € I, and

(0,00 € af(@) + Y \dry(®)
el

= {(L D} A (=11] x [=1,1)) 4 A2({0} x [-1,00) + As{(1, = 1)},

it then follows that Ay = 0, and so, 1 + A3 = 0 which contradicts to the validity of
Ag > 0.

Figure 20: Illustration of a convex set without convex representation in

Example 3.1.7.
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Remark 3.1.8. In the case that for any z € C and 7 € I(x), g; are locally Lipschitz
and regular in the sense of Clarke, Theorem 3.2 in [49] can be obtained immediately
by Theorem 3.1.4.

We will present some characterizations of the solution sets in terms of a given

solution point of the convex minimization problem (CP).

Let a € S be a given solution point fulfilling the normal cone condition and
for every i € I{a), the functions g; be tangentially convex at a. Let A* :=

(A, A% ..., A%) € R be a Lagrange multiplier vector corresponding to o such that
(3.1.2) and (3.1.3) held.

It is important to note that the constant Lagrangian-type property for the
solution sets are commonly used to establish characterizations of solution sets for
constrained optimization problems involving convex/pseudoconvex functions (see
9,12, 24,26, 27) and other references therein). However, the constant Lagrangian-
type property for the solution sets may fail when some g; are not convex even if
the objective function is convex, for instance, let us define f(z) ;= max{-z—1, 0},
g1(z) 1= max{z, 2%} for = € R. We can see that f is a convex function while g
is not a convex function. Moreover, a = 0 is a minimizer of f on a convex set
C =] — co, 0] with Lagrange multiplier A := 1, and the solution set is S = [~1,0}.
However, the standard Lagrangian-type function L(z, A$) 1= f(z) + A{g1(z) is not
constant on the solution set S. In fact, L(e,A\?) = 0 # —1 = L£(-1,A}). This
situation motivates us to consider the so-called pseudo Lagrangian-type function
LE(-,a,\*) [74], defined by

L8 (z,0,0%) = f(z) + Z Mgila;z —a), for all z € R”,
iel(a)
instead of the standard Lagrangian-type function. It can be seen that £F(.,a, A%)
is constant, on S, since £F(z,a,\*) = max{—z — 1,0} + max{z, 0} for any z € R
and LF(z,0,A*) =0 for any 2 € S.

Next, we are in a position to prove that the pseudo Lagrangian function as-
sociated with a Lagrange multiplier corresponding to a solution is constant on a

solution set §.

Proposition 3.1.9. [74, Constant pseudo Lagrangian-type property] For the
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problem (CP), assume that ¢ € S satisfies the normal cone condition and the
optimality conditions (3.1.2) and (3.1.3) hold with a Lagrange multiplier vector
A% = (AL AL, AL) € R Then for any @ € S,

MNgi(ayz —a) =0, 1 € I{a)

and LF(:, a,\?) is constant on S.

Proof. By Remark 2.2.49, 8r9:(a) = Bgi{a; - —a)(a) for all i € I(a). It follows from
(3.1.2) and (8.1.3) that
0€df(a)+ Y Adga;- —a)(a) C BL (-, a,A"){a),
iel(a)

and so,
—I—Z)\a a) > f(a) for all z € R™.

By (3.1.3), it is easy to observe that A¢ = 0 for all 4 ¢ I(a). Therefore, by the fact

that f(z) = f(a), Vz € S, the above expression can be rewritten as

Zx\“gi ay>0forallz e b.
i€l(a}

Applying Lemma 3.1.1, we obtain A?¢/(a;z — a) =0, Vi € I{a). Therefore, for any

x €5,
LP(z,0,)%) = f(2)+ Y Ny} )(@) = f(z) = f(a),
icI(a)
thus yielding the desired results. (]

Remark 3.1.10. [Pseudo Lagrangian-type function coincides with Lagrangian-
type funciion] It is worth noting that if g;, ¢ € {{a), are pseudoconvex functions at

a then, by Proposition 3.1.9, for any o € S,
(X0:) (a5 — a) = Nigi(ai @ — @) = 0 = Mgi(s) > Negi(a) = 0.

This together with « € C yields, Afg;(z) = 0, 4 € I(a}. Furthermore,

L (z,a,)%) = Z Ngia f(a:)+2)\§‘gi(:r), Yz € S

i€l(a) =1
It means that the pseudo Lagrangian-type function is the standard Lagrangian-type

function on the solution set 5.
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Definition 3.1.11. A locally function Lipschitz function f: R™ — R is said to be
pseudoconvex if f(y) > f(x) for every z,y € R™ such that fo{z;y —2) > 0.

Remark 3.1.12. In Proposition 3.1.9, if f is Locally Lipschitz, regular in the sense

of Clarke and pseudoconvex, it is proved in {75, Lemma 3] that Vz,y € R, one has
fy) < flz) == fo(a;y—a) 0. (3.1.6)

Applying (3.1.6), we can show that the conclusions given in Proposition 3.1.9 are
still valid. Indeed, as a € 5, Theorem 3.1.4 asserts that there exists a Lagrange
multiplier vector A® = (A$,Af...,A2) € R such that (3.1.2) and (3.1.3) hold.
The fact that 8°f(a) = ¢ f(a) along with tangential subdiflerential calculus rules
at a imply that
flla;z—a)+ Z Ngila;z —a) >0, Vo e R™
iel(a)

Using (3.1.6) with the fact that f(a) = f(a), Vr € S and regularity of f, we
deduce ZiEI(G) A2gi(a;z — a) > 0, Vo € S, and hence, by Lemma 3.1.1, we obtain
MNgllayz ~a) =0, Vi € I{a), and for any = € S, L (z,a,\*) = f(a).

In the sequel, we present characterizations of the solution set for problem (CP)
in terms of convex subdifferentials, tangential subdifferentials and Lagrange multi-

pliers. Denote by [(a, A%) the following index set
I(a,2%) := {i € I{a) : A > 0}
and the set
XA = {x e C: Vi € I{a,\*), Tn; € Opgi(a), (n;,z—a) =0},

Theorem 3,1.13. |74, Characterization of the solution set| For the problem (CP),
assume all conditions of Proposition 8.1.9. Then, the solution set S is characterized

by

S={z e X;(0*):3 € df(z)nNdf(a), ((,z —a) =0}

Proof. [C]. Let z € S be arbitrarily given. Then, z belongs to C. Furthermore, by
(2.2.2) and Proposition 3.1.9, we have that for each i € I(a, A*),

max {n,z—a)=gla;z—a)=0
ey Sl (a) (77: ) g‘a ( )
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Therefore, for each i € I(a, \?), there exists 7; € drg;(a) such that

i,z —ay =0

On the other hand, it follows from (3.1.2) and (3.1.3) that there exist £ ¢ 0f(a)
such that —€ € 3., A20rg:(a) = 0p (3 ie; Af9i)(a). That is, for any d € R,

!

S Mgiesd) = | Y Mg | (a5d) (Z)\“qz) (a;d) = (=€,d), (3.1.7)

iel(a) iel(n) iel
where the second equality follows from (3.1.3). Note [rom z,a € S that f(z) = f(a).
Letting d := o ~a in (3.1.7), one has 37 ;) Adgi(a;z — o) = (-, 2 — a), which
together with Proposition 3.1.9 and £ € 0f(a) implies that
0= > Mge;z—a)> (=(,2—a) > f(a) - f(v) =0.
iel{a)
So, {¢,z — @) = 0. It remains to prove that £ € df(2), Now, for any y € R, we

have

fo)y = @)= f)— Ha) = &y —a) =&y —z) +{z—a) = (y— )

Therefore, £ € 6f(x).

[2]. Conversely, let = be an arbitrary point of {z € X;(A\?) : 3¢ € 8f(z) N
8f(a), {¢,2 —a) =0}. Then, z € C and there exists £ € 8f(x) N3f(a) such that
{€,a—2)=0. So

fla) = (@) 2 {§a=2) =0,

which together with the fact that o € S yields f(z) = f(a), and so z € 5. O

As tangential convexity collapses to regularly locally Lipschitz setting and dif-
ferentiability, the following corollaries are immediately direct consequences as spe-

cial cases of Theorem 3.1.13.

Corollary 3.1.14. For the problem (CP), let for any z € C and i € I(x) the
functions g; be locally Lipschitz and regular in the sense of Clarke, a € S be an

optimal solution fulfilling the condition:

N(C,a) = cone co U 5°gi(a),
ici(a)
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where 0°g;(a) denotes the Clarke subdifferential of g; at a. Assume that the opti-
mality conditions (3.1.2) and (3.1.3) hold with a Lagrange multiplier vector A* =

(A5, A5 ..., AL) € RT. Then, the solution set is characterized by
S={xeX(A\): I ecof(z)ndf(a), (£, —a)=10},
where Xo(A9) 1= {z € C: Vi € I{a,X*), In; € 8°gi(a), (m,z — a) = 0}.

Proof. The desired results can be obtained immediately by Theorem 3.1.13, since

every locally Lipschitz regular function g; is tangentially convex at every point z,
with 9pgi{a) = 8°g;(a), Vi € I{a, \?). 0

Corollary 3.1.15. For the problem (CP), let f : R™® — R be a convez differentiable
function and g; : R* = R, 1 = 1,2,...,m, be differentiable functions, a € S be an

optimal solution of (CP) fulfilling the condition:

N(C,a) =cone co | | {Va(a)}.

ie€l{a)

Assume that the optimelity conditions (3.1.2) and (3.1.3) hold with o Lagrange
multiplier vector A* := (A}, A5. .., A%) € RT. Then,

S={zeC: (Vgla),z—a)=0, Vie I{a,\¥), Vf(z)= Vfa)}.

Proof. 1t is clear that every differentiable functions g; are tangentially convex at
every point z, with dpg;(z) = {Vg(2)}, Vi € I{a, 1*). Tt follows from Theorem
3.1.13 with 8f(z) = {Vf(2)} for every point « & R™ that

S={zeC:(Vga),z—a)=0, Viec (g ), Viz)=Vfia),
(Vf(z),z—a) =0}

Further, since a satisfies optimality condition (3.1.2), we have
0= <Z A Vgi(a),x — a> = (Vf(a),x —a) = (=V f(z),z — a).
i=1

Thus, the condition (Vf(z),z — a) = 0 is superfluous. Therefore, S = {z € C':
(Vgi(a),z —a) =0, Vi € I(a,\*), V()= Vf(a)} O
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When one solution of the considered problem is known, by using Theorem
3.1.13, we can find all of solutions of the convex optimization problem that have
multiple solutions, and moreover at least one of the constraint functions g; is not
convex while the constraint set is convex. So, Theorem 2.2 and Corollary 2.1 in (9]

cannot be applied in the following example.

Example 3.1,16. [Verifying solution set] Let us denote 2 := (21,22) € R®. Con-

sider the following constrained optimization problem:

min{f(z):z € C:={z € R*: g,(x) <0, ga(z) <0, gs(z) < O}},

oCR"
where f(2) = v/2? + 232129, g1(2) := y/2} + zi—23-2, go(x) := max{—=z1, —23}—
29, ga(z) :=z1. Evidently, the function f is a convex function. Let us notice that

f(a’):\/93%+33%-$1*ﬂ322|$2|—3:2:0, forallz € C.

Thus a = (a;,a:) = (0,0) € S, I(a) = {2,3}, Orga(a) = {(r,—1) : » € [-1,0}}
and Orgs(a) = {(1,0}}. It is easy to verify that this problem satisfies the Slater’s
condition and non-degeneracy at a. Also, the convex subdifferential of f at any
point z is given by
{(-1,-1)} +B(0,1) if x = (0,0),
Of(x) = i :
Weaes (1,22} + (—1,--1) » if 2 #(0,0).

Let us select A® ;= (A§, A%, M%) = (0,0, 1). Therefore, by using Theorem 3.1.13, the

solution set can be deseribed simply as

S = {2e€C :{{(n1,Mm2), (z1,22)) = 0 for some (131,72) € Irgs(a),
((51;52): (:El: $2)> =0 for some (61:52) € Bf(:c) N af(a')}
= {CL eR?:\fat4ad—2d - 2<0, max{—z, 23} — 2, <0, 7; <0,

& )
1,0), (zy,z9)} = 0, -1 —11,(z,2 =O}
oz -0 (e 1) )
= {rcERZ::cI:O, VEi—2<0, —z, <0}
= {2eR?:2;,=0, 0< 2, <2}
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Figure 21: The behavior of the values of the objective function

in Example 3.1.16.
Next, we give a characterization of S using subdifferentials of the pseudo
Lagrangian-type function. To this aim, we need the following lemma.

Lemma 3.1.17. For the problem (CP), assume all conditions of Proposition 8.1.9.
Then for each x € 5,

DLE (-, ay M) () = BLT (-, a, A% (a).
Proof. Now take any £ € 9LF (., a, \)(z). Then, by the definition of convex subd-
ifferential,

Ly, a, X)) — LY (2,0, 0%) > (€, y — ), Yy € R™. (3.1.8)

Sinee £F(-,a, %) is constant on S (Proposition 3.1.9) and @ € S, it follows from
(3.1.8) that {£,a—a) =0 and so, (£, y—z) = ({,y—a) +{{,a—a) = (£, y—a) for
all y € B™. This together with (3.1.8) entails

L£P(y,a,A%) — L (a,a, X% > £,y — a), Vy € R",

which shows that ¢ € 87 (-, a, A\*)(a). So, OLY (-, a, \*)(x) C BLP (-, a,A\*)(a). The

proof of the converse inclusion is quite a similar argument and will be omitted. [
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With the help of Proposition 3.1.9 and Lemma 3.1.17, we see now how the

solution set can be characterized in terms of the pseudo Lagrangian-type function.

Proposition 3.1.18. [74] For the problemn (CP), assume all conditions of Propo-
sition 8.1.9. Then,

S = {x € Xo(\*) : 0 € ALF(:, 0, A?)(2)}.

Proof. Denote
S* = {x € Xy(\*) 1 0 € 8L"(-, 0, A% ()}

By Lemma 3.1.17 and the optimality condition (3.1.2), we get 0 € LF(, a, A*)(z)
for all 2 € §. This together with Proposition 3.1.9 implies easily that § C $*. To
establish the converse inclusion, let & € §* be given. Then, by the definition of §*,

z € C and for each i € I{a, \*) there exist ; € drg;(a) such that
(m, 2 —a) =0,

which implies, for every y € R", that

+ ) Mgy -

iel{a)

> f@)+ ) Agi(ez—a)

iel(a}

= f@+ Y Ngmz-a)+ Y Ngsz-a)

iel{a)\i (a,A%) ief(a,x)

= fl@)+ Y, Mgez-a)

i€f(a,A%)

> f@)+ S Mz —a) = /().

icf(a,2e)
Taking y := ¢ in the last inequality, we get that f(a) > f(z), and hence, for all

y el

FO) = @)+ Y Ndilay—a) > fa) > f(2),

iel{a)

where the first inequality follows from Lemma 3.1.1. This provesthat z € S. 0O



It turns out that Theorem 3.1.13 and Proposition 3.1.18 immediately yield
the characterizations of the solution set for convex programs that was proposed
in [9, Corollary 2.1 and Corollary 2.6].

