

DEVELOPMENT OF DYNAMIC ROUTING SYSTEM FOR TOURISM BASED

ON WEB MAP APPLICATION USING FOSS4G AND PGROUTING

TENZIN WANGCHUK

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Science in (Geographic Information Science)

2019

Copyright by Naresuan University

DEVELOPMENT OF DYNAMIC ROUTING SYSTEM FOR TOURISM BASED

ON WEB MAP APPLICATION USING FOSS4G AND PGROUTING

TENZIN WANGCHUK

A Thesis Submitted to the Graduate School of Naresuan University

in Partial Fulfillment of the Requirements

for the Master of Science in (Geographic Information Science)

2019

Copyright by Naresuan University

Thesis entitled "Development of dynamic routing system for tourism based on Web

Map Application using FOSS4G and pgRouting"

By TENZIN WANGCHUK

has been approved by the Graduate School as partial fulfillment of the requirements

for the Master of Science in Geographic Information Science of Naresuan University

Oral Defense Committee

Chair

(Assistant Professor Pipat Reungsang, Ph.D)

Advisor

(Assistant Professor Sittichai Choosumrong, Ph.D.)

Internal Examiner

(Assistant Professor Kampanart Piyathamrongchai, Ph.D.)

 Approved

(Professor Paisarn Muneesawang, Ph.D.)

 for Dean of the Graduate School

 C

ABSTRACT

Title DEVELOPMENT OF DYNAMIC ROUTING SYSTEM

FOR TOURISM BASED ON WEB MAP APPLICATION

USING FOSS4G AND PGROUTING

Author TENZIN WANGCHUK

Advisor Assistant Professor Sittichai Choosumrong, Ph.D.

Academic Paper Thesis M.S. in Geographic Information Science, Naresuan

University, 2019

Keywords Dynamic Routing, Tourism Based, Web Map, FOSS4G,

pgRouting

ABSTRACT

Most map services do not support adding points or area incapacitating the

routing service of a dynamic feature and providing real time scenarios. They often do

not even provide important geospatial routing functionality like overlay and

interpolation. This paper attempts to develop a Web GIS map service using a Free and

Open Source for Geospatial (FOSS4G) and pgRouting to provide a dynamic routing

system for improved response time, accomplish an effective routing and to show the

Point of Interest (POI) along the shortest route as a solution to the ever increasing

traffic in the capital city of Bhutan, Thimphu.

Towards building a smart city, use of such technology will enhance service

delivery and information sharing to the tourist who are visiting Thimphu and even the

residents. The tourist and residents can also use it to locate the shortest route towards

their destination. It will be helpful to find essential services available in the town like

medical and police services. The framework and method of the study can be used for

disaster prevention and related information. The study could be replicated in the other

major cities; Phuntsholing, Samdrup Jongkhar and Gelephu.

 D

ACKNOWLEDGEM ENT S

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisor, Assistant Professor Dr.Sittichai

Choosumrong, Department of Natural resources and environment ,Naresuan University,

who supervised this study and guided me throughout the research work. It is his

untiring assistance and expertise that showed me the right direction, which besides the

academic achievement will also help in my personal and professional career. His

guidance, suggestions and new ideas enhanced my skills on how to work with Open

Source Software.

I would also like to thank Assistant Professor Dr.Kampanart Piyathamrongchai

for his valuable advice.

I further extend my thanks to Associate Professor Mr. Pathana Rachavong,

Assistant Professor Capt.Dr. Chaiwiwat Vansarochana, Assistant Professor Dr.Natapon

Mahavik, and Lecturer Ms.Tanyaluck Chansombat for their advice and supports .

Finally, my sincere thanks to Department of Agriculture Natural Resources and

Environment, Faculty of Agriculture Natural Resources and Environment, Naresuan

University and teachers for supporting me throughout my two years stay. I also would

like to express my sincere gratitude to Thailand International Cooperation Agency

(TICA), Royal Government of Bhutan and National Statistics Bureau for my scholarship

to study in Thailand.

Lastly my heartiest gratitude to my loving family and friends for their

continues support, care, love and encouragement that made me possible to achieve my

goal. It was not possible to come up with this report and complete my studies without

their moral and endless support.

TENZIN WANGCHUK

TABLE OF CONTENTS

 Page

ABSTRACT .. C

ACKNOWLEDGEMENTS .. D

TABLE OF CONTENTS ... E

List of tables ... H

List of figures ... I

CHAPTER I INTRODUCTION .. 1

1.1 Motivation and Background... 1

1.2 Research Objectives .. 3

1.3 Problem Statements ... 3

CHAPTER II REVIEW OF RELATED LITERATURE .. 5

2.1 Network Analysis .. 5

2.2 pgRouting .. 5

2.2.1 Shortest Path Dijkstra Algorithm... 6

2.3 Examples of different API and routing algorithm used in Routing system. 7

2.3.1 Travelling Salesman Problem ... 7

2.3.2 Google Direction API ... 8

2.3.3 OpenRouteService .. 8

2.4 GIS and the Web. .. 9

2.4 Web GIS Architecture ... 10

2.6 PHP ... 10

2.7 Database Management System ... 11

2.8 GeoServer .. 12

2.9 PostGIS/PostgresSQL .. 12

2.10 Leaflet and Openlayer .. 13

2.11 Review .. 13

 F

CHAPTER III RESEARCH METHODOLOGY ... 17

3.1 Study Area... 17

3.2 Creating and implement Data for Routing system. ... 18

3.2.1 OSM Data. .. 18

3.2.2 Implement road network data for Routing Application. 19

3.2.3 Import Road Network Data and Point Data in to Database 20

3.2.4 Create a Network Topology .. 20

3.3 Shortest Path Search with pgRouting Functions ... 22

3.3.1 Static Shortest path using Dijkstra Algorithm. 22

3.4 Implementation of Web GIS for Dynamic Routing System 24

3.4.1 Modification of Road Network Data ... 24

3.4.2 Modification of functions in pgRouting functions 24

3.4.3 Modification of functions for Dynamic Distance 25

3.5 Development of web Application for the Routing Services. 28

3.5.1 System Architecture .. 29

3.5.3 Creating a PHP script for Routing Services. .. 33

3.5.4 Creating a PHP script for Point of Interest (POI) along the shortest route

 ... 34

3.6 Development of Web System Interfaces ... 36

3.7 Updating of Client/Administrator Interfaces. .. 37

CHAPTER IV RESULTS ... 39

4.1 Result .. 39

4.1.1 Web User Interface ... 39

4.1.2 Administrator Web Interface ... 44

CHAPTER V DISCUSSION AND CONCLUSION ... 49

5.1 Discussion ... 49

5.2 Conclusion ... 50

5.3 Future work ... 51

Appendix 1 .. 52

 G

Appendix 2 .. 66

Appendix 3 .. 72

Appendix 4 .. 74

Appendix 5 .. 77

Appendix 6 .. 79

Appendix 7 .. 84

REFERENCES .. 86

BIOGRAPHY ... 91

List of tables

 Page

Table 1 Software Details ... 32

List of figures

 Page

Figure 1 Basic Shortest Path Searches A) Initial cost of the network B) Cost values

from node A to C ... 7

Figure 2 Location of Thimphu District with Municipal, Bhutan 18

Figure 3 Open Street Map Data of the Study Area on QGIS 19

Figure 4 Showing the Nodes of Thimphu_Road network on QGIS 21

Figure 5 Showing the Result(shortest path)Table in pgAdmin 4 23

Figure 6 Showing the Shortest path of Thimphu_Road network on QGIS 23

Figure 7 Showing the structure of the dynamic cost. .. 24

Figure 8 Attribute table of road network data. ... 25

Figure 9 Showing the Dynamic Shortest path Table in pgAdmin 4.......................... 26

Figure 10 Showing the Shortest path on QGIS .. 27

Figure 11 Showing a road block for gid 1573 in QGIS .. 27

Figure 12 Showing a Dynamic shortest route from point A to Point B 28

Figure 13 Context Diagram of Thimphu Routing System .. 29

Figure 14 Data Flow Diagram of Thimphu Routing System 30

Figure 15 The System Framework ... 31

Figure 16 Workflow of a Dynamic Routing System ... 32

Figure 17 Sample of GeoJSON format returned to Web Clients. 33

Figure 18 Flow chart showing the routing process. .. 34

Figure 19 Flow chart showing the routing process and Point of interest (POI) 36

Figure 20 Structure diagram of Web Map Interface page. 37

Figure 21 Updating the road condition for the Dynamic Routing 38

Figure 22 Showing the Web Based interface of the routing system 40

Figure 23 Web application showing the shortest distance from Point A to Point B ... 40

Figure 24 Web application showing the Dynamic shortest distance from Point A to

Point B where there is a road block .. 41

 J

Figure 25 Web application showing the POI (Tourist Area) along the shortest route A

to B ... 42

Figure 26 Web application showing the POI (Health_Facilities) along the shortest

route A to B ... 42

Figure 27 Showing the login page for the client/system administrator 44

Figure 28 Web interface showing the how to update the Road Block. 45

Figure 29 Web interface showing the how to update the Road when the temporary

blocked is cleared. ... 46

Figure 30 Web interface showing the how to view the detail of the road block. 47

Figure 31 Web interface showing the details of the road blocks 48

CHAPTER I

INTRODUCTION

1.1 Motivation and Background

 The need for application in Geoinformatics gained importance for easing

the day to day activities. Development of Geographic Information System (GIS) and

their web-based application have been increasing because the use of GIS applications

makes our life much easier. Among many GIS applications, web route mapping is one

of the web base applications used to access the map service via a web browser and

smartphone. There are so many common routing services like google direction API,

Grass hopper direction, Mapbox direction and open route services but current routing

systems in GIS software mostly provide routes that allow users to navigate between

source and destination points only, but in real life there can be natural calamities like

flood, earthquake and road accidents which will result in blocking the road. So in this

kind of scenario the web application resulting routes do not take into account recent

changes in the network data and even with this API of Google maps do not provide

features like overlay, interpolation etc (Pritee & Garg, 2017). The implication of this

problem can be loss of time and fuel, and especially in case of emergencies the real

road network conditions should be taken into account for the computation, by

representing not only the relationships between the transportation elements, but also

the real-time and dynamic traffic restrictions in the road network (Choosumrong

Sittichai, 2010).

 The topic of the study is to Development of dynamic routing system for

tourism based on Web Map Application using FOSS4G and pgRouting. In this study,

a method of finding the shortest route in a real time situation of the road and to find

the Point of Interest (POI) along the shortest path was developed.

 The main aim of the study is to build a dynamic routing web application

by using pgRouting algorithm. The system needs to keep the updated road situation to

find the shortest path. For example, if there is a road accident, road block or road

maintance it should be updated. The system developed will be helpful for traffic

 2

management, disaster and tourism traffic management (Choosumrong Sittichai,

2019). The study will be using the standard of FOSS4G like MapServer, PHP,

PostgreSQL, PostGIS, Web Map Service, and Web Feature Services.

 There is an urgent need of innovative initiatives for developing smart

cities. The strength of Information Technology needs to be capitalized to ensure

accessible and efficient delivery of public services. Bhutan is the most rapidly

urbanizing country in the South East Asia. Therefore, to keep abreast of the fast-

moving developmental activities, it is important to have a very well thought planning

process (Longo & Roscia, 2014).

 Unprecedented growth of Thimphu City coupled with inadequate urban

infrastructure has resulted in a shortfall of basic services to its residents. Infrastructure

growth has been increasing but access to water, sanitation, solid waste management,

and urban transport are often inadequate.

 Since the Tenth Five-Year Plan invested in the infrastructure and

management in two major cities; Thimphu and Phuentsholing and other larger urban

centers to ensure sustainable urban management. Thimphu Municipality is Bhutan’s

capital city, with a population of 114,551consituting almost 42% of urban population.

The Thimphu city development plan identifies congestion and poor urban mobility as

a key issue that restricts the city’s growth. Therefore, it is crucial to bank upon

technology to make the transport system efficient.

 The Thimphu Municipality strives to build a very smart city as per the

Thimphu Structure Plan. The fiscal year 2019-2020 annual performance target

prioritized smart city initiatives as one of the targets. Thus, the development of

dynamic routing web application will contribute in a little way in Thimphu

Municipalities aim of building a smart city (Hendawi et al., 2017).

 3

1.2 Research Objectives

 The Main objectives of the study are as follows:

1. Design and develop a Web GIS using Free and Open Source Software to find the

shortest route.

2. To implement Location Based Service (LBS) system to serve the Point of Interests

(POI) along the shortest route for the tourist people.

3. To develop a dynamic routing system for real-time navigation and minimizing the

risk of driving through a temporarily blocked road.

1.3 Problem Statements

 The number of vehicles in Thimphu city have been increasing over the

years, a total of 41,562 vehicles were registered in June 2016 and by June 2019 it has

increased to 53,999. An absolute increase of 12,437 over the duration of 4 years or an

annual increase of about 3,000 vehicles. The increase may not seem as an issue but

for a total road length of 250 KM with very less intentions of increasing calls for

actions to make routing easier in the future is a cause of concern. The main roads

within the core town area remains crowded and congested during the rush hours of

8:30 am – 9:30 am and 5:00 pm – 5:30 pm. The situation gets worse when national

events are being organized (Road Safty and Transport Authority, June 2019).

 Besides, there is an ever-increasing number of tourists visiting Bhutan.

The total tourist arrival in 2018 was 274,097 with a growth of around 8 percent over

2017. Of the total, 202,290 were regional tourists and 71,807 were international

tourists inclusive of leisure, official, business and others. The impact of increasing

tourist arrival is already visible with many regional vehicles plying on the highways

and major cities. This adds to the already existing traffic problem especially in

Thimphu. Moreover, with the increasing number of regional tourists since 2013, there

is also a need for geo-info system to help the tourist find the way towards popular

destinations. This is crucial because majority of the regional tourist do not visit

through registered agents and thus there is no guide accompanying them (Bhutan,

2018).

 With the increasing number of vehicles, the area is more prone to accident

and traffic congestion, if there is a temporarily block there should be a system where

 4

the information needs to be updated on the data base. By updating the database, we

can control the loss of fuel, time and especially during emergencies. This problem can

be solved by Creating a dynamic routing system based on Web GIS that will improve

response time in case of emergencies and for normal users as well (S. Singh et al.,

2015).