Corollary 3.1.19. For the problem (CP), let the functions g; : R* - R, 1 € [
be convex, and a € 5 an optimal solution fulfilling the normal cone condition and
the optimality conditions (3.1.2) and (3.1.3) hold with o Lagrange multiplier vector
A= (A}, A5..., %) € RT. Then, the solution set S of (CP) is characterized by

S = {z e X(A\*): € 8f(x)Naf(a), (£, —a) =0},

where X(A®) := {a € R™ : g;(z) = 0, Vi € I(a,\?), gi(z) <0, Vi € I\I(a,A*)}.

Proof. By Theorem 3.1.13, we have that
S={zeXi(A) ¥ ecof(x)yndfia), ({,2—0a)=0}

Let z € X1(A%). As (m, 2 — a) = 0 for some n; € g;(a), Vi € I(a, \%), we have
gi{a;z —a) > {n, @ — a) =0 for each 4 € I{a,\*), This together with = € C, by
Lemma 3.1.1, yields gi(a;z — a) = 0, Vi € I{a, \*). Moreover, by Remark 3.1.10,
we get that

[x € C, Vi € I{a, %), 3n; € Bgi(a), (g, 2~ a) =0
== [ze R, gl@)=0, Vie I(a, ), g(z) <0, Vi e I\I(a,\)],

consequently, X1(A%) € X (A\*), andso, S C {z € X1(\*) : 3¢ € Of(2)ndf(a), {£,2—
a) = 0}. For the reverse containment, due to the fact X (A*} C C, the proof is sim-

ilar to the one in Theorem 3.1.13, and so is omitted. ]

Corollary 3.1.20. For the problem (CP), let the functions g; : R* = R, 4 € I
be convex, and a € S an optimal solution fulfilling the normal cone condition and
the optimality conditions (3.1.2) end (3.1.3) hold with a Lagrange multiplier vector
A% = (A2, M...,\2) € R Then,

S={zeX(\:0€edL( 1))}
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Next, we will derive characterizations of the solution set of the following pseu-

doconvex minimization problem over a convex set (CP'):
min{f(z):z € C}, (CP")
zeR"

where f : R®" — R is locally Lipschitz, regular in the sense of Clarke and pseudo-
convex, and g; : R* — R, 7 € I, are continuous functions and the constraint set C,
defined as in (1.0.1), is a nonempty convex subset of R". In view of Remark 3.1.12,

we can obtain the following results.

Theorem 3.1.21. [74] For the problem (CP'), let S’ be the optimal solution set
of {(CP"), T € & an oplimal solution fulfilling the normal cone condition and the
optimality conditions (3.1.2) and (3.1.3) hold with a Lagrange multiplier vector
A= (X5, 25...,A%) € R, and the functions g;, + € I(a), be tangentially conves
at a. Then,

S = {z € X1\ : Ip® > 0, U € 8°F(x) Np°0°f(a), (€, 2+ a) =0}
Proof. [C]. Let us assume that 2 ¢ S’. By the same arguments given in the proof of
Theorem 3.1.13, we can obtain that, for each i € [{a, %), there exists 7; € Org:i(a)
such that (7,2 —a) = 0. Furthermore, by [43, Lemma 3.4], there exists a real

number p* > 0 (depending on ) such that
0°f () 1 p°0° f(a) # 0.

It follows that there exists £ € R™ such that £ € 3°f(z) and ?%.E € 0°f(a). As
z,a € 5, f(z) = fla). It follows from [75, Lemma 3] that f°(z;z —a) < 0 and
fe(a;a — 2z} < 0. So,

(¢,2 —a) <0and <g%§,a~a:> <0,
and hence (£, z — a) = 0.

[2]. Forevery 2 € {z € X1(A%) : 3p® > 0, ¢ c &°f(z)Np=d°fla), {{,z—a) =
0}, we get that z € C, ?%l;‘ € 0°f(a) and (#é,m —a) = 0 for some p* > 0
and &€ € 8°f(2). In addition, for any d € R™ such that (%5,(1) > 0, one has
fo(z;d) > (€,d) > 0. Therefore,

r € {zeC:3edfla), {{,2—0a)=0; "
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Vd e R, {¢,d) > 0= f°(z;d) > 0},
and hence, [75, Theorem 9] leads to x € S’, thus yielding the desired results. U

Before we end this section, let us illustrate the usefulness of Theorem 3.1.21

via an example,

Example 3.1.22. Consider the constrained optimization problem (CP’) where

1

f(z) = max{0, %wz o (z =1 +1},

g1(z) = max{z, 2%},
ga(z) == 4z — x°,
gs(z) = |z = 1| =3, for every z € R,

Evidently, the function f is a locally Lipschitz pseudoconvex function. Let us notice
that

f(z) 2 0 = max{0, Hé, 0} = f(0), forallz & C.

Then a := 0 € 5, I{a) = {1,2} and each g, i € I{a), is tangentially convex at a.
We can verify that

C =1[-2,0], 8rg1(%) = [0,1], Orga(F) = {4}, Orgs(Z) = {-1}.

Also, the Clarke subdifferential of f at any point z is given by

([ (2) itz 6] — oo, —1f,
[—1,0] if =1,
o°f(z) = ¢ {0} ifx €]—1,0]
[0, 3] if z =0,
{ {3(x —1)?} ifz€]0,+ool.

We can see that this problem does not satisfy non-degeneracy at a, the normal
cone condition is fulfilled. Let us select A* := (A}, A5, A5) = (1,0,0). Observe
that for any 2 € [—1,0[, we can find p® > 0 and £ € &°f(z) N p®0°f{a) such that
{¢,z —a) = 0. So, by Theorem 3.1.21, we can obtain that the solution set can be
described as 5" = [-1,0].
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Figure 22: Plots of function f and its directional derivative

in Example 3.1.22.

Figure 23: Illustration of constraint functions and the constraint set

in Example 3.1.22.

Remark 3.1.23. In Example 3.1.22,

(i) g1 is not pseudoconvex at a = 0, i.e., taking y := —1 we have ¢'(a;y — o) =
max{0,y} = 0, but g1(y) = —1 < 0 = g (a). Then Theorem 4.1 and 4.2

in [24] may not be relevant to this example.
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(ii) The standard Lagrangian-type function with Lagrange multiplier A* := (1,0, 0},
L{x, %) = f(2) + Z?:l A¢gi(2), is not pseudoconvex at a, ie., by taking
y = 1 we get L{-,\*)(a;y — a) = max{4y,0} = 0 while L(y,A*) = -1 <
0 = L(a, A%). So, Theorem 3.3 in [27] cannot be applied.

(ili) Theorem 3.2 and Corollary 3.1 in [12] may not actually be relevant to this
example because the constraint functions are not linear, and moreover, f is
not pseudoconcave, i.e. —f is not pseudoconvex, by considering ¥ := 2 and
a =0 we have (—f)(e;y —a) =0, but {(—f){y) = =2 < 0= (- f){a).

3.2 Uncertain convex optimization without convexity of con-

straint data uncertainty

In this section, we establish the characterizations of the robust optimal solution sets
of (UP). In what follows, let us recall the following robust (worst case) counterpart

optimization problem of (UP):

ueld

n;%{n {maxf(a:,u) Lo, n) <0, Vo, eV, =12, ,m} , (RP)
T n

where f ' R*xU - R, and g; : R* x V; - R, i =1,2,...,m, are given functions
and for each 7 = 1,2,...,m, (u,v;) € U x V; CR® x R% where I and V; are the
specified nonempty convex and compact uncertainty sets. The robust feasible set
of (UP) is given by

Cri={zeR": gi{z,v,) <0, Vo, € V;, i=1,2,...,m}. (3.2.1)

Throughout this section, we alway suppose that each g; : R" X V; = R, i =
1,2,...,m, is a function satisfying the given assumptions (A1)-(A4), g;{(z,-) is a
concave function on V; for each 2 € R™, and Cyr # 0. In addition, for each ¢ =
1,2,...,m, let us define a function 1; by

Pi(2) == maxg;(z,v;), = € R™,

wnEV;

It is worth noting here, in view of Lemma 2.2.43, that for each i = 1,2,...,m, 9

is a locally Lipschitz function on R", and so it is a continuous function as well. 1t
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then follows that Cg is a closed set and for each € R", by Lemma 2.2.44,
Vi(z) = {v; € V; : gi(z,v) = ohs(2)}
is a nonempty compact subset of R%,

Corresponding to any @ € Cg, for notational simplicity, we denote I :=

{1,2,...,m} and decompose it into two index sets I = I1(z) U Iy(z), where
Iiz) :={iel:Fu eV st glzv) =0}
is the active index set at & € Cg and I, = I\I;(z). For i € I1(z), let

V(@) = {uw € Vi : gi(z,v;) = 0}.

In order to derive characterizations of the robust optimal solution sets of (UP),
one needs to investigate the multiplier characterization for the robust optimal so-
lution of (UP) that suggests a way to obtain the Lagrange multipliers. In this way,
we need to impose certain conditions on the constraints. Let us now introduce these

conditions in the following definition.

Definition 3.2.1.

(i) (Robust Slater-type constraint qualification [39]). The set C is said
to satisfy the robust Slater-type constraint gualification (RSCQ for short) if
there exists &g € R” such that for each ¢ € [, it holds

g,;(ing,’Ui) < 0, VUL‘ - Vi.
(i) (Robust non-degeneracy condition [76]). One says that Ck satisfies the
robust non-degeneracy condition at x € Cg if for each i € I;(z), it holds
0 ¢ 0°g;(2,v5), Yo; € VP (z).

One says that Cg satisfies the robust non-degeneracy condition whenever the

robust non-degeneracy condition holds at every point 2 € Cj.

(iii) (Robust basic constraint qualification). We say that the robust basic
constraint quolification is satisfied at z € Cp if
N(Cg, ) = U Z MO0, v;).

Ai20, vieV; ief
Az’gi{w)vi)=0) i€l
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Note that the robust basic constraint qualification which was introduced in [34],
where the constraint data uncertainty g;(-,v;), ¢ = 1,...,m, are assumed to be

convex for each v; € V.

We begin by the following lemma which plays a key role in establishing the mul-
tiplier characterization as well as deriving characterizations of the robust optimal

solution sets of (UP).

Lemma 3.2.2 (Characterizing convexity of robust feasible set). Let Cr be defined
as in (3.2.1). If Cr is convew, then, for each z € Ch,

9o (z,vi;2 — 2} < 0, Vo € Cg, Vi € Ii(2), Yo; € V)(2), (3.2.2)
equivalently,
Wiz — z) <0, Ve € Cg, Vi € I(2).

Furthermore, if (RSCQ) holds and the robust non-degeneracy condition is satisfied,
then (3.2.2) implies that Cg 1s convet.

Proof. In view of Proposition 2.3.3, the conclusion will follow if we show that ;,
i € I, are regular in the sense of Clarke, for any 2z € Cr the nondegeneracy condition
is satisfied, and the Slater’s constraint qualification holds. The first and the second
requirements will follow from Lemma 2.2.43 together with Lemma 2.2.44 that for
each z € Cgr and 4 € I;(2), one has V2(2) = Vy(2),

Yi(z; d) = P2 (z d) = max{gf,(z,v;d) 1 v; € Vi(2)}, Vd € R,

and
0e ﬂ R™\ ( 29:(2,v;) ) R”\( U 29:(2, v; ) = R™"\8%9;(z).
weVy v €V;(2)

Finally, the robust Slater-type constraint qualification (RSCQ) leads us to the fol-

lowing strict inequality
Pi(zo) = max{g;(zo, v;) 1 v; € Vi} < 0, Vi € I for some 5 € R”,

which means that the system z € R", ;(z) < 0 ( € I) satisfies the Slater’s
constraint qualification. Taking into account Proposition 2.3.3, the proof is com-

plete. ]
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Remark 3.2.3. In view of (3.2.2), we easily obtain that if C'r is convex then
CrC{zcR": g2z, v52 —2) <0, Va € Cg, Vi € L,(2), Yu € V(2)}.
Furthermore, for every @ € C'g one has

8%gi(x,v;) € N(Cr, ) whenever ¢ € I(z) and v; € V().

Now the following theorem declares a result that the robust basic constraint
qualification defined in Definition 3.2.1(iii) is a necessary and sufficient constraint
qualification of a robust optimal solution for the given problem, that is, the robust
basic constraint qualification holds if and only if the Lagrange multiplier conditions

are satisfied for a robust optimal solution.

Theorem 3.2.4. [76, Characterizing the robust basic constraint qualifica-

tion| The following statements are equivalent:

(1) the robust basic constraint qualification holds at T € Chg;

(ii) for each real-valued conves-concave function f on R™ xU, the following state-

ments are equivalent:

(&) maXyey f(2,4) = maxyey f(Z,u) for al 2 € Chg,
(b) there ewist @ € U, A >0, and B, €V, i € I such that

0 & Bt (5, 7) + »_ NOgi(Z,5), Mgu(@,5) =0, Vie I, (3.2.3)

el

and

f(Z, ) = max f(Z, u). (3.2.4)

uelf

Proof. [(i} => (ii})] Suppose that (i) holds. Let f be a real-valued convex-concave
function on R™ X . Firstly, we assume that (a) holds. Then, Z is a solution of the

following constrained convex optimization problem:

min {ma,x fle,u) 2z € CR}

cERM »EU

which can be equivalently expressed as,

F= 8(1333(]‘(-,11,))(@) + N(Ch, 7).
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By (i), there are A; > 0, and 9; € V;, i € I such that
0ed (maxf(-,u)) () + Z;\iaggi(i‘, 7;) and Nig;(%,%;) =0, Vi € I.
velt iel
Then, it follows from Lemma 2.2.33 that there exists @& € U such that (3.2.3) and
(3.2.4) hold.