CHAPTER II

REVIEW OF RELATED LITERATURE

2.1 Network Analysis

 A network can be considered to be a pure network if their topology and

connectivity are being considered. If a network is characterized by its topology and

flow characteristics (such as capacity, path choice and link cost functions) it is

referred to as a flow network. A transportation network is a flow network representing

the movement of people, vehicles or goods (Fischer, 2004).

 Network analysis is one of the major important function of GIS. The

function includes shortest path analysis, resource allocation and etc. From the

functions shortest path analysis is one of the basic and most important function in GIS

(Xie Dexiang, 2012).

There are two kinds of routing

 Static Routing.

 Dynamic Routing.

2.2 pgRouting

 pgRouting is an open source library that provides different tools to search

the shortest path. pgRouting is an extendable open-source library that provides a

variety of tools for shortest path search as extension of PostgreSQL and PostGIS. In

the beginning it was called as pgDijkstra because it implements only the shortest path

search but later other functions were also added (Project).

 The pgRouting can be extended with PostGIS/PostgresSQL geospatial

database to provide geospatial routing functions. Using of this routing functions gives

the following advantages: -

 Multiple clients through JDBC, ODBC or directly using PostgreSQL API can

be easily accessible.

 Without pre-calculation, data can be changed instantaneously through the

routing engine by using OSS like QGIS.

 6

 The cost parameter can be directly calculated by using SQL and its value can

come from multiple fields or table.

 Although pgRouting in the beginning was designed to find the shortest

path queries and small networks, but now additional functions are easily integrated.

The library contains the following functions: -

 All Pairs Shortest Path, Johnson’s Algorithm

 All Pairs Shortest Path, Floyd-Warshall Algorithm

 Shortest Path A*

 Bi-directional Dijkstra Shortest Path

 Bi-directional A* Shortest Path

 Shortest Path Dijkstra

 Driving Distance

 K-Shortest Path, Multiple Alternative Paths

 K-Dijkstra, One to Many Shortest Path

 Traveling Sales Person

 Turn Restriction Shortest Path (TRSP)

 In this study Shortest Path Dijkstra is chosen to modify the function to get

the best routing result.

2.2.1 Shortest Path Dijkstra Algorithm.

 Dijkstra algorithm was the first algorithm implemented in pgRouting and

its also called as a Greedy algorithm (Xie Dexiang, 2012). Dijkstra's algorithm starts

from a source node, and in each iteration adds another vertex to the shortest-path

spanning tree. Dijkstra care only the sum of their weights (finds the path with lowest

cost) between that vertex and every other vertex.

2.2.2 Calculation for the Shortest Path Dijkstra Algorithm.

 The Shortest Path Dijkstra distance is calculated as follows:

Step I: Mark your selected initial node with a current distance of 0 and the rest with

infinity.

 7

Step II: Set the non-visited node with the smallest current distance as the current node

C

Step III: For each neighbor N of your current node C add the current distance of C

with the weight of the edge connecting C-N If it's smaller than the current distance of

N set it as the new current distance of N

Step IV: Mark the current node C visited

Step V: If there are non-visited nodes, go to step 2

Figure 1 Basic Shortest Path Searches A) Initial cost of the network B) Cost

values from node A to C

From the graph in figure 1 we can get the shortest path from starting node (Node A)

to each node. The values are A to B = 6, D=1, E=2, and C= 7.

2.3 Examples of different API and routing algorithm used in Routing system.

 There are many different API and routing functions used for routing

system. The following are some examples being explained: -

 2.3.1 Travelling Salesman Problem

 Travelling Salesman Problem (TPS) is one of the library in pgRouting

which is used to find the shortest path. The main aim is to find the shortest or best

route when a sales man starts a journey from a home city to another given cities and

 8

to come back to the home city by just visiting once. In TPS there has no best optimal

algorithm for all the cases, efforts are still being used to find the optimal solution for

specific cases (Shaw & Gurram, 2015): -

 In the year 1954 TPS path have been used for 49 cities in USA was solved.

 In 1977, 120 cities in West Germany.

 With the development in information Technology, TPS path to 13509 cities in

USA.

 In 2004 the optimal tour of 24978 cities in Sweden.

TPS is one of the widely used algorithm which is used to solve the problem in

mathematics because of its widely accepted in social life, for example: -

Application in Management: -

 Bus route in the city.

 Collection of coins from vending machines.

 Tourism route for the Tourist

 2.3.2 Google Direction API

 Google Direction API is a services which calculates direction between

two locations. We can search for direction on a different mode for transportation like

driving, cycling and walk. Direction API through an HTTP interface request to

construct the URL string by either using text string or the coordinates to identify the

locations. Apart from Google Direction API there are so many direction API like

Graphhopper direction, Mapbox direction and Openrouteservices which serves the

same purpose (Haitao et al., 2019).

 Whereas for my study I have used Shortest Path Dijkstra function from

pgRouting algorithm because we can modify the code and we can test on the free and

open source software.

 2.3.3 OpenRouteService

 OpenRouteService is much more than a routing service, it uses a wide

range of services based on Open Street Map data which can be used in all different

kinds of applications. The following services used in the framework of

OpenRouteservice (Feng et al., 2011):

 9

 Directions Service determines travel routes and navigation information according

to different criteria. This has been based on as follows:

o Cars: fastest, shortest, recommended

o several options to avoid tools, tunnels, etc.

o multiple heavy vehicles profiles (Delivery, Forestry, Bus) with many

customizable options

o bicycles (MTB, race bike, safest route and more)

o pedestrian (normal and hiking)

o wheelchair routing

 POIs Service is a service that provides access to an online directory to find the

location of a specific or nearest place, products or services.

 Isochrones Service calculates a polygon representing the area that is reachable

within a certain time distance based on a street network around a given location.

 Geocode Service provides a Geocoder/Reverse Geocoder; the Geocoder

transforms a description of a location, such as a place name, street address or

postal code, into a normalized description of the location with a Point geometry.

 Polygons can be digitalized on the map which will be avoided for subsequent

routing.

 Upload and Download of GPS Tracks in different formats.

 For the Pedestrian and Bicycle Profiles type of the surface, type of ways and

suitability for the selected profile as well as a height profile can be shown.

2.4 GIS and the Web.

 The new generation of Information Technology has come up with more

advance methods of hosting a different kind of web site. In the field of Geographic, it

has come up with a new method of hosting a web called as a Web GIS. It was started

in the year 1993 in an era called as web 2.0 era.

Web GIS is a process of designing, implementing, generating and delivering

maps on the World Wide Web. GIS integrates and relates data with spatial

components and support users to view the data in the form of maps which helps in

 10

making the decision through visualization. Web GIS is a GIS application which is

developed and made it available through a common web browser. Together with the

World Wide Web, GIS can be used to further develop and allow people to access to

GIS functionality so that it can enhanced the people participation in planning.

Web GIS has four major system components, which includes client for

sending request to the web browser, web server with the application to respond to the

request, map server and data server. These four components are used to develop the

Web GIS for the study. Web Based GIS is one of the newest features in Geographic

Information System for creating a web base map. There are so many new technologies

and software use to create a Web GIS. We have the commercial, free and open source

software (FOSS) and public software. People tend to use more FOSS software

because of involvement of large number of people and can be used free of charge.

2.4 Web GIS Architecture

 With the development of Information Technology, Web GIS has become

very popular now days. Web GIS is a GIS that uses a web technology. It has a Web

browser as a client, for sending a request and a Web server for responding the request.

Usually all the web application has a we2.b server, but in Web GIS since it has a huge

amount of data it needs an extra server called as a Map Server. Map server handles

the data.

 Generally, the architecture of web GIS has three layers namely the

interface layer, application layer and the data base layer. The client accesses the

system through the interface layer which takes the input and then shows the output on

the system. Application layer shows the map visualization functions like panning,

zooming etc. and even other functions like selection, editing and querying etc.

Database layer handles the data and how it is being presented and distributed (Bendib

et al., 2016).

2.6 PHP

 There are so many web being created by using different languages like

Perl, UNIX shell program, C, C++, Cold fusion, inter-base, java script and java but

 11

most of them has their own advantages and disadvantages. But now a day most of the

web are built by using a very common language called as a PHP3.

 PHP3 was developed in the year 1994, the first public version was

available in the year 1995.It was called as a Personal Home Page Tools (PHP Tools).

It was however upgraded and named it as PHP/FI version 2 in mid of 1995.Another

package Rasmus had written that interpreted HTML form data and was called as

Personal Home page tools script with FI. Then in 1997 PHP3 changed from Rasumus

personal project to Open Source Development. Now it is an Open Source (PHP;

Prokofyeva & Boltunova, 2017).

 PHP3 is an independent of the operating system, the web server, HTML

and the data base. It has got some of the functions from other languages like C, Java,

Perl and UNIX shell. PHP3 can used for following: -

 Create different dynamic parts for Web GIS application

 Used to run spatial SQL queries on the database level and can add the result to

the graphical interface of the web.

 Run attribute queries and results as graphics on the web application.

 Add security to the Web GIS application

2.7 Database Management System

 Database management system (DBMS) is a system software used for

creating and managing the database. DBMS is a program which makes the user to

create, update and retrieve the data. It also works as an interference between data base

and the application program ensuring that the data is organized and is easy to access.

The advantages of using DBMS, the data is being protected and maintained. While

sharing the data from DBMS instead of creating a new iteration of the same data

stored in new files for every new application. It also provides a central store of data

that can be accessed by multiple users in a controlled mannered. The most commonly

use Database Management system used now a days are Relational Database

Management System (RDBMS). Structured Query Language (SQL) which is used for

managing and querying the database are mostly used in RDBM (Chunithipaisan,

2010).

 12

2.8 GeoServer

 GeoServer is an open-source server written in Java that allows users to

share, process and edit geospatial data. By using open standards set by the Open

Geospatial Consortium (OGC), GeoServer allows for great flexibility in map creation

and data sharing. It is a central part of a system which allow the system and displays

the client request in various format through WMS, WFS and GeoJSON specification.

 GeoServer allows us to display our spatial information to the world.

Implementing the Web Map Service (WMS) standard, GeoServer can create maps in

a variety of output formats like OpenLayers, Leaflet etc. Which is integrated into

GeoServer, making map generation quick and easy. GeoServer is built on GeoTools,

an open source Java GIS toolkit.

 GeoServer conforms to the Web Feature Service (WFS) standard,

and Web Coverage Service (WCS) standard which permits the sharing and editing of

the data that is used to generate the maps. GeoServer also uses the Web Map Tile

Service standard to split your published maps into tiles for ease of use by web

mapping and mobile applications.

2.9 PostGIS/PostgresSQL

 PostGIS is a powerful open-source tool that allows to develop robust

spatial databases. PostGIS can be considered an extension of database management

system (DBMS) of PostgreSQL that can manage spatial data. PostGIS enables us to

store geographic objects as part of our data tables (Lizardo & Davis Jr, 2017).

PostGIS is one of the most reliable open-source DBMS. The advantages over other

alternatives are listed below: -

 Its ability to build indexes in any kind of data, having a generic index

structure.

 It has many useful spatial functions to search, analyze, convert and manage

spatial data.

 It has both vector and raster data support.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Geographic_information_system
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/wms
http://openlayers.org/
http://geotools.org/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts
http://www.postgis.org/
https://www.techopedia.com/definition/24361/database-management-systems-dbms
https://www.techopedia.com/definition/24361/database-management-systems-dbms
https://www.postgresql.org/

 13

 Vector data represents phenomena in the world in terms of points, lines

and polygons.

 Raster data represents the world in terms of cells of predefined, grid-

shaped tessellations.

 It's based on open standards as defined by the Open Geospatial Consortium.

 It's supported by other well-proven open-source projects, such

as Proj4, Geometry Engine - Open Source (GEOS), and Geospatial Data

Abstraction Library (GDAL).

 It is compatible with almost all major open- and closed-source GIS Software.

2.10 Leaflet and Openlayer

 Leaflet is one of the leading open-source JavaScript library used for

mobile-friendly interactive maps. It has all the mapping features most developers

need.

 Leaflet is designed with features like simplicity, performance and

usability. It works effectively with all major desktop and mobile plate forms. It has lot

of plugins that can be easily used and has a well-documented API. The source codes

are simple and easily readable (Han, 2018).

 OpenLayers is an Open Source JavaScript, released under the 2-clause

BSD License (also known as the FreeBSD) use to make the dynamic map on any web

page. It can display map tiles, vector data and markers loaded from any source.

OpenLayers has been developed to be used with geographic information of all kinds.

This software supports in different variety of data source under OGC standards, such

as WMS or WFS (Chandniha et al., 2017).

2.11 Review

 The research conducted by (Choosumrong Sittichai, 2019 #9) on

development of optimal routing service for emergency scenarios using pgRouting and

FOSS4G to facilitate pervasive dynamic routing services on road network data,

demonstrated an algorithm for dynamic routing which overcame several limitations

such as ERDP functionality was developed by integrating Dijkstra shortest-path

https://www.npmjs.com/package/proj4
https://trac.osgeo.org/geos/
https://gdal.org/
https://gdal.org/

 14

routing algorithm and AHP. New and improved weighted travel-time algorithm was

implemented by extending the functionality of the Open Source pgRouting library. An

algorithm had developed as a Web application using OpenStreetMap data and

FOSS4G tools such as PostgreSQL, PostGIS, MapServer and Openlayers. The

positioning ERDP as Web application enabled platform independence and easy

dissemination of routing resulted the based on up-to-date road network data.

(Choosumrong et al., 2012) highlighted that using an improved algorithm had

implemented by extending PgRouting to acquire the road situations at the destination

and offer an emergency route decision planning by computing the consumption of

travel time of route on the basis of location and situations of accidents. Application of

pgRouting in road and highway level delivered a rapid speed, quick execution and

appropriate operation for finding the shortest path and extensive use in path

optimization. On the basis of this absorption, it provided a benefit of traveling

salesman problem solution and highway grade analysis (Zhang & He, 2012) Similar

study done by (Singh et al., 2015)using pgRouting on dynamic shortest route finder

for emergency management showed that the system presented can be used to obtain

alternate paths by identifying the affected regions as some form of obstruction for

emergency management. This can be further extended by calculating an ideal shortest

path, taking into account of the dynamic cost factors encompassing slope, width, and

road type.