To prove sufficiency, assume that there exist € U, \; > 0, and 4; € V;, i € [
such that (3.2.3) and (3.2.4) hold. According to (3.2.3), we can find £ € 9f,(%,4)
and 7; € 8°g;(Z,7;), 1 € I, such that

£+ Xy =0. (3.2.5)

el

It stems from £ € 8,f(Z,4) and 7; € 8°g:(%,%;), 1 € I, we get

flz,u) — f(@,0) 2 (§,z - &) (3.2.6)
and

9% (%, V38 — &) = (s, 2 — &), Viel, (3.2.7)

for any € R*. Multiplying each of inequalities in (3.2.7) by A; and summing up

the obtained inequalities with (3.2.6), we obtain that, for all z € R™,
Fla, ) — f(z,0) + ) \gl(@, 0z — &) = <§ + > iy — i> ‘
el iel
Taking (3.2.5) into account together with the condition A;g;(%,%;) = 0, 3 € I, we

deduce

f(laﬂ) - f(g_s,?]) + Zj\igiom(fl?ji;w - i) >0, vz e R™. (328)

iel

If \; = 0 for all i € I, the inequality (3.2.8), in particular, becomes
flz, @) — f(&,4) >0, Vz € Cg. (3.2.9)
Thus, together with max ey f(2, 1) > f(z,2) for all 2 € R™ and (3.2.4), we obtain
lllgff(a:,u) - ngcf(a:,u) >0, Yz € Cg.

It means that Z is a robust optimal solution of problem (UP).
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Otherwise, suppose that [ = {iel:)>0}+#0 Let 2 € Cr be arbitrary.
As XNgi(Z,7) =0, i € I, we have I C Ij(%) and so, 4; € VO(%) for all 4 € I. Thus,
by Lemma 3.2.2, g2 (Z,5;2 — &) € 0, Vi € I. It then follows from (3.2.8) that

fla, @)= f(3,a) > fl2.8)~ f(E0) + > Ngh(T 092 — 1)
ief
= fle,@) - f(&8)+ ) Ngh(®@ 52 — 1)

icl

[\

0,

showing that (3.2.9) holds, and consequently, Z is a robust optimal solution of
problem (UP) as well.

[(ii) = (i)] The proof is similar to the one in [44, Theorem 3.1], and so is
omitted. O

In the uncertainty free case, we can easily obtain the following result, which

was obtained by Yamamoto and Kuroiwa in [49].

Corollary 3.2.5. [49, Theorem 3.2] Let Z € C' :={x e R" : g;(x) <0, Vi € I} be
a feasible solution, g; : R" ~—» R, i € I, be locally Lipschitz on R*. Assume further
that for any © € O and any 1 € I such that g;(z) = 0, the function g; is regular,

and C' is convex. Then the following statement are equivalent:

(i) N(OI} j,') = U A 20 Zie[ /\iaogi(f):'

Aigi(E)=0, tel
(it) for each real-valued conves function f on R™, the following stotements are

equivalent:
(a) f(z) > f(&) for allz € C;
(b) there exist X; > 0, 4 € I such that
0€af(E) + > Md°ai(Z) and Nigi(F) =0, Vie T
icl
Remark 3.2.6. Both the robust Slater-type constraint qualification condition and

robust non-degeneracy condition at T is a sufficient condition for guaranteeing the
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robust basic constraint qualification holds at #. Indeed, according to Remark 3.2.3,

we only have to show that

N(Cgr, &) C U Do noge(@w)
Ai=20, vV ie]
}\,-gifi,'ui)=0, i€l
Let 7 € N(Cr,Z) be arbitrarily. Since the robust Slater-type constraint qualifica-
tion condition and robust non-degeneracy are satisfied at &, by Theorem 2.3.4 with

f = {(-n,), and g; := 4, i € I, there exist A; > 0, ¢ € I, such that
0 € {—n}+)_ MO°(Z) and Xaps(T) = 0, Vi€ I,
iel
It then follows from Lemma 2.2.44 that there exist ; € Vi(Z) C V;, i € I, such that
n ey NOgi(F,7;) and Nigi(Z,7;) = Ah(3) =0, Vi € 1.
il
This shows that
n € U ZAia‘:gi(i)vi):
A 20, v EV; ief
)«,-gi (.”ﬁ,‘vi)zo, el

the result as require.

The following example is given to illustrate the condition (i) of Theorem 3.2.4

is essential.

Example 3.2.7. Let z := (z1,2;) € R, vy := (01.1,v1,2), V2 1= (V2,1,%22), U3 :=

(v31,v32), V1 = {(v1,05) € R? 1002 <1}, V; :=[0,1] x {1,2], V5 := {0,1] x [0, 1],

g1(z,v1) = vy 12 vy 9w — 25 — 2,
g2(zy 1) 1= —v9125 + vy max{—zy, —x3},
93(33, ’Us) = Uz ’03,23331

Cr:={z € R?: g;(z,v;) <0, Yoy € V;, i € I :={1,2,3}},

and T := (0,0). ThenCr = {z e R? : \/2? + 2}—2§-2 <0, —2y—2, <0, 271 < 0},

I(z) = {2,3}, 0292(Z,v2) = {0} X [—wq,,0] and 8293(Z,vs) = {(vs1,0)}. It can be
observed that

N{(Cg, %) = cone co{(—1,-1),(1,0)}
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and

U Z \i&%g:(Z,v;) = cone co{(0,—1),(1,0)}.
Ai20, viEV; ded
Nigi(&,0)=0, i€l

Hence, we have the condition (i) of Theorem 3.2.4 does not hold. Thus for some
convex-concave function f:IR% x &/ — R, it may happen that the KKT optimality
conditions may go awry at T even if it is a robust optimal solution for an uncertain

problem,

min{ f(z,u) : gilz,v;) <0, i ¢ I},
reR?

where u € U and v; € Vy, 1 € 1. Actually, let u == (uy,us) be an uncertain parameter

belong to uncertainty set U = {(u,us) € R® 1 uf + i < 1}, and f(z,u) =

€5' —u mp — Ugy + 2y + To. We see that maxy,ey f(a, 1) = e + Vb bt m o+ ag

and

max f(z,u) = ¢™ — 2y > 1 = max f(z,u) for all @ € Cg.
ueld ucld

However, In this case, we cannot find out w € U, v; € V; and \; > 0, ¢ € I,
such that (3.2.3) and (3.2.4) hold. In fact, for v € U, v; € V;, A = 0, such that
/\igi(:ﬁv 'Ui) o 05 i€ I: naXyey f(%)u) - f(i‘a U), and

(0,0) € Auf(®u)+ > Ndogi(®,v)
el

= {2 —u, L =)} + M{(vrg, va)} + A ({0} X [v2,0) + As{(v31, 0},

it then follows that A\; = 0, and so, 2 — u; + Asv31 = 0, a contradiction.

Figure 24: Illustration of the robust feasible set Cp in Example 3.2.7.
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Remark 3.2.8. According to Remark 3.2.6, Example 3.2.7 demonstrates that only
robust Slater-type constraint qualification condition is not sufficient to ensure the
robust basic constraint qualification holds at consideration point, The reason is

that the robust non-degeneracy condition at such a point is destroyed.

Next, we will establish some characterizations of robust optimal solution set
in terms of a given robust solution point of the given problem. We begin by re-
calling the following constrained convex optimization problem in the face of data
uncertainty (UP):

min{ f(z,u) : g:{z,v) <0, i €}, (UP)

cER”

where f: R™ X U - R is a convex-concave function, the functions g;, 7 € I, satisfy
the condition (Al)-(A4), gi(2,-) + Vi — R, ¢ € I, are concave functions for any
x € R™, and the robust feasible set C is convex. Assume that the robust sclution

set of the problem (UP), denoted by
Sg 1= {a e Cr: ng{f(a,u) < Iij.gf({f(o:,u), Yz e C'R} :

is nonempty. In what follows, for any given y € R™, A= (A1, Ag,...,An) € R,
uelU, v €V, i€l andv:i= (v1,%,...,Yy), we introduce the so-called pseudo

Lagrangian-type function LF (., y, A, u,v) [76] by, for all z € R",

LP (2, y, Avu,v) = Flaw) + ) gl (v e —p).
1CTi(y)

Now, we show that the pseudo Lagrangian-type function associated with a Lagrange

multiplier vector and uncertainty parameters according to a solution is constant on
S.

Proposition 3.2.9. [76] Let a € Sg be a robust optimal solution fulfilling the
robust basic constraint qualification. Then there exist a Lagrange multiplier vector
A% = (A A, ..., ML) € RY, and uncertainty perameters u® ¢ U, vf € Vi, 1 € 1,

such that for any x € Sy,
Mg (e, vz —a) =0, Vi€ Lia),

flz,u®) = maxyey flz u), and LF(-, a, 2% u® v*) is constant on Sg.
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Proof. 1t follows from a € S and Theorem 3.2.4 that there exist a Lagrange
multiplier vector A* := (A, A, ..., A%) € RT, and uncertainty parameters u® € U,
vf € V;, 1t € I, satisfying the conditions (3.2.3) and (3.2.4). Then, it stems from
the fact that 89g;(a, v¢) = 898, (a, v¥; - — a){a) for all 4 € [1{a) and (3.2.3), we get

0 € 0, f(a,u®) + Z A20g2 (a,vd; — a)(a) C OLF (- a, A% u®, v*){a),

ieli(a)

which is noting else than

maxf (2, u) Z Mgl (o vy —a) = flz,u®) + Z Ao e, v — a)

i€l (a) iel(a)

> flau®)
= 11131}f(a,u), Vo e R™. (3.2.10)
Notice that
max f(z,4) = max f(a,u), for any a € Sg and z € Sk, (3.2.11)
ueld wuel
and taking this into account, (3.2.10) deduces

Z Agh(a, v —a) 2 0, for any € Sp.
iel(a)

Let us notice that for indices i € I;(a) such that A? > 0, we have g;(a,v#) = 0, and
consequently, ¥ € VP(a). This in turn, by Remark 3.2.3, implies that for every
NS SR C OR;

/\“gm(a, e —a) =0, Vi € Ii{a). (3.2.12)
Now, we prove that

flz,u®) = max fx,u), for any 2 € Sg. (3.2.13)
In fact, by (3.2.10) and (3.2.12), we get the assertion

Tg/){(f(w,u) > flz,u*) > 111llgacf(a,u).
This together with (3.2.11), (3.2.13) holds. Therefore, for any « € Sg, (3.2.4),

(3.2.11), (3.2.12) and (3.2.13) entail

LP(z,a, 0% 0% 0% = f(z,u®) + z N oo (a, vd; 2 — a)

ielia)
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= flz,0)= 1}[1€a§f(9:,u) = Elés\acf(a,u) = f(a,u%),

showing that £F(-, @, A%, u®,v?) is constant on Sy, and this completes the proof. O

Remark 3.2.10. It is worth noting that if g;(-,v;), ¢ € I, are convex functions for

any v; € V; then, for each i € I, Proposition 3.2.9 gives
Algi(x,v]) —Algi(a, v8) = Aldi(a, vz —a) = Algl(a,vf;2—a) = O for any o € Sg.

This together with @ € Cr and Afgi(a,v¥) =0, ¢ € I, arrives A\fg;(z,v¢) =0, i € I.
Furthermore, it yields

LP(z 0, A0 0%) = flmu)+ > Agh(a,0f2 —a)
i€l (a)

= f(z,u")
= flz,u®) + ) Moz, vf), Vi € S
i=1

This shows that pseudo Lagrangian-type function collapses to the well-known Lagrangian-

type function on the robust solution set Sg.

In the sequel, we are now in a position to establish the characterizations of
the robust solution set for problem (UP) in terms of convex subdifferentials, Clarke
subdifferentials and Lagrange multipliers. But before doing so it will thus be con-

venient to denote the following:

Li(a, A%} := {i € Ii(a) : X¢ > 0},
X1(X%v%) == {a € Cg: Vi € Ii(a,X%), 3n; € B2g;(a,vf) s.t. {n;, 2 — a) =0}
Xai(A%u, vt} = {z € X1(A%,v%) : fz,u) = Illéigcf(ﬁ,it)}
Dz, u®) = {€ € 8, f(a,u*) : (£,2 — a) > 0} for any given ¢ € Ch.
Theorem 3.2.11. [76, Characterizing the robust solution set] Let o € Sy
be @ robust optimal solution fulfilling the robust basic constrainl qualification. Then

there exist a Lagrange multiplier vector A* = (A{,..., %) € RT, and uncertainty

parameters u® € U, v§ € V;, 1 € I, such that the robust solution set for the problem

(UP) is characterized by

Sp =51 =259; =5 =5, =55 =8 = 5,
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where

81 = {z e X (A u*v*) : 3¢ € O, f (=, vy N O, f(a,u?) s.t. {(,a—z) =0},
Sy = {z € X1 (A% u*v*) : I € O f{z,u®) N D fla,u®) s.t. {(,a—x) >0},
Sy = {z € Xa(A%,u*,v*) 1 3¢ € O, f (2, u*), 3¢ c I'(z,u”) s.i.
€z —a)=((,a—2)=0},
Sy = {w € Xq(A%,ut,v%) 1 ¢ € O f(z, u®), 3 cTz,u”) s.L.
{€w—a) = ((,a—x)},
Sg = {x € Xy (A% 0%) : 3 € 8, f (2, u?), F€ € [(z,u?) s.L.
€a=a) < {Ga— )
S = {z € Xi(A\*u%v%) : I € O, f(z,u?) st {(,a— ) =0},
Sy = {z € X3 (A% v 0%) 3¢ € O f(z,u) st ((,a—z) > O}

Proof. Evidently, the following containments hold:

S1C 5 €5
51 C 8 C 5y,
51 C 53 C 5 € 55 C 5y
Hence, we only have to show that S C 51 and S; € Sg. In order to establish

Sr C 81, let z € Sp be arbitrarily given, It follows from (3.2.3), we therefore
obtain vectors ¢ € 8, f(a,u®) and § ¢ 8%g;(a,v?), i € L1(a), such that

C+ > M&=0 (3.2.14)

€I (a}
(since A\f =0 fori ¢ [;{a)). According to ¢ € 0. f(a,u), & € 82g9:(a, ), 1 € I1(a),
and z,a € Sg, one has
flz,u®) — fla,u®) = ((,x — a) (3.2.15)
and
g5 (e, v —a) > (&, x —a), Vi€ L{a) (3.2.16)

Once we have shown, in Proposition 3.2.9, that A\2gf (a,v#;2 — a) = 0, Vi € I1{a),

s Ui

after multiplying both sides of (3.2.16) by A, i € I;(a) we get

0> (/\f:f“'l? — a), Vi € Il((].).
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Summing up these inequalities and using {3.2.14) we obtain that

0> < D At m - a> = (¢, 2 —a). (3.2.17)

iel(a)

Again, it follows from Proposition 3.2.9 that
flz,u*) = meadcf(s:,u), (3.2.18)

and for each 7 € fl(a), M8Xp;eho0:(a,00) (M & — @) = g5 (e, v}z — a) = 0, the latter

g Uiy

which in turn leads to there exists n; € 0%g;(a, v¢) such that
(i, — a) = 0.
On the one hand, taking (3.2.4) and (3.2.18) into account (3.2.15) we obtain
¢,z —a) < fz,u®) — f(a,u*) = max f(z,u) — max f(a,u) = 0.
weU weld
This together with (3.2.17) arrives at
€,z —a)=0.