 The study on smart personalized routing for smart cities using Prego and

SP-TAG by (Hendawi et al., 2017)found that PreGo was considerably more effective

than the SP-TAG Best-Start from the CPU time because PreGo combined all

attributes in one run. For the CPU time, it was observed that both algorithms had

been increased with the trend. However, PreGo was increasing slightly with smaller

values than the SP-TAG which augments drastically with much larger values. They

also found that with regard to the memory consumption, both of them were

marginally increasing but the cost of PreGo was increased with PreGo which

attributed to the joined set of attributes in one run. This was in contrast with a single

attribute at a time in SP-TAG start. Authors confirmed PreGo had provision in

optimizing start times, and incorporating user’s weighted preferences which were key

 15

features missing from several research and commercial frameworks. The PreGo

within algorithm performed 100 times faster than the competitive technique.

 According to Agrawal and Gupta (2014) integration of city GIS data with

Google Map API and google earth API for a web based 3D geospatial application

showed that Google Earth Map was exhibiting 3D spatial objects and Google Map

was revealing attribute data of the building using info windows. Google provided

satellite images, road maps, terrestrial maps, and other geocoding options, because of

this, in web based geographical information systems, the Google Earth and Google

Map was a good source and option for users. This web based GIS application showed

how Google Map integrated with Google Earth API can be used for a comprehensive

web based 3D city models. By storing the corresponding attribute data in XML

database, the detailed information about a location on the 3D map was exhibited

which delivered users a more realistic experience and information for user needs.

Integrating with the Google Map allowed road directions, street names and all other

location information to be obtained together with the 3D buildings. This application

will increase productivity and information sharing for private users, local businesses

and the general public by making it easy to view, analyze, and make maps with

authoritative local geographic data.

 As per Xie Dexiang (2012) research on Dijkstra algorithm to generate the

shortest path cost from source node to all other nodes. They had used to improve the

efficiency of the Dijkstra algorithm and found to improve the storage and used of

efficiency searching method. But overall, the improved algorithm was found to be

better than the performance of the original algorithm. The similar study done by on

(Kumari Pritee, 2017) Dijkstra algorithm application: shortest distance between

buildings unfolded the way that anyone can use Dijkstra algorithm to obtain the

shortest path to reach the destination of any regions in which they live using the

algorithm process method. (Pritee & Garg, 2017)also carried out similar research

using multipath Dijkstra’s algorithm for identification of optimum shortest path. They

found Dijkstra’s algorithm very effective and appropriate operation with vigorously

updating cost. It benefited for traffic conditions, studying road conditions and

planning journey. It also enlarged and discovered various routing functions, used in

PostgreSQL on the basis of three factors which include shortest, fastest, traffic free,

 16

alternative route in obstacles and natural route. The application was applied on web

platforms like GeoServer and Geoexplorer because of the high penetration of both

technologies.

 The research carried out on WebGIS with google maps by (Lange & Plass,

2008) found that the new system WebGIS offered more functional that generated

new geographic datasets from current datasets. The WebGIS had advantage features

such as they were easy to handle, free access for everyone, especially easy and free

access to geodata (Google Maps), easy capturing and editing, analyzing new geodata.

Further work can be implemented on advanced spatial analysis functions.

CHAPTER III

RESEARCH METHODOLOGY

3.1 Study Area

 The area for my study is Thimphu Town/ Municipality, Thimphu District,

Bhutan. it’s also known as Thimphu Thromde which is located at 27°28′00″N

89°38′30″E Coordinates: 27°28′00″N 89°38′30″E and is spread over an altitudinal

range between 2,248 meters (7,375 ft) and 2,648 meters (8,688 ft). Thimphu town

covers an area of 26 Sq.km with a population of 114551 as per the Population and

Housing Census of Bhutan (PHCB) 2017.

 Thimphu as the capital city of Bhutan have the highest number of

population. Consequently, the numbers of vehicles imported in the city has being

drastically increasing over the years. The increasing number of vehicles makes the

city very venerable to road accidents and traffic congestions.

Therefore, the dynamic routing system proposed in the study can improve the

transportation system in the city which will be helpful for both the local residents and

more so for the tourists.

 18

Figure 2 Location of Thimphu District with Municipal, Bhutan

3.2 Creating and implement Data for Routing system.

 3.2.1 OSM Data.

 Open Street Map was founded in the year 2004 by Steve Coast. In the

beginning the project was focusing mainly on mapping United Kingdom but later in

the year 2006 Open Street Map Foundation was started to encourage the growth,

development and distribution of free geospatial data to the users. Open Street is one of

the leading example of Volunteered Geographic Information (VGI) on the internet. In

term of the data quality OSM has shown compare favorably with other source of

spatial data (Mooney & Minghini, 2017; OpenStreetMap). The different data structure

in OSM are:

 Nodes (Point object with geographic position)

 Ways are lists of nodes (line strings, linear rings, used for polygons as well)

 Relation are group of nodes

 19

 Tags can be applied to the nodes.

In this study the vector data are exported from OSM web site. The data are show as in

Figure 3

Figure 3 Open Street Map Data of the Study Area on QGIS

 3.2.2 Implement road network data for Routing Application.

 The road network data for this study was obtained from Open Street

Map (OSM), Routing cannot be done without assigning the source, target node and

the travelling cost. Between each points we need to find the shortest path but without

creating a topology on the network we cannot find the shortest path. So, for this

purpose we need to create the topology on the network first. Since OSM data don’t

have a topology values, the data needs to process before importing to DBMS(QGIS).

 For this study the OSM file is being converted to shape files and the

before importing to the RDBMS. In the study road network data named as ways and

point data as ways_vertices_pgr.

 20

 3.2.3 Import Road Network Data and Point Data in to Database

 Before importing the SQL data to the database, we need to create a

data base then add the PostGIS functions in to the database. Then after adding the

PostGIS functions we need to add the routing functions by adding pgRouting in to the

database. The following are the steps: -

Creating Database

CREATE DATABASE DATABASE NAME.

CREATE DATABASE Thimphu.

Adding PostGIS functions

CREATE EXTENSION postgis

Adding pgRouting functions

CREATE EXTENSION pgrouting;

 3.2.4 Create a Network Topology

 Since the road network data downloaded from the Open Street Map

does not have the network topology to implement the routing system. We need to

create a network topology which can be split and snap all the nodes of the data to

separate the segments in the road network. To get the network topology

osm2pgrouting converter was used. osm2pgrouting is a command line tool that

imports OpenStreetMap data into a pgRouting database. It builds the routing network

topology automatically and creates tables for feature types and road classes.

osm2pgrouting was primarily written by Daniel Wendt and is now hosted with the

pgRouting project site(Project). The command line used for the osm2pgRouting

(osm2pgrouting\ -f thimphu.osm \ -d final_work \ -u user.)

 After running the command osm2pgRouting the following files are generated:

a. ways

b. ways_gid_sequence

c. ways_vertices_pgr

d. ways_vertices_pgr_id

 21

 Before we use the road network data file for the routing services we

need to change the data types of the attributes of the road data (ways). The following

command is used to change the data type of the road data: -

ALTER TABLE ways

ALTER COLUMN source TYPE BIGINT,

ALTER COLUMN target TYPE BIGINT,

ALTER COLUMN cost TYPE BIGINT,

ALTER COLUMN length TYPE BIGINT,

ALTER COLUMN reverse_cost TYPE BIGINT;

ALTER TABLE ways

ALTER COLUMN source TYPE BIGINT,

ALTER COLUMN target TYPE BIGINT,

ALTER COLUMN cost TYPE BIGINT,

ALTER COLUMN length TYPE BIGINT,

ALTER COLUMN reverse_cost TYPE BIGINT;

Figure 4 Showing the Nodes of Thimphu_Road network on QGIS

 22

3.3 Shortest Path Search with pgRouting Functions

 3.3.1 Static Shortest path using Dijkstra Algorithm.

 Dijkstra Algorithm is the first algorithm of pgRouting which is used to

find the shortest distance from Point A to Point B. For this algorithm we just need the

source and target id. Dijkstra's algorithm starts from a source node, and in each

iteration adds another vertex to the shortest-path spanning tree. Dijkstra care only the

sum of their weights (finds the path with lowest cost) between that vertex and every

other vertex. Its confirm that the Dijkstra algorithm find the shortest path from the

starting of the point to end point if there is no negative cost (Distance) for the vertexes

(Deepa, 2018; Road Safty and Transport Authority, June 2019).