Now, we only need to prove that ¢ € 8, f(z,u®). In fact, for any y € R",

FQyu®) — faw) = fly,u®) — Fla,wf)
2 (Cly - (1)

(C’y_m) -|-<C,£B—"CL) — (C,’y~$>,

I

which means ¢ € 9, f(z,u*) and so, x € 5. This proves Sgp € 5.

To obtain S; € Sk, we now let @ be arbitrary point of S7. It follows that

@ € Cp, and it is easy to see that

Iilég{ fla,u) — lilgdif(i,U) = fla,u*) - flz,u*) > ((,a —z) > 0.

The last inequality together with the fact that a € Sy gives 2 € Sg, and the proof

is complete. O

Now, we give the following example to illustrate the significance of Theorem
3.2.11 that at least one of the constraint functions g;(-,v;) for some v; € V;, is not
convex while the robust feasible set is convex. Then the results in {41, 42,44, 45)

may not be relevant to this example.
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Example 3.2.12. Let us denote x := (x1, 29) € R%, u = (uy,us), v1 1= (v1,1,v12),
Yo 1= (?)2,1,?)2,2), U3 = ('03,1,1)3“2), U = {(Ul,ug) - R2 : 'U,% +'U% < 1}, V1 =

{(vi,v9) € R? : 02 + v < 1}, V, = V3 := [0,1] x [0,1]. Consider the following

constrained optimization problem with uncertainty data (UP):

min{ f(z,u) : g:(z,v) <0, i € 1:={1,2,3}}, (UP)

zCch?

where w e, v; € V;, 1 € I,

fz,u) = uymy + wpry — 1 — 2o,
gz, v) = V1121 + U129 — 1? Sk
go(2,v9) = vy g max{ a1, 23} — vy oy,
g5(2,v3) 1= v3 121 — 'u3,ga:§.

A robust solution of (UP) is obtained by solving its robust (worst-case) counterpart
(RP)

min {maxf(:v,u) rr € C’R} . (RP)

zeR? | uelf

Then Cp={r ¢ R? : \/z} +af—2? -2 <0}NREN{z e R?*: 2y < 2} = {r e R*:
z; == 0, 0 < 25 < 2}. Evidently, the function f : R? x I/ -+ R is a convex-concave

function. Let us notice that

max f(z,u) = /2? + 2% — x; — 25, for all z € R?

ueLf

and
max flz,u) = |za| — 2 =0= Illé':lz.)}{{f((U,O),u), for all z € Cj.

Thus ¢ = (a1,a2) = (0,0) € Sg, Ii(a) = {2,3}, ¥Bgala,v) = {(r,—va2) : 7 €
[—vg,1,0]} for each vy € Vs, and 8%g3(a, v3) = {{v31,0)} for each vz € V3. So,

N(CRgr,a) = cone co{(—1,0),(0,—-1),(1,0)} = U Zmé‘;gi(a,w),

Aiz20, viEV; el
Aigila,vi)=0, 1€l

which means that the robust basic constraint qualification holds at a. Also, for

each u € U, the convex subdifferential of f(-,u) at any point z is given by

Bxf(mau) = {(ul - 1:“2 - 1)}
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Let us select A% := (A}, A%, Ag) = (0,0,1), u® := (0, 1), v§ == (1,1} and v§ := (1,0).
Therefore, I1(a) = {3} and by solving the following system, for z € R?

r

xy = {(1,0), (21, 22)} =0,

Vi —2<0,

—x3 <0,

Oe flm,u) N Oy f(a,u®) = {(—1,0)},
((-—1,0), (0,22)) = 0,

T = MaXyey f(fni U),

\

the robust solution set can be described simply as

Sp=8={2cR*: 2, =0, 0 <z, <2}

With the help of Proposition 3.2.9, we see now how the robust solution set can

be characterized in terms of pseudo Lagrangian-type function.

Proposition 3.2.13. [76] Assume all conditions of Theorem 8.2.4 hold. Let a €
Sgr be a robust optimal solution fulfilling the robust basic constraint qualification.
Then there exist a Lagrange multiplier vector X* := (A}, A§,..., %) € RT, and

uncertainty parameters u® € U, v} € V;, 1+ € I, such that

Sr=A{z € X1(A%u%v?) 1 0 € ALF(, a, A% u® v™) ()}

Proof. 1t will thus be convenient to denote
S* = {x € X3(0%, v v 0 € 0LF (- a, X%, u, v7)(2)}).

By Proposition 3.2.9, we have that for each © € Sy, Afgl (e, v}z —a) =0, Vi €
5Ii(a), f(z,u®) = max,qy f(z,u), and £F(-, a, A%, u*,v?) is constant on Sg. It then

follows from optimality condition (3.2.3) that

LP(y,a, A% u%,v®*) — LF (2, a, A%, u®, v%)
= Cp(y,a, A% utu®) — £P(a,, a, A% ut v®)

> 0, Yy e R",

and so, Sg € 5**. To obtain the converse inclusion, let z ¢ S* be given. Then,

by the definition of S**, x € Cf, there exist 7; € 92g:(a,vf), Vi € I(1a), such that
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(2 —a) =0, Vi € I1(a),
flz,u®) = 11133@)“(3;,?;) (3.2.19)

and

f(y!ua) + Z g@m(a’?vz )y ) — L"P(y)a’) /\a,ua’,va)

ieli{a)
< LP(2,0,\% u® v

= flz,u*)+ Z Agh(a, vl x — a)

161 (a)

B (aNeS —I—Z)\“gm a, v — a)

HING,
= f(z,u®) for all y € R".

Using (3.2.19) and taking 4 := a in the last inequality, we get that
. ; > > Nay b Y = )
1££L1{(f(1,u) > 13${f(a,u) > fla,u®) 2 flz,u®) 1}}3}(]‘(9:&)

Hence, max,ey f(a,u) = max,ey f(z,u), which is noting else than z &€ Sg. O

3.3 Uncertain multi-objective programs

In this section, as an application of the general results of the previous section, we
examine the class of multiple-objective programs in the face of data uncertainty
both in the objective and constraints that can be written by the following multi-

objective optimization problem:

min {(fi(w, ), falw,uz), ., fol2,up))  gi(w,0) <0, i€ 1}, (UMP)
where f; : R* xU; = R, j € J := {1,2,...,p}, are convex-concave functions,

g R x V- R, ¢ eI :={1,2,...,m}, are functions satisfying the condition
(A1)-(A4), gi(z, ) are concave functions for any = € R”, and u; and v; are uncertain
parameters and they belong to nonempty convex compact sets i; € R% and V; C

R%, respectively.
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We associate with (UMP) its robust counterpart, which is the worst case of
(UMP),

min { (max fi(z,wm), max folz,u2), .. » nax fp(:z:,up)) L€ CR} , (RMP)

ccl™ uy €l

where Cp stands for the robust feasible set of (UMP), defined by

Cr={z € R : gi(z,v) <0, Vi € V;, i € I},

In the same way, we will give three kind robust solutions for the problems
(UMP) which has been introduced in [77}.

Definition 3.3.1, Z € (R is said to be

(i) arobust efficient solution of (UMP) if there does not exist a robust feasible
solution @ of (UMP) such that

ot filz,uy) < Jhex [i(Z,uy) for all j € J,

and

max Frlzyug) < ma,x Ji{E, ug) for some k € J.
. €Uy,
(i) a weakly robust efficient solution of (UMP) if there does not exist a robust

feasible solution 2 of (UMP) such that

max filz,uy) < - fi(Z, uy) forall j € J.

(iii} a properly robust efficient solution of (UMP) if it is a robust efficient
solution of (UMP) and there is a number M > 0 such that forall j € Jand z € Cr
satisfying maxy;cy; f3(2,u;) < maxyey; f5(T,u;), there exists an index k € J such
that max,, ey, fie(Z, ue) < maxy, ay, fe{®, ) and

maXyer; f3(Z, u;) — maxy; ey, f3(2,15)
MKy, cid; fk(rl’: ‘U,k) — MaXy, ey, fk(i’ uk)

< M.

In view of these definitions, it is evidently that T ¢ Cg is a robust efficient

solution (resp. weakly, properly robust efficient solution) of (UMP) if and only if
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T € Cg is a eflicient solution (resp. weakly, properly efficient solution) of (RMP).
The search for an efficient solution (resp. weakly, properly efficient solution) to
multi-objective optimization problem has been carried out through solving a single
(scalar) or a family of single objective optimization problems, possibly depending
oh some appropriate parameters. We refer the reader to [65,67,68,72] and other
references therein for necessary and sufficient conditions for (weakly, properly) ef-
ficient solutions to a multiobjective optimization by parameterization and linear

scalarization (weighted sum approach).

In this section, we present characterizations of weakly robust efficient solution
set (W R(Cg)) and properly robust efficient solution set (PR(Cg)) of the problem
(UMP) by using linear scalarization approach. Before presenting, in the cases of
study, let us consider the following scalar convex problem of (RMP) depending on

a parameter @ := (0;,0,...,6,) € RL:

min {JXE; 0; gleaaf filz,u;) 1 € C_‘R} . (RFy)

Suppose that the solution set of problem (RF;), denoted by S% is nonempty. It is
well-known, in the literature, that weakly efficient solutions and properly efficient
solutions of (RMP) can be characterized by solving some scalar parameterized

convex problems (RF). More precisely,

81

(M)

(i) & ¢ PR(C}y) if and only if there exists § € int R, such that 7 € S%.

€ WR(CR) if and only if there exists & € R, \{0} such that = € S,

Thus, by using Theorem 3.2.4, we can obtain immediately the following neces-
sary and sufficient optimality conditions for weakly robust efficient solution as well

as properly robust efficient solution of (UMP).

Theorem 3.3.2. [76] For the problem (UMP), suppose all conditions of Theorem
3.24 hold and T € Cr = {& € R™ : g(z,v) < 0, Yo, € V;, 1 € 1} fulfilling
the robust basic constraint qualification. Asswme further that the set Cg is convex.
Then,
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(i) & € Cg is a weakly robust efficient solution of (UMP) if and only if there
exist 0; > 0, 7 € J, not all zero, \; 2 0,4 ¢ 1, 4; €Uy, j€J, and 9; € V;,
i ¢ I, such that
0€ D 25ey 8:0aF5(F, 0) + Xoies MOL0:(2, W),
Ngi(Z,9,) =0, Vie I, and (3.3.1)
fi(Z,85) = maxy ey, F;(T,u5), Vi€

(i) # € Cq is a properly robust efficient solution of (UMP) if and only if there
exist 0; >0, j€J, N20,ie€l, €l j€J, and¥; €V, i €1, such
that (3.3.1) holds.

Proof. (1) As # € Ck, is a weakly robust efficient solution of (UMP) if and only if
E € Cg is a weakly efficient solution of (RMP), there exist §; > 0, § € J, not all
zero, such that ¥ € Cf is a solution of (RP). In the other word, Z ¢ Cp is a robust
solution of the following uncertain (only in the constraints) convex optimization
problem:

min {Z 8, 11;_13515 Filzoug) gz, v) <0, i€ I} .
jed

zER™

Applying Theorem 3.2.4, we get that there exist A; > 0, and ¥; € V;, 4 € I, such
that

0 68(29 maxf:, ) (Z) —|—Z/\ 3°g1 L U(E), Ngi(E,3) =0, Vie L

€U
iel
By employing the summation, positively homogeneous and max-function of convex

subdifferential rule, the result as required.

(i1) The proof of (ii) is quite similar to that of (i) and so is omitted. O

In the following proposition, we give a sufficient condition that a robust efficient

solution of (UMP) can be a properly robust efficient solution of (UMP).

Proposition 3.3.3. (76] For the problem (UMP), let Z € Cr be o robust feasible
solution for (UMP). Assume all conditions of Theorem 8.2.4 hold. Assume furlher
that the set Cg is convez, Cr N Cr(Z) # 0 and

N(Cgr N Cgr(Z), %)
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= cone U Oz f (T, u ) U U 29:(Z, v;) , (3.3.2}

where

Cr(z) = {z eR": max filz,us) < Inax fi(Z,w), Vi€ J}, and
Uz) = {7 €Uy : /;(Z,7;) = max [;{Z, )}, J €,
Vi (Z) = {5 € Vi+ g:(2,%;) = 0}, i € [(Z).
If £ is o robust efficient solution of (UMP), then T is a properly robust efficient
solution of (UMP).

Proof. Let T be a robust efficient solution of (UMP). Then Z is a minimizer of the

following scalar convex problem:

min {Zi?é‘&i filz,u) iz € CgN C’R(:T:)} ,
jeJ

zER™

jes Oa (maxy e, f5(2,47)) + N(CRNCR(T), 7). It follows that
there exists 7 € N(Cr N Cr(Z), T) such that

—neE Y b, (ma&( fj(as,uj)) ,
jed Uj EU

Then, by the condition (3.3.2), there exist 8; > 0, 7; € U, & € 8, f;(%,4;5), § € J,
A 20, % € V() and (; € 339:(%,%;), i € I1(T), such that

or equivalently, 0 € 3

7 = Z(S'ij + Z AiG and f;(%,14;) = max f;(Z,u;), Vi€ J

jed ieI(z) ui<l
Tt then follows that
0 = —n+n
€ > 8, (maxfja,uj)JrZaafj + Y N7, )
jeJ u €U JEeJ icTi(Z)

C > o, (max £i(®,u, ) +> 0 ( U Bwfj(:i\uj)) + N(Cr, %)

jedJ jed u; €L;(Z)
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= 5o, (Inax £, ug ) > 6,0, (max i, uj)) + N(Cg, 7)

jEJ jeJ

= Z(l + 6;)0, (Egz,){i fj(rﬁ,uj)) + N(Cr, 7).

jed
Therefore,

Z(1+9 )maxfj(l u;) > Z (14 6;) 1nafo(L u;), Yo € Ch,

; U; €
jed Jed

which gives that = € S’% with § == (L +605,1+60,,...,14+0,) € intR%, and s0 % is
a properly robust efficient solution of (UMP). O

Let 8 := (01,0s,...,0,) € RE\{0} (resp. intRR), A% = (A{, M, ..., \D), v/ =
(ud, uf, ... ,ud), v* = (v],08,...,0%), and o’ € S%. We have seen already that if
the robust basic constraint qualification holds at a?, the set of Lagrange multiplier
and uncertain parameters M(a?) for (RPy) corresponding to a?, given as

M(a®) ::{(Ae,ue,vg) € RT x HR‘” X HR‘“ :
jeJ iel

0€ > 0;0:£(a,uf) + > Moogi(a®,0f),

jeJ i€l
Mgi(a®v?) =0, vieIand
fi(d’ ,uj) = i?éafé fi(d® u), Vi ¢ J},
is nonempty. Let further
Li(a®, %) = {i € I(a®) : X > 0},
X100, 4%) == {2 € Cr : Vi € [1(a®, %), T € O20:i(d?,08), (mi,2 — a®) =0},
Xi (M 18,0%) = {w € Xa(\ ) fi(zf) = max filz,ug), Vi e J}
ujEld;

By means of linear scalarization applied in Theorem 3.2.11, we can get charac-
terizations of the weakly robust efficient solution sets W R(Cg) and properly robust
efficient solution set PR(CR) of the problem (UMP) immediately.

Theorem 3.3.4. (76] For the problem (UMP), assume oll conditions of Theorem
3.2.4 hold, and the set Cg is convez.
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(i) Suppose further that for each 6 € REN\{0}, S% is nonempty. Let o® € S and
the robust basic constraint qualification holds at af. Let (A, u%,v%) € M(a?).
Then

WR(CrY= |J Ao,

9eR?\ {0}

where

Ag 1= {a, e X1\ 00,07 130 €S 0,0, 8;(2,ud) N Y 0,0, £3(af, ud),

jeJ jed

(o — oty 0}.

(ii) If for each 8 € intRE, SY% is nonempty, o’ € S% is fulfilled the robust basic

constraint qualification, (A%, u?,v°) ¢ M(a%), then

R(Cr) = |J 4o

beintRE

To close this section, we give an example illustrating Theorem 3.3.4 which is
indicated to be conveniently applied is applicable while the aforementioned result,
due to Sun et al. [45, Theorem 4.7}, are not. It means that at least one of the
constraint functions g;(-,v;) for some v; € V;, is not convex while the robust feasible

set is convex,

Example 3.3.5. Let 2 := (z1,23) € R?, ul.:——- (w11, 9), Uy 1= (tgy, Unz), V1 1=
(w11, 01), V2 = (Va1,v22), U3 == (Us1,Vs2), Vs 1= (Ua1,Vs0), Uy = Us = [0,1],
Vo= {(vg,v) € RZ i 0] 402 < 1}, Vo = [—2,—1] % [-2,-1], V3 := [4,5] x {2, 3]
and V, = [0, 1] % [0, 1].

We now consider the following constrained multiobjective optimization problem

with uncertainty data:

min{(f1(, 1), folz, wa)) : g(m,v1) <0, i € Li= {1,2,3,4}},

where

filz,ug) = upan,

fz(ﬂ?a uz) = Upda,




7

g1z, v ='U11’L1+U12342+£E1H2

)

92(Z,v9) == V11 + Vo ome + 1,
) 1= —vg 2y — U302 + 3,
} =

(

(
gs(z,vs

(

. . 2
G4(2, Vg —UY,1T1 — V4,270,

and its robust counterpart

min {(max fr(m, ), mex folz,ug)) o € C‘R} :
oCR2 wyeld

We obtain that for every z ¢ R?,

[ ] Il'la,}{uleul fl(fﬂ, ul) — Il'l&X{(El, 0},
® MaXy,ey, fo(z, ) = max{z,y, 0},
s Cr={zcR?: \/2? +22+28 -2<0, —21 —2,+1 <0, —4z1 — 22, +3 <

01 —I S 0}:

as a straightforward calculation shows. Let us denote

A= {(91, 92) & R_Zf_ . 91 - 92 = 1},
mt A ;= {(91,92) ERi . 91 > 0, 92 > 0, 91+92 = 1}

We now consider the following possibilities:

(i) If 0 := (61,07) = (1,0) then (RF,) reads as follows:
mm{ml x € Cr}.

As Oy + Oazg = o1 > 0, Vo € Cr, we can take o’ := (0,2) € Sy and
so, 11(a%) = {1,4}. TLet us choose \? = (0,0,0,1), «¢ = (1,1}, +* :=
(v, 08, v8,08) = ((0,1), (—1,—1), (4,2), (1,0)), and we also have I;(a’, \?) =
{4}. Then Ay can be easily calculated Ay = {z € R? : z; =0, -;1 < g < 2}

(ii) Similarly, if # := (0,1) then we can take o’ := (1,0) € Sp and so, I;(a?) =
{1,2,4}. Let us choose A’ ;= (},1,0,0), u := (1,1), 2% := (0], §,2§,2]) =
((1,0), (~1, 1), (4,2), (0,1)), and we also have I;{a?,\?) = {1,2}. Thus
Ap = {(1,0)}.
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(i) f 6 € {(f1,02) e R?: 2 < 6y <1, B> 0, 0y + 0, =1}, then (RF;) becomes
i 21 + Oy 1 : .
:?é%{l%{grlll + e x € CR}

As 91{1’.1 + 921172 > 91581 — 292331 + %62 = (391 — 2)1}1 + %92 > %92, Yo € OR:
then we can take a® := (0,2) € Sp and so, L(a?) = {2,4}. Let us choose
N= (0,0, 92 , 01 — 26,) (note that 6, > 2 and 0; + 6, = 1 imply 6, — 26, > 0),

= (1,1), % = (v, 2§, 04,49) = ((1, 0) (=1,-1),(4,2),(1,0)), and we also
have T (a?, )\9) = {2,4}. In this case, it is easy to see that Ay = {(0,%)}.

(iv) Similarly, if 0 € {(0,,6,) € R?: —% 2 D1l %, 3 > 0, 6 + 0y = 1} then
Ag = {(0,1)} and if 8 ¢ {(91,92) & R? . 0 < 91 < %, 0y > 0, 91+92 = 1} =

{(01,02) eR*: 2 < B, <1, 6, >0, 0 46, =1} then Ay = {(1,0)}.

(v) If 8 := (3, 1), then 0131 + thay > 3, Vo € Cp. Take o := (%,%) € Sp and

so, J1(a%) = {2,3,4}. Let us choose \? = (0,1,0,0), v’ := (1,1), »° :=
(!, v8, 09,40y = ((1,0), (—1, ~1), {4, 2), (1,0)), and we also have [;(a®, \®) =
{2}. Then elementary calculations give us 4 = {z € R?* : —27 — 23+ 1 =

0, T 20, 32'220}

(vi) Similarly, if & = (%, 1) then we can take a® = (3,1) € Sp, A? == (0,0, 3,0) and
50, Ag = {2z € R?: —4ay — 225 +3=10, 2,20, 25 > 0}.

Therefore, by Theorem 3.3.4, weakly and properly robust efficient solution sets of
(UMP) look like

WR(CR) = | Ar=|]4

peRZ\{0} bei
= {zcR*:2,=0, 1 <2y <2}

U{z ¢ R*: —dayy — 2254+ 3=0, 21 >0, 25 > 0}
U{z € R?: —zy — 2o+ 1 =0, 21 >0, 23 >0}

and

PRICY) = |J 4= | 4

fcintRE. geintA
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— {oeR?: —doy — 2w, +3=0, u; =0, x5 >0}

Uz € R*: — — 29+ 1=10, 2y >0, 29 > 0}.

Figure 25: Tllustration of the robust feasible set Cr in Example 3.3.5.



CHAPTER IV
KKT CONDITIONS IN

NON-CONVEX OPTIMIZATION PROBLEMS

In a recent work, Ho [62] established some necessary and sufficient KKT
optimality conditions for the differentiable problem (P) by imposing the convexity
of the level sets of the given function f without the convexity of the constraint set
and of the functions f and each g;. In the same context we succeed to weaken the
differentiability and the convexity assumptions considered in [52, Theorem 1} and
(53, Theorem 3.1], respectively, in a way that the KKT conditions still remain hold
for a given global minimizer and for a given weak Pareto minimum, respectively.
In order to present these results, we first recall the concepts of nearly convex set

and quasi-convexity.
Definition 4.0.6. The set A is nearly convex at the point 2 € A if
Yy € A, 3t; | 0 such that = + #(y — z} € A. (4.0.3)

Definition 4.0.7. A function f : R® — R is said to be quasiconvex if for any
a € R,

L{f, <,a):={z e R": f(z) < a}

is a convex set, or equivalently, for any o € R,
L(f,<,0) ={z e R": f(z) < a}

is a convex set,

Theorem 4.0.8. [78, Theorem 11] Let f be a continuous quasiconvezr function
from R™ to R, and o € R. If int L(f,=,8) = 0 and int L{f, <,B8) # O for some
B € R, then we have

() L(f, <. B) = int L(}, <, B),
(ii) el L(f, <, B8) = L(f, <, B).
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4.1 Non-smooth optimization problems

The aim of this section is to provide an affirmative answer to the question that
whether Ho's result can he extended to non-differentiable case. More precisely,

consider the problem (P) where a constraint set is given by
X = {Q?ERngz(.'L) SO, i:1,2,...,m},

we will show that when Slater’s constraint qualification holds and a non-degeneracy
condition holds at the feasible point © without both the convexity and differentia-
bility of f and g; as well as the convexity of the feasible set, the KKT necessary
optimality condition becomes globally sufficient provided that the set X is nearly
convex at x, the strict level set of f at z, L(f, <, f(z)), is convex and the addi-
tional condition z € ¢l L(f, <, f(z)) is satisfied. It is remarkable that the condition
z € ¢l L{f, <, f(z)) can be absent in the differentiable case. To do these, we need

the following lemma which plays a significant role in our subsequent analysis.

Lemma 4.1.1. Let s be a real-valued sublinear function on R™. If there exists

Zo € R™ such that s(wg) < 0, then we have

c{z e R": s(2) <0} = {z € R": s(z) < 0}.

Proof. By assumption, we can check that inf,ege s(x) < 0 and 2y € int{x € R™ :
s{z) < 0} # 0. We claim that

int{z € R": s(z) = 0} = 0.

Suppose on contrary that there exists £ € int{z € R" : s{z) = 0}. Then B(#,¢) C
{z € R": s(z) = 0} for some € > 0, and hence, by Lemma 2.2.25, s(z) > 0 for all
2 € R™, This is a contradiction, and therefore the conclusion follows by applying

Theorem 4.0.8. O

According to technical approach given in {52}, we begin with an extension
of Proposition 2.2.(i) in {79] which will play a key role to derive sufficient KKT

optimality condition in our main result for non-differentiable problem.
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Lemma 4.1.2. [80] Let f : R™ — R be continuous and tangentially conver at
z € R™. Suppose that the set L{f, <, f(2)} is nonempty and convex. Ifx € cl L(f, <

) f(fl?)), then
N(L(f, <, f(2)),2)° € {d € R" : f'(w;d) < 0}.
If0 ¢ 8rf(2), then also 2 € ¢ L(f, <, f(z)) end the above containment becomes

equality.

Proof. Consider z € cl L{f, <, f(z)). Firstly, we will show that
orf(z) € N(L(f, <, f(z)), 2}

Now take any £ € Opf(2). Given any y in L(f, <, f(z)). Let us notice that, by
continuity of f at 2, the set L{f, <, f(z)) is (velative) open. So,y € L(f, <, f(z)) =
ri L{f, <, f(z)) and, by the line segment principle (Proposition 2.2.7(ii)),

g+ Ly — ) el L{f, <, f(z)) = L(f, <, f{z)) for ¢t € ]0,1].

For values t sufficiently small, f/(2;y — z) < 0, and hence (§,y — z) < 0 by
the definition of the tangential subdifferential of f at z. Therefore, for any y €
L(f, <, f(z)), (£, — z) < 0, thereby showing that £ € N(L(f, <, f(z)), z). Thus,
Opf(z) € N(L(f, <, f()), z) as required. It then follows from Proposition 2.2,13(i)
that

N(L(f, <, f(2)), 2)° € Onf(2)".
Further, it can be checked that

drf(x)* = {d e R": f'(z;d) < 0}.
Hence, the desired result is obtained.

Assuming 0 ¢ Opf(z)}, we now demonstrate that » is contained in cl L{f, <
,f(2)). As 0 ¢ Orf(x), there exists dy € R™ such that f/'(z;do) < 0. By the

definition of directional derivative, there exists a positive real number ¢ such that

flz +tdy) < f(z) for all £ € )0, d].
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In particular, for each & € N, the vector z; :== 2 + Hildg belongs to L{f, <, f(2)),

and ¥; — = as I — +oo. This means that z € ¢l L(f, <, f(z}). To establish the
remaining inclusion {d € R" : f'(a;d) < 0} € N(L(f, <, f(z)),x)°, we argue first
by applying Lemma 4.1.1 that

{deR™: f'(z;d) <0} =cl{d € R™: f'(z;d) < O}

Moreover, by Proposition 2.2.19, convexity of L(f, <, f(z)) asserts that

N(L(f < (@), 2)° = T(L( < f (@), 2).

Thus it is enough to show that, as T(L(f, <, f(2)),z) is closed due to Theorem
2.2.17,

{deR": fi(z;d) < 0} C T(L(f, <, f(=)), ).

Given any d € R" such that f/(z;d) < 0. As seen before, we can find two sequences
{r} < 10, oo and {z;} C L{f, <, f(z)) such that

x=x+nde L(f, < f(z)) and r; = 0 as ] = +oo0.

Consequenfly, 2; — 2 and %{(:L; — ) ~+ d as | = +oo. Therefore, d € T{L(f, <
, [(z)), z), thereby establishing the requisite result. O

Remark 4.1.3. In Lemma 4.1.2, if f is differentiable at z € R" such that V f(2) #
0, then f'{z;d) = (Vf(2),d) for all d ¢ R". In this case, we obtain the following

result.

Corollary 4.1.4. [79, Proposition 2.2.(1)] Let f : R* = R be differentiable at z
with V f(z) # 0. Then

N(L{f, <, f(a)),z) ={d e R": d=rV f(z), for somer =}

provided that L(f, <, f(2)) is convex.

Proof. As the set N(L(f, <, f(z)),z) and cone{V f(z)} are closed convex cone,
by the polar cone theorem [54, Proposition 3.1.1(b)], (N(L(f, <, f(z)),2)°)° =
N(L(f, <, f(z)),z) and ((cone co {Vf{z)})°)° = cone co {Vf(z)}. Therefore,

owing to Proposition 2.2.12 and Lemma 4.1.2,

N(L(f, <, fl@))2) = (N(L(J, <, f(2)), )°)°
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(e R (V) d) < 0)°

= ((cone co {Vf(2)})*)°

~ cone o (V/(3))

= {deR*:d=rVf(z), for some r > 0}.

]

Remark 4.1.5. The condition 0 ¢ Orf(x) given in Lemma 4.1.2 ensuring x €
cl L(f, <, f(z)) can be replaced by L(f, <, f(z)) = cl.(f, <, f(z)). However, the
following two examples show that the validity of the condition 0 ¢ 97 f(x) does not

necessarily imply the condition L(f, <, f(x)) = ¢l L(f, <, f(z)) and vise versa.