The following is a SQL query used for creating the network topology: -

Drop table if exists result1;

Create table result1 (gid int4) with oids;

Select addgeometrycolumn('result1','geom',4326,'MultiLineString',2);

Insert into result1(geom)

Select geom from thimphu_road w, (

SELECT * FROM pgr_dijkstra('SELECT gid AS id, source, target, length AS cost

 FROM thimphu_road',

 712,800,

 directed := false)) as rt where w.gid=rt.edge;

 In the above example the SQL query have find the shortest path from

node 712 to 800.After the query is being called a table with gid ,name ,one way and

geom(geometry) is generated in the data base as shown in figure 5 and then it can be

added to QGIS as shown in Figure 6.

 23

Figure 5 Showing the Result(shortest path)Table in pgAdmin 4

Figure 6 Showing the Shortest path of Thimphu_Road network on QGIS

 24

3.4 Implementation of Web GIS for Dynamic Routing System

 3.4.1 Modification of Road Network Data

 To find the dynamic routing for the road network a dynamic cost value

was created depending on both dynamic and static feature of every road segment. A

dynamic cost was added to attribute column and the value was given as per the road

condition in the real time, for example if there is a road block due to accident or a

traffic jam the value will be changed to infinity so that the system will take the next

alternative route.

 The dynamic cost attribute column was created in order to keep the

record of those data which are change dynamically other than the main static spatial

data.

Figure 7 Showing the structure of the dynamic cost.

 3.4.2 Modification of functions in pgRouting functions

 pgRouting finds the best and the shortest distance from the graph. It

can also be modified and enhanced to get the cost values from multiple variables cost.

Distance is taken as the static cost for the road network. While in the dynamic shortest

path search it will take in to the account of real road network.

ROAD NETWORK DATA

COST A

(Road

Length)

COST B

(Road Condition)

Route 1

(Dynamic shortest Route)

Route 2

(Static shortest Route)

 25

Figure 8 Attribute table of road network data.

 3.4.3 Modification of functions for Dynamic Distance

 The shortest path function was modified according to the road

condition. This function was modified in pgr_dijkstra function under one of the

libraries in pgRouting. To search for the dynamic shortest route, the function needs to

modify the value of Cost A as Cost A + Cost B. Cost A is the distance of the road

segment and Cost B is the road condition set by the system administrator. Usually the

value for Cost A will be a static value and Cost B will be dynamic. The value for the

Cost B will change if there is a temporary road block due to car accident or traffic

jam.

The command used to modify the Dynamic shortest route in pgRouting function is as

show below: -

update ways set dynamic_cost= 1000000 where gid= 1573;

update ways set dynamic_cost= length where gid= 1573;

drop table if exists result;

create table result (gid int4, name text, oneway text) with oids;

select addgeometrycolumn('result','geom',3857,'MULTILINESTRING',2);

insert into result(geom, name, oneway)

 26

select geom, name,oneway

from ways w,(

 SELECT * FROM pgr_dijkstra(

 'SELECT gid as id,

 source,

 target,

 length + dynamic_cost AS cost

 FROM ways',

 33,1979,

 directed := false))as rt

 where w.gid=rt.edge;

 In the above code the Cost A= Length of the road and Cost B =

Dynamic cost which is assigned by the system administrator in the data base. After

running the query in pgAdmin as shown in figure 8 ,a table will be generated in the

data base and which is further taken in to QGIS. Figure 9 shows the shortest distance

from point A to Point B, but when we assign a value as infinity in dynamic cost for

gid 1573 the road gets blocked as shown in figure 10, and when we run the query

again then we get the new alternative route as shown in figure 11.

Figure 9 Showing the Dynamic Shortest path Table in pgAdmin 4

 27

Figure 10 Showing the Shortest path on QGIS

Figure 11 Showing a road block for gid 1573 in QGIS

 28

Figure 12 Showing a Dynamic shortest route from point A to Point B

3.5 Development of web Application for the Routing Services.

 The system was fully developed by using FOSS4G software’s as shown in

figure 14. Figure 15 shows the dynamic routing framework. PgRouting software was

used to do the query for the road data from the road database. When the information

about the road network is received it’s being updated in the database and new route is

being generated. Table 1 shows the detail information about the software used.

 29

Figure 13 Context Diagram of Thimphu Routing System

 3.5.1 System Architecture

 Web GIS is a process of designing, implementing, generating and

delivering maps on the World Wide Web. GIS integrates and relates data with spatial

components and support users to view the data in the form of maps making decision

making easier through visualization. The use of GIS functionality through internet has

become a powerful tool for planning and people’s participation in planning.

 30

Figure 14 Data Flow Diagram of Thimphu Routing System

 The architecture of web GIS has three layers namely the interface

layer, application layer and the data base layer. The client accesses the system through

the interface layer which takes the input and then shows the output on the system.

Application layer shows the map visualization functions like panning, zooming etc.

and even other functions like selection, editing and querying etc. Database layer

handles the data and how it is being presented and distributed. The system

Architecture is as shown as figure 15.

 31

Figure 15 The System Framework

 32

Figure 16 Workflow of a Dynamic Routing System

Table 1 Software Details

Software Version Functions

PostgresSQL
11.1 Main database (RDBMs)

Spatial and non-Spatial data are stored

PostGIS 2.5.1 Spatial Data extension for PostgreSQL.

QGIS
3.8 Download OSM data

Converting and test the result

pgRouting 2.6.2 Network analysis

Geoserver
2.12.4 Visualization /Web based client mapping

application(Web Map Service)

OpenLayer 6.0.1 For front end and loading the map in the server

Google

Chrome

77.0.3865
Web browser

Java Script and

PHP

1.8.5 and

7.2
Script language

 33

 3.5.3 Creating a PHP script for Routing Services.

 For this study coding was mainly done in PHP to make the routing

query and send back the result in the web clients as GeoJSON format which shows

the map result on the Web Interface.

 The routing PHP scripts following the following steps (As shown in

Appendix 2)

1. Gets the information about the start and end point coordinates by

clicking on the map by the user.

2. It finds the closest road segment of the starting and ending point.

3. Takes the starting node of the road segment as a source and it takes the

ending node as the target to show the route respectively.

4. Upon choosing the type of function it shows the shortest route by

querying the data base.

5. The query result as GeoJSON will be send back to the web client

Figure 17 Sample of GeoJSON format returned to Web Clients.

 34

 The detail of GeoJSON data in Figure 17 is returned to a set of road

number, coordinate as WKT and length of each road segment result. Figure 18 shows

the flowchart of computation of the route on the Web Interface.