Example 4.1.6. Consider a non-differentiable function f: R — R defined by

max{5z(z + 1}(x +2),2z}, ifa e [—1,+cof ;

i) 2=
) max{—3(z+ 1)(w +2),0}, ohterwise.

For 2 = 0, we have Oy f(x) = [1,2], and hence 0 ¢ Orf(z). However, ¢l L{f, <
1f($)) 1 [_15 0] 7& ] — 00, “2] U [_130] = L(f: <, f(lv))

Y
I
1,,
f M :
-2 ~17 1 5 @
—14
J(0;)
—9 4

Figure 26: Plots of function f and its directional derivative

in Example 4.1.6.
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Example 4.1.7. Let f: IR — R be defined as f(z) := max{—a? 2}, Vo € R and
2 :=0. So, L(J, <, f(2)) =] — c0,0] = ¢l L{f, <, f(x)), while & f(x) = [0, 1].

Y

Figure 27: Plots of function f and its directional derivative

i Example 4.1.7.

Remark 4.1.8. In Example 4.1.6 tell us that the fulfillment of © € cl L(f, <, f(a})
is not sufficient to cnsure that the equality L(f, <, f(2)) = cl L/, <, f(z)).

Next, we will see how the condition 0 ¢ 9y f(2) is not necessarily to be assumed
when considering KKT optimality conditions. Before doing so let us formally state
the notion of a KKT point of (P) in terms of tangential subdifferentials. A feasible
point # of (P) is called a KK'T point if there exist scalars \; > 0,i=1,2,...,m,
such that

i) 0€0pf(z)+ 22 Aidrgi(T),

i) \igi(Z) =0, i=12,...,m.

The above feasible point is also called a non-trivial KKT point if the correspond-

ing A= (A, Ag, ..., A ) s a non-zero vector.

We now turn our attention to state our main result of this section.

Theorem 4.1.9. [80] Given the nonlinear programming problem (P) fulling Slater’s

constraint qualification. Let & € X be a feasible solution, the functions g; : R" —




86

R, i=1,2,...,m, be continuous such that for everyi € I1(Z) the functions g; is tan-
gentially convex at . Suppose that T satisfies the condition (4.0.3), and 0 ¢ Org(Z)
for all i € I(Z). Assume further that the functions f : R" — R, is continuous and

tangentially convex af T.

(i) If T is a global minimizer then T is a KKT point.

(i) Conversely, if & is a non-triviel KKT point such that & € cl L(f, <, f(&)}),

and L(f, <, f(}) s convex then % is a global minimizer.

Proof. (i) If 7 is a global minimizer, then, by the Fritz-John optimality conditions
(Theorem 2.3.7), there exist real numbers \; > 0, ¢ € I, not all zero, satisfying ii)

and

Mof' (@ d)+ " Nigi(#;d) > 0, Vd € R™. (4.1.1)

iel
We shall now Sh('JW that Ay > 0. Let us assume that Ay = 0. Hence there exists
some 4 € [ such that A; > 0 which, by ii), implies the non-emptyness of I(Z).

Taking (4.1.1) into account we actually have

> Aigi(F;d) > 0, Vd € R™ (4.1.2)
iGI(F)
As ). 1@ A > 0, setting N i= Eie’l\('ﬁ) y; foreach i€/ (Z). Multiplying both sides

of (4.1.2) by Efefl(a) 5; for each d € R, we would have from the obtained inequality
that

0€dr Z Mg | (3) = Z AiOrgi(T).
i€l(%) il (@)
Then there exist & € drg;(Z), ¢ € I(F), such that
> M =0, (4.1.3)
i€ I{E)
It follows from the non-degeneracy condition at Z that & # 0, Vi € I(Z). This
together with the fact that ;. 1(z) A =1, we get

0< 3 Xilgl- (4.1.4)
iel(E)
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On the one hand, as the functions g; are continuous, the set of Slater points, which
contained in X, is open. It means that, for a Slater point xy, there exists a positive
real number p such that B(zq, p) C X, Thus, :730-5—2—”‘2{—”& e B(xp, p) C X, Vi € I(Z).

It is worth noting that
9Ty — 1) <0forallie I(@), yeX. (4.1.5)

Otherwise, g}(T;y —~ T) > 0 for some y € X and for some ¢ € I(%). Then by the

definition of directional derivative, there exists § > 0 such that

(@ +iy—= —
( t(y ))~92($;y—$)

< gi(%;y — &) whenever ¢ € ]0,4].

Subsequently, g;(z+#(y—z)) > 0 for all t € |0, §[. This contradicts to the condition
(4.1.1) that we can find some #; small enough such that Z+#,{y—Z) € A". Therefore,

by the definition of tangential subdifferentials, for each i € I(Z) we have

11 i %3 AR A T)< ‘: ! T SIaT T) <0
(v zo — Z) + ||~f | = <§ Zo 2“&” > g ( A 2||§z|| l>

Multiplying both sides of inequality above by A;, 4 € I(), and summing up the
obtained inequalities together with (4.1.3) we get

Zf\||«st|<0

z€I(a:}
which is in turn a contrast to (4.1.4). Hence Ag > 0, and without loss of generality

we can set Ag = 1. Then, for every d € R" we have

(f + ZA gl) Bd) = £1(F;d) + Y Aigh(@d) 2 0,
==,

=1

which is noting else than

Oear(erZ)\gI) T) =0rf(% +2/\3Tgti)

i=1 i=1

i) as required.

(ii) Let & € & be an arbitrary non-trivial KKT point. We see that for every
y € L{f, <, f(T)) we get the following inequality (z,y — %) < 0, Vo € N(L(f, <
, f(Z)), %), which means that y — & € N(L(f, <, f(%)),Z)°. By Lemma 4.1.2, we
obtain that

fl@y—5)<0foralye L(f, <, f(Z)). (4.1.6)
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On the other hand, employing i) and ii), we obtain
f(zd) + Z Aigi(Z;d) > 0 for any d € R".
icl(z)

In particular, by using (4.1.6),

> Agi(@y—2) > 0 for any y € L{f, <, f(2)). (4.1.7)
i€l (%) ‘

Next, we claim that L(f,<, f(£)}) N X = 0. Arguing by contradiction, suppose
that there exists w € L(f, <, f(Z)) N X. Then, from (4.1.5) and (4.1.7),

Z Nigi(Zw —T) =0, (4.1.8)
iel (&)
Furthermore, since L(f, <, f(Z)) is open, for each d € R™ there exists some t > 0
small enough such that w +td € L{f, <, f(Z)). Hence, by using (4.1.7), (4.1.8) and
sub-linearity of gi(z,-), 1 € I(z),

0 < Z,\igé((:‘:;w—l—tdgi)

1EI{E)

< Do Adimw—z)+1 ) Mgi(3;d)
iel(3) iel(®)

=\ Z Aigi(8; d).
il (&)

As # is a non-trivial KKT point, we have Eiem) A; > 0. In a similar manner
of the first argument, the last inequality arrives at a contradiction. So, our claim
L(f, <, f(Z))NA& = 0 holds. This means that # is a global minimizer, and the proof
is completed. O

Remark 4.1.10. It is worth observing that the Slater’s constraint qualification

along with a non-degeneracy at & arrives at the assertion

0 ¢ Z A:Orgi(T) whenever \; > 0, i € I(Z) such that z A= 1,
i€l (&) tel(z)

or equivalently, 0 ¢ co (Uie 1) 8Tgi(m)).
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It can he seen that the condition 0 ¢ &pf(Z) will follows from the non-
emptiness of L(f, <, f(#)) and the pseudoconvexity of f at Z. In this context
together with Lemma 4.1.2, pscudoconvexity of f at & provided sufficient condi-

tion for 7 € ¢l L{f, <, f(F)) whenever L(f, <, f(%)) is a nonempty and convex set.

However, the following example shows that pseudoconvexity of f at & does not
necessarily imply convexity of L(f, <, f(#)), and hence Theorem 4.1.9 cannot be

applied in this situation.
Example 4.1.11. Let f : R — R be a non-differentiable function defined by

max{z® +x,2x}, if x € [0,+o0f;

f(iL) = %3}(:1:—}—1)((134‘2)) if.’L?E]_OO;O[‘

Then, for z := 0, ['(Z; d) = max{d, 2d} for any d € R, from which we can obtain

that f is pseudoconvex at &, while L(f, <, f(Z)) =] —co, —=2[ U | —1, 0] is not convex.

1,

P : 4

AY) —1 }@" 1 9 &
-1l
opey

Figure 28: Plots of function f and its directional derivative

in Example 4.1.11.

Here we give an example to illustrate that 'Theorem 4.1.9 is indicated to be con-
veniently applied in some cases where Theorem 9 of [48] cannot be used even when
the feasible set X' is convex. Namely, the objective function is not pseudoconvex at

considered point.
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Example 4.1.12. Let f: R — R be a non-differentiable function defined by

(2 —D(z—-2){x—-3)+1, ifac|itoof;

max{z®, x}, ifae|-o0,1],

fz) =

and the feasible set X = {# € R : g1(¢) < 0}, where

1
g1(2) == max {~:1;, ~§(:z: — 1) —2) — 1} :
Evidently, the function f is not pseudoconvex at  := 0. We can verify that X' =
0, +co| and the feasible point @ satisfies non-trivial KKT conditions with A\ =1,
non-degeneracy condition, and Z € ¢l L(f, <, f(z)) in which L(f, <, f(z)) =]—00, 0]

is convex. Then, by Theorem 4.1.9, 2 is a global minimizer.

Figure 29: Plots of functions [ and g, and their directional derivatives

in Example 4.1.12.

Example 4.1.13. Lel f: R - R be defined as in Fzample 4.1.12, and the feasible
set X = {x € R: g(2) <0}, where

gi(x) = max{-x, —a(z — 1)(z — 2)}.

We can check that X = [0,1] U [2, +oo| and the feasible point T = 0 salisfies non-
trivial KK'T conditions with Ay .= 1, L(f, <, f(Z)) = ] = c0,0[ is convex such that
zecl L{f, <, f(Z)). In addition, a non-degeneracy condition and condition (4.0.3)

hold at . Theorem 4.1.9 then indicates that T is a global minimizer.
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Y
9'(0;) | 2
A\." 1 a1
—9 1
_1 nF
—9

Figure 30: Plots of function ¢ and its directional derivative

in Example 4.1.13.

It is worth mentioning that from Remark 4.1.5, the following result can be
deduced.

Corollary 4.1.14. If we replace the condition & € cl L(f, <, f(z)) by cl L(f, <
f (@) = L{f, <, f(Z)) or 0 ¢ Opf(Z), Theorem 4.1.9 is also true.

As tangential convexity collapses to regularly locally Lipschitz setting and dif-
ferentiability, the following two corollaries are immediately direct consequences as
a special case of Theorem 4.1.9. We will also see how the condition z € ¢l L(f, <

, f(2)) can be absent in differentiable case.

Corollary 4.1.15. Given the nonlinear programming problem (P) and let the Slater’s
constraint qualification holds. Let T € X be a feasible solution sotisfying the con-
dition (4.0.3) and the functions f,g; : R* — R, i € I(Z), be locally Lipschitz and
regular in the sense of Clarke at T. Assume that 0 ¢ 8°g;(z) for all i € I(%).

(1) If 7 is a global minimizer then there exist \; > 0, i € I such that

1) 0€2°f(Z) + > s MO°0:(Z),
11) /\igi(i‘) = O, Viel.
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(i) Comwersely, if T is a non-trivial KKT' point such that Z ¢ cl L(f, <, (%)),

and L(f, <, f(ZT)) is convezr then & is a global minimizer.

Corollary 4.1.16. [52, Theorem 1] Given the nonlinear programming problem
(P) and let the Slater’s constraint qualification holds. Let € X' be a feasible
solution satisfying the condition (4.0.3) and the functions f,g; :R* = R, i € 1, be
differentiable functions. Assume that Vg;(Z) # 0 for all i € I(Z),

(i) If Z is a global minimizer then there ewist \; > 0, i € I such that

1) VF(Z) + 2 MVail®) =0,
11) /\;Q‘,,(f) = 0, Viel.

(ii) Conversely, if T is a non-trivial KKT point, and L(f, <, f(Z)) is convez then

T 48 a global minimizer.

Proof. Owing to Z is a non-trivial KK'T point,

1 A

Viz) = z —"—.Vgi(ir) € co U {Val(z)} |-
Zief(f) % icI(z)

ZiGI(E) Ag iel(@)

In view of Remark 4.1.10, we obtain that V f(z) # 0. The desired result will follows
by the virtue of Lemma 4.1.2. ]

To this end of this section, we would like to summarize the relationship of ‘
the several conditions, which were considered in this paper, for KKT optimality
conditions whenever f : R* — R, # € R* and L(f, <, f(Z)) # B

f is convex »| f is pseudoconvex at &

l
0 ¢ Orf (%)

L(f, <, f(T}) is convex

z € cl L(f,<, f(2))

| L(f, <, (@) = LU, <, £(3)

L{f, <, f(Z)) is convex
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4.2 Multi-objective optimization problems with cone con-

straints

In this section, we deal with a class of differentiable multi-objective optimization
problems (MOPC) over cone constraints without the convexity of the feasible set,
and the cone-convexity of objectives and constraint functions. Precisely stated, we
will be mainly concerned with the multi-objective optimization problem with cone

constraint (MOPC) given as
K — min{f(z) : —g(z) € Q}, (MOPC)

where f := (f1, far-- s o) t R* = RP and g == (91,92:+.-:9m) : R* — R™, are
differentiable functions, X and @ are closed convex cones with non-empty interiors
in R? and R™, respectively. Let

Xg = {zeR": —g(z) € Q} (4.2.1)

be the set of all feasible solutions of (MOPC). The notation “A —Minimize "refers
to the weak Pareto minimum (resp. Pareto minimum) with respect to the
ordering cone X for the problem (MOPC), namely a point z* € Ay such that for

every © € Ao,

F(@*) — f(z) & intI (vesp. f(z*) — f(z) & KA{0}).

For a closed convex cone K G R?, let us recall some known definitions in the

literature that a vector valued function f := (f1, fo, ... fp) : R” - R? is said to be

(i) K -convex at a point z* € R™ if for every o € R”,
flz)— f(2*) -V f@*)(z~2") e K.
(ii) K-pseudoconvex [81,82] at a point z* € R if for every « € R”,
~Vf(a*)(z — z*) ¢ intK = f(a*) — f(z) € int K,
where V f(2*) := (Vfi(z*), fa(z*),..., Vfp(z*))" signifies the Jacobian of f. If f is

K-convex (K-psendoconvex) at every point z* € R” then f is said to be K-convex

(resp. K -pseudoconvex) on R".
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Recall that a feasible point x* € X is said to be a KKT point if there exist
multipliers § € K*\{0} and A € Q* such that the following Karush-Kuhn-Tucker
(KKT) optimality conditions hold:

(1) VSf(@*)70+ Vg(a*)TA = 0;

(i) (A g(2%)) =0.

Also, the above feasible point z* is also called a non-trivial KKT point if the

corresponding A is a non-zero vector.

The following constraint qualification for the problem (MOPC) is well known

{see [55]).

Definition 4.2,1. The feasible set Xp ag in (4.2.1) is said to satisfy Slater-type

cone constraint qualification at z € X if there exists £ &€ R™ such that
g9(x) + Vg(z)(& — z) € —int().

It is worth noting that, in contrast with the Slater-type constraint qualification to
be introduced next, Slater-type cone constraint qualification is associated with a

given feasible solution.

This part of the work has been motivated by a paper of Suneja et al. [53].
With the introduction of scalar convex optimization without convexity of con-
straint functions by Lasserre [46], the authors have established KT optimality
conditions for weak Pareto minimum (resp. Pareto minimum) of some classes of
multi-objective convex optimization problems. In fact, the authors have shown that
even if the convex feasible set is not necessarily described by cone-convex constraint,
the Slater-type cone constraint qualification renders the KKT optimality conditions

both necessary and sufficient.

Qur intention is to weaken the convexity assumptions to the problem (MOPC).
The key feature of this study that distinguishes from the scalar problems is that
only non-degeneracy at the point z* under consideration (see Assumption 1) is
assumed, without Slater-type cone constraint qualification as well as Slater-type

constraint qualification, which is given as follows:
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Definition 4.2.2. The feasible set X as in (4.2.1) is said to satisfy Slater-type

constraint qualification if there exists £ € R® such that —g(2) € intQ.

So, at first, it should be to investigate the connections among non-degeneracy
condition, Slater-type cone constraint qualification, and Slater-type constraint qual-
ification. Afterwards, we will establish necessary and sufficient KKT optimality
conditions for a weak Pareto minimum of (MOPC). In addition, we also establish
sufficient conditions for guaranteeing a weak Pareto minimum to be a Pareto min-
imum of the problem (MOPC). Further, illustrative examples are also provided
to demonstrate that our results generalize and improve the corresponding known
results obtained in [53] for the problem (MOPC) in some appropriate situations.

To arrive there, we need the following lemma, which will be crucial in the sequel.

Lemma 4.2.3. [83] Let Xg be as in (4.2.1). Assume that Xo is nearly convex at
a feasible point a* € Xo. Then for every A € Q*\{0} for which (A, g(z*)) =0, one

has

(Vo(z*)T A0 — 2*) <0 for all v € Ap.

Proof. Suppose on contrary that there exist A € Q*\{0} for which (), g(z*)) and
v € X such that

(Vg(z)TAv—z") >0

By defining h(2) == (A g(z)) for all z € R, we have by (2.1.1) that Vh(z) =
Vg(z*)' ) for all z € R™. So, in view of Remark 2.1.16, there exists ¢ > 0 such that

(A g(z* +t(v — 2*))) = h{z* + t(v — 2")) > 0, VL €]0,4].

This together with the condition (4.0.3) in turn gives us that there exists some ¢

small enough such that
(N glz* + (v —2%))) >0 (4.2.2)

and 2* + (v — z*} € Xo. The latter means that —g{z* + fi{v — z*)) € @ and
consequently, (A, g(z* + (v — z*))) < 0, which contradicts (4.2.2). O
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4.2.1 Constraint qualifications

In this subsection, we present the constraint qualifications that are used to derive
the KKT conditions for (MOPC) and their connections. At first, we recall one of
constraint qualifications the so-called non-degeneracy condition at some feasible

point 2* € Xp in the vector setting, which introduced in [53].

Assumption 1: (Non-degeneracy condition [53]) Consider (MOP), for every A €

Q\{0},
Vg(2*)T X # 0 whenever (), g(z*)) = 0.

Remark 4.2.4 (Sufficient condition for non-degeneracy condition to be valid).
Note that if the Slater-type cone constraint qualification at &* holds, then the
non-degeneracy condition is satisfied at #*, Indeed, if there exists & € R"™ such that
g{(z*)+Vg(z*)(£—2z*) € —intQ, then for every A € Q*\{0} for which (X, g(z*)) =0,
one has (Vg(z*)TA\ & — a*) = (\,g9(z*)) + (Vg{z*)T\, & — 2*) < 0 which implies
that Vg(2*)"\ # 0.

Remark 4.2.5. The Slater’s condition can also be guaranteed by the Slater-type
cone constraint qualification at some point 2* as well. To see this, we have from
the Slater-type cone constraint qualification that Vg{2*}(2 — 2*) € —int@Q — g(z*)

for some & € R™. So, for any A € @*\{0}, it then follows from Lemma 2.2.15(ii)
that

(v g()) + (A, o(a)(@ — 2)) < 0.

This togethier with the {act that

Ogle® + 1@ = 2) = Augle™)
t

(Vg(@)) T\ & —z*) as t — 01,
in turn implies that for some t; > 0 sufficiently small, it holds
(N g(a* +1o(2 — 2%))) < (1 —t) (A, g(z®)) + (A, Vg(2*)(Z — z))) < 0.

Again, by using Lemma (2.2.15)(ii), we get that —g(z* + to{& — 2*)) € int (), and

hence, the Slater’s constraint qualification has been justified.
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Now, we present some sufficient conditions for the Slater-type cone constraint

qualification to be valid.

Theorem 4.2.6. (83| Let X be as in (4.2.1). Assume that the Slater-type con-
straint qualification holds and the condition (4.0.3) is satisfied at a feasible point
¥ € Xo. If the non-degeneracy condition holds ot x*, then the Slater-type cone

constraint qualification also holds at x*.

Proof. Suppose that the non-degeneracy condition holds at z*. Assume on contrary

that for every x € R™, one has g(2*) + Vg(z*)(z — 2*) ¢ —intQ, equivalently,
~[g(=*) + Vg(z*)(R" — 2*)] NintQ = 9.

So, by the convex separation theorem (Theorem 2.2.3), there exists A € R™\{0}
such that

A g@) + (N, Vgl e —2") + (\y) 20, V2 € R", Yy € Q. (4.2.3)

By taking @ :=z* and y := 0 in (4.2.3), we would have (A, g(z*)} = 0. Hence, with
regard to (4.2.3) with 2 ;= 2*, we get A € Q. Therefore, in view of (4.2.3), we find
a vector A € @*\{0} with (), g(2*)) = 0 such that

(Vg(a*)' X2 —z*) >0, Vo e R™ (4.2.4)

On the other hand, by assumption, there exists & € R™ such that —g(2) € intQ.
Then, since g is continuous at &, there exists 7 > 0 such that g(£ + ru) € —@Q for
all u € B(0,1). Consequently, & + ru € Xg for all w € B(0, 1). So, as 2* € Ag and

x* satisfies the condition (4.0.3), we conclude from Lemma 4.2.3 that
(Vg(z*YTA\ &+ ru—2*) <0, Vu e B(0,1). (4.2.5)

In particular, put « := 0 € B(0, 1), one has (Vg(z*)TA, 2 — 2*) < 0. Thus, with
regard to (4.2.4), (Vg(z*)*\, £ — 2*) = 0, and hence we deduce from (4.2.5) that

(Vg(z*)T A\ u) <0, Vu € B(0,1).

So, Vg(z*)" X must ultimately be zero vector, which contradicts the validity of

non-degeneracy condition at x*. O
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Remark 4.2.7. In the absence of the condition (4.0.3) at 2*, the validity of both
Slater-type constraint qualification and the non-degeneracy condition at x* does
not guarantee the validity of Slater-type cone constraint qualification at z*, for
instance, let 2 := (21,2,) € R?, Q :=R% and g(2) := (2§ + 29 — 21,21 — 22). We
see that g(—3,—2) = (-7, —1) € —intQ, that is, Slater’s condition holds. Also, one

has

Volz) = 1 Smptl , Vo e R?
1 -1
and a short calculation shows that the non-degeneracy holds at z* ;= (0,0) € X,
while the condition (4.0.3) together with the Slater-type cone constraint qualifica-
tion is invalid at z*, In fact, let us consider zq := (-2, —1) € X and arbitrary
sequence {t; heny C |0,+co] such that ¢ — 0 as | — +o0. So, #, < 1 for some

lo € N and o* + ¢, (2o — 2*) = )0 ¢ Xo. Otherwise, we have that
tlo(l o/ tlo)(l b LL!‘o) o (_tlo)s AN (_tln) q (_Ztlo) <0,

whence, 1 < {;,. This contradicts to the fact that ¢, < 1. In addition, we can not

find out & := (21, 2,) € R? such that

AT Yt wlin 1 &
AL H = g(z*y + Vg(a™)(& — *) € —intQ.
R 1 —1) \&

Remark 4.2.8.

(i) It is worth noticing that there is a partial overlapping between Slater-type
constraint qualification and non-degeneracy condition at a given point z* in
general, For example, it is easy to check that Slater-type constraint qualifi-
cation fails to hold for X¢ = {z € R" : —g(z) € Q}, where @ := R2 and
g(z) = (—21 + Ty, 2 — z2) for all z € R?, while non-degeneracy condition
holds at z* := (0,0). In contrast, redefining g(z) := (23— 29 +1, —23 +2,— 1)
for all z € R?, we get —g(—1,1) = (1, 1) € int@ and so, Slater-type constraint
qualification holds. Now we see that non-degeneracy does not hold at z*, In-

deed, taking p := (1,1} € @*\{0} entails that (Ag, g(z*)) =0 and

0 0 1 0
Vg(ﬂi*)T/\g = = y
-1 1 1 0

showing that non-degeneracy fails to hold at z*.
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(ii) In addition to the Q-convexity of g at a given point z*, if Slater-type constraint
qualification holds, then non-degeneracy condition is satisfied at z*. To see
this, s;uppose now by contradiction that there exists Ao € QQ*\{0} satisfying
(Ao, g(2*)) = 0 and Vg(z*)TAg = 0. It then follows from @Q-convexity of g at
2* that (o, 9(3)) — oy 9(5)) = oy 9()) — oy (%)) — (Vg(@*)Tho, & -
2*) > 0 for a Slater’s point #. This contradicts to the fact that (\g, g(&)) <
0 = (Ao, g(z*)).

Let us recall that the set {2 € R : ¢;(z) <0, i=1,2,...,m} is said to satisfy
the

(i} Mangasarian-Fromovitz constraint qualification [84] at z* if there exists
v € R™ such that (Vg;(2*),v) < 0 for each i € I{a*) := {i € {1,2,...,m}:
g;(z*) = 0}.
(ii) Robinson constraint qualification at z* if 0 € int{g(z*) + Vg(z*)(R" —
") + R} where g(z) := (91(2), 922} - - -, gm(®)).
Remark 4.2.9. In the case of @ = R = {(21,22,...,2,) CR™ 1 2; 2 0, Vi =

1,2,...,m}, non-degeneracy conditions at 2* can be view as the Mangasarian-

Fromovitz constraint qualification at 2* and non-degeneracy conditions at z* in
(46, 52] as well. Indeed,

Jv € R™ such that (Vg;(2™),v) <0, Vi € I(z¥)
< 0¢co{Vg(e*) i e I(z")}
& YA = (A, Ay o0 An) € RTA{O} with Xig:(2z") =0, 1 =1,2,...,m,
one has Z ANiVgi(z*) # 0,
=1
and for each 4 € {1,2,...,m}, by taking A := e;, where e; is the unit vector in
R™ with the ith component is 1 and the others 0, one has Vg;(z*) # 0 whenever
i € I{z*). Note that Slater-type cone constraint qualification at 2* also is equivalent
to the Robinson constraint qualification at 2* [84, Lemma 2.99, p. 69]. Then, as
the considered set {z € R*: g;(z) <0, 1=1,2,...,m} is not necessarily convex,

one can notice that Theorem 4.2.6 extends [73, Theorem 2.1] to non-convex setting

on the set {z e R*: g(z) <0, 1=1,2,...,m}.
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To this end of this subsection, the relationship between proposed constraint

qualifications can be summarized in following diagram whenever 2™ € A

» Slater’s constraint qualification

Slater-type cone
constraint qualification at 2*  conditton (4.0.3)

I is sotisfied at w*

g is K-convex at x*

Non-degeneracy condition at =*

4.2.2 KKT optimality conditions

In this subsection, we establish necessary and sufficient KK'T' optimality conditions
for a weak Pareto minimum of (MOPC). In addition, we also establish sufficient
conditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of

the problem (MOPC). We begin by the following lemma.

Lemma 4.2.10. [85, Lemma 1] Consider the problem (MOPC). If * € &¢ is a
weak Pareto minimum of (MOPC), then there exist # € K* and A € @* not both

zero such that
(Vf(@)70+ Vg(a) A\ 2 —2*) >0, Vo € R
and

(A g(z")) =0

Now, we also recall the following important result which can be found in [79]
and will play a key role in deriving a feasible point to be a weak Pareto minimum

as well as a Pareto minimum of (MOPC).
Proposition 4.2.11. [79, Proposition 2.2.] Let f : R* — R be differentiable at x*

with V f(2*) # 0. Then:

() N(L(f, <, f(z*),2*) = {d € R" : d = rVf(2*), for some r > 0} provided
that L(f, <, f(«*)) is convex.
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(ii) N(L(f, <, f(z),2*) = {d € R* : d = vV f(2*), for some r > 0} provided
that L(f, <, f{2*)) is convex.

Now, we are in the position to give necessary and sufficient KKT optimality
conditions for a weak Pareto minimum of (MOPC).
Theorem 4.2.12. [83] Consider the problem (MOPC) and let both Assumption 1
and the condition (4.0.3) be satisfied at a feasible point x*.
(1) If a* is @ weak Pareto mintmum of (MOPC), then x* is a KKT point.

(ii}) Conversely, if x* is a non-trivial KKT point with multipliers 0 and A, and
L{{0, ), <, {0, [ (2*))) is convex then z* is a weak Pareto minimum of (MOPC),
where (8, f) is defined by

waf)(i) = <95 f(a)), Yz e R™

Proof. (i) Let a* € A¢ be a weak Pareto minimum of (MOPC). By Lemma 4.2.10,
there exist @ € K* and A € @* not both zero such that (A, g(z*)) = 0 and

(Vf(2970 + Va(x*) M\ z—2*) >0, V2 e R™. (4.2.6)
As the inequality (4.2.6) holds for every z € R™, we conclude that
V(@70 + Va(z*)TA =0 and (), g(z*)) = 0.

Moreover, we assert that @ # 0. Otherwise, it follows in turn that A % 0, which

stands in contradiction to Assumption 1, and therefore, 8 # 0.