Figure 18 Flow chart showing the routing process.

 3.5.4 Creating a PHP script for Point of Interest (POI) along the

shortest route

 To find the Point of Interest (POI) along the shortest route the coding

was mainly done in PHP. Firstly, a routing function was called to find the shortest

route and then a function intersect was called by giving a buffer of 300 meter and

 35

500 meters respectively for health facilities and tourist area. The result was sent back

in the web clients as GeoJSON format which shows the map result on the Web

Interface.

 The routing PHP scripts following the following steps (As shown in

Appendix 3 and Appendix 4).

a) Gets the information about the start and end point coordinates by clicking on

the map by the user.

b) It finds the closest road segment of the starting and ending point.

c) Takes the starting node of the road segment as a source and it takes the ending

node as the target to show the route respectively.

d) Upon choosing the type of function it shows the shortest route by querying the

data base.

e) After getting the shortest route then it calls a query to intersect (st_intersects)

by giving a buffer (st_buffer) of 300m for health facilities and 500 m for

tourist area.

f) The query result as GeoJSON will be send back to the web client

 36

The detail of the works is shown in the form of flow chart in figure 10 as shown

below:

Figure 19 Flow chart showing the routing process and Point of interest (POI)

3.6 Development of Web System Interfaces

 The Web Map interface was developed by using OpenLayer and leaflet.

Both OpenLayers and leaflet makes it easy to put a dynamic map in any web page. It

can also display map tiles, vector data and markers loaded from any source.

OpenLayers has been developed to further the use of geographic information of all

 37

kinds. Therefore, to develop the web interface java script and PHP code have been

used as shown in.

 PHP and JavaScript programming language are used to display in the

browser which can be accessed via the internet network,it is an open source software

and can also be embedded into HTML(OpenLayers) .GeoServer works for viewing

the detail information and results for the system. The Web Map Interface has the

following structure for the webpage.

Figure 20 Structure diagram of Web Map Interface page.

3.7 Updating of Client/Administrator Interfaces.

 This web interface is to update the road information. The login page for

the system administrator and after logging in the page, we get a new page as showed

in which shows how a system administrator/web client updates the road information.

 38

If there is a temporary road block, the dynamic cost value should be increased to

infinity. By seeing the map on the web, the administrator identifies the GID of the

particular road for road closed by clicking on the road block (Leaflet).

Figure 21 Updating the road condition for the Dynamic Routing

CHAPTER IV

RESULTS

4.1 Result

 4.1.1 Web User Interface

 The entire web user interface was designed by using PHP,HTML and

OpenLayer . The user interface shows two kinds or routes, the static route and the

dynamic route for the user and even the Point of Interest along the shortest route.

Figure 21 shows the main web user interface used by the tourist visiting the study

area, Figure 22 shows the shortest distance from Point A to point B. This function will

take to the account which way is the shortest distance from Point A to Point B.

 Figure 23 shows the client-side application where the condition of the

road is updated for a dynamic route. For example, if there is temporary road blocked

due to some accident or traffic congestion we need to find the road segment number

and update on the system through the administrator interface. After updating in the

data base, it will show an alternative route.

 Figure 24 shows the Point of Interest (POI) for the health facilities

along the shortest route. Showing the health facilities along the shortest route will be

very useful during the emergencies.

 Figure 25 shows the Point of Interest (POI) for the tourist areas along

the shortest route in Thimphu. Showing the tourist areas along the shortest route will

help the tourist to visit the places to minimize the time for their travel.

 40

Figure 22 Showing the Web Based interface of the routing system

Figure 23 Web application showing the shortest distance from Point A to Point B

 41

Figure 24 Web application showing the Dynamic shortest distance from Point A to

Point B where there is a road block

The following is the code use to find the point of Interest for the health facilities:

 42

Figure 25 Web application showing the POI (Tourist Area) along the shortest route A

to B

Figure 26 Web application showing the POI (Health_Facilities) along the shortest route

A to B

 43

The following is the code use to find the point of Interest for the tourist interested

area: -

 44

 4.1.2 Administrator Web Interface

 The entire administration web interface was designed by using PHP,

HTML and leaflet. The administrator-side interface was designed to update the cost

values for the road network. The whole system/application is designed to show the

routing result and to edit the value for the cost, so that the web can show the dynamic

changes in the web.

Figure 27 Showing the login page for the client/system administrator

The following is the php code for the login page: -

 45

Figure 28 Web interface showing the how to update the Road Block.

 The following is the php code for the system administrator to block the

road by assigning the value for the dynamic cost as infinity: -

 46

Figure 29 Web interface showing the how to update the Road when the

temporary blocked is cleared.

 The following is the php code for the system administrator to update

the road information from the traffic police officer: -

 47

Figure 30 Web interface showing the how to view the detail of the road block.

 If a system administrator wants to check the number of road being

blocked due to traffic congestion or road accident, the following is the php code to

show the number of road blocks.

 48

Figure 31 Web interface showing the details of the road blocks

CHAPTER V

DISCUSSION AND CONCLUSION

5.1 Discussion

 The study developed a dynamic routing system for tourism based by using

FOSS4G and modifying the pgRouting algorithm. pgRouting algorithm,such as

Dijkstra algorithm, were enhanced, by modifying by taking into account dynamic

changes in the road condition. The dynamic cost changes will act directly on the edge

of increasing them in real time of an amount defined in the dynamic cost column. An

alternative way is by use of True/False Boolean value by setting whether the road is

blocked or not. The normal roads condition value can be set to False value, but incase

if the road is blocked the value can be changed to true. If the value is False, the cost is

0 and if the value is true then the cost becomes infinity.

 By developing the web interface for the routing service, it allows the

clients to update the data through internet. The routing function can be created by

using the PostGIS function to increase and decrease the cost value where the

client/system administrator need not have to change it manually. pgRouting was not

only used to modify the code for the length but also for the road conditions which will

lead to the dynamic routing result. As compared to the other API in ArcGIS,google

map and Open Street Map, pgRouting is has more flexibility due to the following

reasons: -

 Data and attributes can be easily modified by many clients, like QGIS through

JDBC, ODBC or directly using PI/pgSQL. The can also be PCs or mobile

devices.

 Data changes can be reflected instantaneously through the routing engine and

need not have to precalculated.

 The COST parameter can be dynamically calculated through SQL and its

value can come from multiple fields or table.

Therefore, for this study FOSS4G and pgRouting was used to develop a routing

system.

 50

 Especially if we are available to provide the traffic routing information, it

will be useful for the driver and tourist to plan which route to take if there is a road

under maintance or road accident. Hence, getting a real time information about the

road situation is very useful for dynamic routing system. The system, if adopted by

the Thimphu Municipality will ensure that there is a real time information updates and

thus there will be efficient use of road network of the city.

5.2 Conclusion

 Dijkstra algorithm can be used to modify the road condition for a dynamic

change. This study suggests a new method of finding the concept of calculating the

shortest path and supports dynamic changes of the road condition by using pgRouting

functions. The weight of the Dynamic Cost will change as per the road condition. The

weight will increase if there is a temporary blocked and will decrease when the road is

being cleared.

 For implementation of a system Open Source Software was used because

the main reason was due to the strong community and enhancement of the software.

Even a part of the software can be used by other developer to continue with

developing of the algorithm.

 This system can be used for the tourism management, traffic regulation

and during the time of disasters/accidents.