(it) Let 2* € Xy be an arbitrary non-trivial KK'T point, i.e.,
V(@) 0+ Vg(e)A=0, (Ag@") =0,

for some non-zero vectors § € R?, A € R™, This together with Assumption 1
implies that V f(2*)T6 must ultimately be non-zero vector. It can be seen that if
the set L{{(8, f), <, (8, f(z*))) is empty, then 2* actually is a weak Pareto minimum
of (MOPC). In fact, if 2* is not a weak Pareto minimum of (MOPC), there exists
x € X such that f(z*) — f(z) € int K. So, by the virtue of Lemma 2.2.15(ii),
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(@, f(z*)) > (8, f(z)), which contradicts to the fact that L{{0, [}, <, {0, f(2*))) =
0. Let us consider in the case L({f, f}, <, (8, f(2*))) # @. Applying Proposition
4.2.11(1) with h(z) := (8, f(z)), we obtain that Vh(z*) = V f(z*)T0 and

(VF@)T0,u—2*) <0, Yue L0, ), <, 6, f(z*))). (4.2.7)

Therefore, by Lemma 4.2.3,
(V@700 2" = —(Vg(x")T8,v—2*) >0, Vv e Xp. (4.2.8)

Note that,

{y e R": f(2") = f(u) € int K} € L{{0, /), <, (0, F(*))).

Thus, in order to obtain that z* is a weak Pareto minimum of (MOP), it suffices
to show that Ao C R\ L{{8, f), <, (4, f(z*))) or consequently,

L((0, /) <, (8, f(a™))) N &g = 0.

Suppose, ad absurdum, L({8, f}, <, (8, f(*))) N X # 0. Thus, from (4.2.7) and
(4.2.8) we get the assertion (Vf(z*)T0,w — 2*) = 0 for any w € L{{6,f), <
A0, f(z*))) N Xe. Furthermore, as the set L{{8, f), <, (0, f(2*))) being open, for
each d € R" we can find ¢ > 0 small enough such that w 4 td € L({9, f), <
{8, f(=*))). Hence,

HV f(2*)70,d) = (Vf(2*) 0, w+1d — 2*) — (Vf(2*)T0,w — 27) <0.

This means V f(2*)T8 = 0, a contradiction. Thus, L{((8, f), <, (8, f(z*))) N &g = B,

and z* is a weak Pareto minimum of (MOPC) as desired. O

Remark 4.2.13. It is worth mentioning here that Proposition 4.2.11 plays a sig-
nificant role in Theorem 4.2.12(ii) for ensuring a feasible point z* to be a weak
Pareto minimum of (MOPC). Beside, non-degeneracy condition {Assumption 1) at
z* need to be assumed for guarantecing 87V f(z*) # 0 with correspond to multiplier
vector & € K*\{0}. In contrast, it generally does not need constraint qualification
to establish the sufficient optimality conditions. Therefore, it might be reasonably
assumed the assertion V f{2*)T0 # 0 instead of assuming the non-degeneracy con-

dition at z*. However, keeping in mind the fact that we need to justify the convexity
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of L({6, [, <, {0, f(z*))) with the same choice 8, and so in this case the multiplier
vector @ turn out to be difficult to determine for which satisfying all conditions in
Theorem 4.2.12(ii) simultaneously. This being a reason why non-degeneracy con-
dition make used in Theorem 4.2.12(ii). Another reason is that non-degeneracy
condition is actually justified to check a feasible point that can be a weak Pareto

minimum of (MOPC) or not before to justify sufficient optimality conditions.

We now demonstrate with the following example to guarantee that Theorem
4.2.12 is indicated to be conveniently applied in some cases where Theorem 3.1 and

Theorem 3.2 of [53] cannot be used even when the feasible set A is convex.

Example 4.2.14. Let us consider the following muti-objective optimization prob-
lem (MOPQ) over cones:

K - nﬁ}g{f(a:) = (z+1,2° — 52?48z — 3) : 2 € Ag},
TE
where g(2) = (z— 1,22 —2 = 1), K :=R? and Q := {(z1,20) €R* 1 2, <0, 2, <
z1}. A straightforward calculation shows that:
o Xo = [2, +oo,
o« K* = K,

o Q*={(z1,m) ER? 1 7y <0, zy < —24},

o z* := 2 gatisfies the non-trivial KKT conditions by taking ¢ := (2,0) and
A= (1, -1),
o L0, ), <, (0, f(x*))) = ] — o0, 2[ is convex,

e It is easily to seen that Assumption 1 and the condition (4.0.3) are satisfied.

Applying Theorem 4.2.12 (ii), we can conclude that z* is a weak Pareto minimum

of (MOPC). However, it can be checked that g is not Q-convex, i.e.

9(1) —9(2) = Vg(2)(1-2) = (0,1) ¢ Q,

but the feasible set X is convex. Furthermore, the function f is not K-pseudoconvex

at ¥ 1= 2, because if we take x := 0 then

~Vf(z*)(z —2%) = (2,0) ¢ intK, but f(z*) — f(z) = (2,4) € intK.
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Hence, the corresponding results [53] is not applicable.

2 f(&e)

Figure 31: Illlustration of the behavior of weak Pareto minimality

in Example 4.2.14.

Note that the multiplier vector p is assumed to be non-zero vector (the non-
triviality of the KKT conditions) in order to ensure that V f(2*)76 # 0 in Theorem
4.2.12(ii). The following example demonstrates that this assumption cannot be

dropped.

Example 4.2.15. Let f(z) = (z+ 1, —~(z — 2)%), g(z) == (a* — 1,22 - 1), K :=
{{z1,25) € B2 : 2y > —z1, o1 > 0} and Q := {(z1,22) € R? : 21 > a9, 7, > 0}
It is not hard to check that X = [1,2], «* = 2 is a KKT point with # = (0, 1)
and A := (0, 0), and all the conditions in Theorem 4.2.12 (ii) are fulfilled. However
&* is not even a weak Pareto minimum, ie., if we take @ := § then f(2*) — f(z) =
(3,0) — (3,3) = (3,—3) € intK. The main reason is that »* is not a non-trivial

2
KEKT point.

d -3 -2 1

—1

Figure 32: Illustration of Example 4.2.15.



105

To appreciate Theorem 4.2.12 we present an example that is applicable while

the aforementioned result in [53] is not.

Example 4.2.16. Consider the following multi-objective optimization problem

(MOPC) over cones:

K —min{f(z) := (2* — 1, —2% +52® — 82 + &) : 2 € AL},

TER
where g(2) 1= (28 +22+2, 23+ 222 — b +8), K 1= {(z1,22) € R? 121 > 0, 23 S a1}
and Q = {(x1,22) € R?> : 2y < 0, 2o < 27}, Evidently, f, and g are not K,
and Q-convex, respectively. Indeed, f(1) — £(0) — Vf(0)(1 —0) = (1,4) ¢ K, and
9(1)—g(0)—Vg(0)(1—0) = (2,3) ¢ Q. It is easy to verify that Xo = [0, 2)U[4, +ool.
Then we have already seen that the feasible set Xp is not convex. Therefore, the

results in [53] cannot be applicable. However, it is not hard to verify that

o K* = {(m,z3) € R2 12, <0, g > ~ry},
o Q* ={(21,15) ER?: 25 <0, 25 < —14},

o 2* :— ( satisfies the non-trivial KKT conditions by taking 6 :== (1,—1) and
A= (=8,0),

¢ Assumption 1 and the condition (4.0.3) are satisfied,

o LB, [), <, {0, f(z*))) =] — 00,0[, which is convex.
Hence, Theorem 4.2.12 (ii) indicates that 2* is a weak Pareto minimum of (MOPC).

Next, we will sce now how the convexity of L({8, f), <, (8, f(2*))) together with
the strict convexity of L{{0, f), <, (6, f(z*)}) at a non-trivial KKT point 2* possess
z* to be a Pareto minimum of (MOPC). To do this, we recall first the following

notion of strict convexity.

Definition 4.2.17. A set A C R" is called strictly convex at z € A if ({,y—z) <
0 for every y € A\{z} and € € N(4,z)\{0}.

It is worth noting that the strict convexity of A at some point 2 does not
guarantee the convexity of A. For instance, the set A = {(z1,25) € R* @ 2y >

0} U {(0,0)} is strictly convex at (0, () while A is not convex.
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Figure 33: Illustration of nonconvex set that it is strictly convex.

Theorem 4.2.18. [83] Consider the problem (MOPC) and let both Assumption 1
and the condition (4.0.3) be satisfied at a feasible point x*. If3* is a non-trivial KK'T
point with multipliers 0 and X, LU0, f), <,{0, f(&*))) is convez, and additionally
L0, £Y, <, (8, f(x*))) is strictly convex at z*, then »* is a Parefo minimum of
(MOPC).

Proof. In a similar manner of the second argument as the proof of Theorem 4.2.12,
by the KKT conditions and Proposition 4.2.11(ii), we arrive at the following asser-

tion

(4.2.9)

and V f(z*)70 # 0. To establish the desired results, we argue first by using Lemma
9.2.15(i) that

{y eR™: f(a7) — fy) € K\{0}} € L6, f), <, {0, f@")\ {2}

Thus, we only need to justify this containment

Xo CRN (L0, 1), <, 0, @)\ "))

We argue by contradiction that there exists some w € A such that w # 2* and

w e L0, Y, <, (8, f(z7))). Taking (4.2.9) into account we actually have

(VF(2*)'0,w—a*) =0,
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Furthermore, as V f(«*)10 € N(L{{8, f),<, (0, f(z*))), 2*)\{0} (by the second in-
equality in (4.2.9)) and L({0, £}, <, (8, f(2*))) is strictly convex, then (V f(z*)70, w—
x*) < 0. This is a contradiction, and thereby implying that z* is a Pareto minimum

of (MOPC). 0

Remark 4.2.19. In Example 4.2.16 with @ == (1, —1), it is evident that L({f, f), <
, (0, f(2*))) is strictly convex at 2* 1= 0, by Theorem 4.2.18, and hence 2* is a Parcto

minimum of (MOPC) (see the below figure).

f25 (—K + fz*) 0 f(Xe) = {f(z*)}

#{[0,2])

i

—1 3

Figure 34: Illustration of Pareto minimality in Example 4.2.16.

Remark 4.2.20. It should be noted that to obtain a Pareto minimum from a
drawback (see [53,55] and other references therein}), the multiplier vector A in KKT
conditions need to be taken from the strict positive dual cone of K, K® , which

defined as
K = {¢ e R*: (¢,2) > 0 for all x € K\{0}}.

However, in this case study the multiplier vector # is not necessarily to take from the
strict positive dual cone. In fact, as K defined in Example 4.2.16 and 6 := (1, 1),

Then elementary calculations give us
K = {(21,23) CR? 1 2) > 0, 29 > —1y}

and so, 0 ¢ K5,

To this end, we now give an example showing that the strict convexity of
L0, ), <,40, f(x*))) with corresponding multiplier 4 is cssential for «* under the

question to be a Pareto minimum of (MOPC) in Theorem 4.2.18.
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Example 4.2.21. Let z = (z1, %) € R? f(a) = (2%, 5 — @1), g(a) == (—ad +
3wy + 2o, —we) and K = Q = {w € R* 1 2y < 0, 23 > 0}, It is easy to
check that the feasible set Xz is not convex and the condition (4.0.3) is valid at

a* = (1,1} € Az. Then elementary calculations give us

o K*=0Q* =K,
0 1 2 0

o (%) = (3,0), Vo(s") = [ = (1,0), V() = ,
=1 -1 1

o x* satisfles Assumption 1 and the non-trivial KT conditions by taking § =

A= (0,1),

o LU0, ), <, {0, f(2))) = {(z1,25) € R? 1 3y < 21} and
LB, 1Y, <, 08, f(2*))) = {(v1,m2) € R : 19 < 21} are convex scts.

By Theorem 4.2.12 (ii), we can conclude that 2* is a weak Pareto minimum of
(MOPC). However, the set L({8, f), <, {8, f(2*))) is not a strictly convex set at
a*, Le., it is clear that N(L((6, ), <, (8, f(z*))),2*) = {(—»,7) € R* . » > 0}. So,
by taking & == (—1,1) € N(L{{0, £), <, {0, f(2*))), z)\{(0,0)} and y := (2,2) €
L{{0, ), <, {0, f{z*)))\{(0,0)}, we have (£,y —a*) = 0. Actually, a point z* is not

even a Pareto minimum, i.e., if we take 2 := (=2, —2) € A%, one has

F@*) = f(z) = (=3,0) € K\{(0,0)}.
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Remark 4.2.22. It is worth noting that the convexity of L({8, f}, <, (6, f(2*)))
(resp. L({0, f), <, (0, f(z*))))} in Theorem 4.2.12 (resp. in Theorem 4.2.18) can
be viewed as a generalized quasiconvexity of f at z* due to the notion of x-
quasiconvezity [86] in the sense that for each & € K* the function (6, f) : R* — R is
quasiconvex. It is quite clear from the definition that *-quasiconvexity of f guaran-
tees the convexity of the level set L{(8, f), <, (8, f(a*)}) or of L({8, [}, <, (8, f(a*))).
In fact, the function f in Example 4.2.21 is not x-quasiconvex, i.e., by taking
§:=(-1,1) € K* and z := (1, 1), the set L({0, /), <, {0, f(z*))) is non-convex. For

related conditions for cone quasiconvex mappings we refer the reader to [68,87,88].



CHAPTER V

CONCLUSION

In this thesis, following the framework of robust optimization, we mainly con-
cerned to characterize the robust optimal solution sets for uncertain convex opti-
mization problems without convexity of constraint data uncertainty. We achieve
this by investigating convex optimization problems without convexity of constraint
in the absence of data uncertainty. We provide a new pseudo Lagrangian-type
function which is constant on the optimal solution set. This property is still valid
in the case of a pseudoconvex locally Lipschitz objective function. We also ob-
tain some characterizations of the optimal solution set of all optimal solutions of a
given problem. Afterwards, with slight consideration, characterizations of the ro-
bust optimal solution set for uncertain convex optimization problems with a robust
convex constraint set described by locally Lipschitz constraints are obtained. Fur-
thermore, by employing the linear scalarization, characterizations of weakly robust
efficient. solution set and properly robust efficient solution set of uncertain convex

multi-objective optimization problems are also obtained.

Coneerning the fruitful theories of quasi-convexity, we have established neces-
sary and sufficient KKT optimality conditions of non-smooth optimization problems
with inequality constraints without the presence of convexity of objective function,
of constraint functions and of feasible set. In addition, for the differentiable multi-
objective optimization problem (MOPQC) over cone constraint, we have proposed
constraint qualifications and discussed the relationship between them without the
convexity of the [easible sel, and the cone-convexity of objective and constraint
functions. Finally, necessary and sufficient the Karush-Kuhn-Tucker optimality
conditions for weak Pareto minimum as well as Pareto minimum of the problem

(MOPC) are also obtained.
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