 Moreover, this system has a new feature showing the POI (Point of

Interest) management functionality which can be stored in the DBMS. This system

can show the POI for the health Facilities and tourist area along the shortest route

which will be useful for the user.

 51

5.3 Future work

 Further work will be focused more towards development of Web-Based

application on mobile devices and tablet PCs to improve the accessibility and

usability for the user as well as the administrator. The updating of the road

information dynamically through a mobile application will be very useful and easy to

update the road information by the system administrator/traffic officer.

 If the system is successful, it can be expanded to other major cities like

Phuntsholing, Gelephu and Samdrup Jongkhar. These cities are also major receiver of

migration and thus will see increasing population over the years.

 Bhutan is vulnerable to a range of natural disasters such as earthquakes,

Glacial Lake Outburst Flood (GLOF), flash floods, windstorms, forest fires and

landslides. These disasters resulted into significant loss and damages to lives,

properties and public infrastructures.

 As per the Bhutan Disaster Risk Management Status Review, the two

major earthquake in 2011 caused damage to around 7000 houses and many religious

and public infrastructures. It was estimated that the earthquake affected around 7

percent of the population. Similarly, 1994 GLOF claimed 22 lives and damaged many

infrastructure and properties. The risk of GLOF disaster is very huge as there are 77

glaciers and 2674 glacial lakes with potential risk. In 2009, the Cyclone Aila floods

caused a loss of more than Nu. 700 million.

 However, like most of the countries across the globe, Bhutan lacks

information and data about the risk assessment of disaster. Therefore, the system with

little modification can be very helpful in mitigating and adapting to disaster risk.

Appendix 1

This Appendix is the main PHP,JavaScript and HTML code for the web

application.

<html>

<head>

<title>Thimphu Routing System</title>

<div align=”center”></div>

<script type="text/javascript" src="http://media.scraperwiki.com/js/jquery-

1.5.2.min.js"></script>

<script type="text/javascript"

src="http://www.openlayers.org/api/OpenLayers.js"></script>

<script type="text/javascript"

src="http://www.openstreetmap.org/openlayers/OpenStreetMap.js"></script>

<script src="http://maps.google.com/maps/api/js?v=3.6&sensor=false"></script>

<script type="text/javascript">

var start, stop, result, ems, controls;

var map,layer, click, status;

OpenLayers.Control.Click = OpenLayers.Class(OpenLayers.Control, {

 defaultHandlerOptions: {

 'single': true,

 'double': false,

 'pixelTolerance': 0,

 'stopSingle': false,

 'stopDouble': false

 },

 initialize: function(options) {

 this.handlerOptions = OpenLayers.Util.extend(

 {}, this.defaultHandlerOptions

);

 53

 OpenLayers.Control.prototype.initialize.apply(

 this, arguments

);

 this.handler = new OpenLayers.Handler.Click(

 this, {

 'click': this.trigger

 }, this.handlerOptions

);

 },

 trigger: function(e) {

 //var toProjection = new OpenLayers.Projection("EPSG:4326"); //chai edit

 // var xy = map.getLonLatFromPixel(e.xy).transform(map.getProjectionObject(),

toProjection); //chai edit

 //alert (xy);

 var xy = map.getLonLatFromPixel(e.xy);

 var retOut = ""+xy.lon+" "+xy.lat+"";

 if (status == 'start') {

 $("#start").val(retOut);

 start.removeFeatures(start.features);

 //alert (retOut);

 var poi = new OpenLayers.Geometry.Point(xy.lon, xy.lat);

 //alert (poi);

 var feature = new OpenLayers.Feature.Vector(poi);

 start.addFeatures([feature]);

 simpleProcessing();

 } else if (status == 'end') {

 $("#end").val(retOut);

 stop.removeFeatures(stop.features);

 54

 var poi = new OpenLayers.Geometry.Point(xy.lon, xy.lat);

 var feature = new OpenLayers.Feature.Vector(poi);

 stop.addFeatures([feature]);

 simpleProcessing();

 }

 }

});

function setcoordinates(val){

 click.activate();

 status = val;

}

OpenLayers.ProxyHost = "geoproxy.php?url="

 var map;

 var y=27.46735; //100.27792,16.81836

 var x=89.64445;

 var zoom=13;

 //Initialise the 'map' object

 function init(){

 //var option =

{controls,maxExtent:bounds,maxResolution:"auto",units:"m",

 //

projection:prjGoogle,displayProjection:4326,eventListeners:{'moveend':alert_on_mov

e}};

 map = new OpenLayers.Map({

 div: "map",

 projection: "EPSG:3857",

 displayProjection: "EPSG:4326",

 55

 maxResolution: 'auto',

 });

 //map = new OpenLayers.Map('map_element',option);

 // Add Map Control

 //map.addControl(new OpenLayers.Control.Navigation());

 map.addControl(new OpenLayers.Control.Attribution());

 map.addControl(new OpenLayers.Control.MousePosition());

 //map.addControl(new OpenLayers.Control.PanZoomBar());

 map.addControl(new OpenLayers.Control.LayerSwitcher());

 // Add Base Map

 var mapnik = new OpenLayers.Layer.OSM();

 var gphy = new OpenLayers.Layer.Google(

 "Google Physical",

 (Chandniha et al., 2017)//add data

);

 var gmap = new OpenLayers.Layer.Google(

 "Google Streets", // the default

 {type:google.maps.MapTypeId.ROADMAP, numZoomLevels:

20}//add data

);

 var ghyb = new OpenLayers.Layer.Google(

 "Google Hybrid",

 {type:google.maps.MapTypeId.HYBRID, numZoomLevels: 20}//add

data

);

 var gsat = new OpenLayers.Layer.Google(

 "Google Satellite",

 {type:google.maps.MapTypeId.SATELLITE, numZoomLevels:

22}//add data

);

 56

 var lonlat = new OpenLayers.LonLat(x, y).transform(

 new OpenLayers.Projection("EPSG:4326"), // transform from WGS

1984

 new OpenLayers.Projection("EPSG:900913") // to Spherical Mercator

);

 //Add map layers

 map.addLayers([mapnik,gmap,gphy,ghyb,gsat]);

 map.setCenter(new OpenLayers.LonLat(x, y).transform(

 new OpenLayers.Projection("EPSG:4326"),

 map.getProjectionObject()

), zoom);

 // Add GeoServer Layers

 var road = new

OpenLayers.Layer.WMS("Thimphu_Road","http://localhost:8088/geoserver/city/wms

?", {layers:'city:ways', transparent:true},{visibility:true});

 var Health = new

OpenLayers.Layer.WMS("Health_Facilities","http://localhost:8088/geoserver/city/w

ms?", {layers:'city:Health_Facilities', transparent:true},{visibility:true});

 var tourist = new

OpenLayers.Layer.WMS("Tourist_Area","http://localhost:8088/geoserver/city/wms?"

, {layers:'city:Tourist_area', transparent:true},{visibility:true});

 map.addLayers([road,Health,tourist]);

 // Add GeoJSON Layers

 var plk_road = new OpenLayers.Layer.Vector('Road', {

 strategies: [new OpenLayers.Strategy.Fixed()],

 protocol: new OpenLayers.Protocol.HTTP({

 url: '/data/plk_roads.geojson',

 57

 format: new OpenLayers.Format.GeoJSON()

 }),

 //style: {fillColor: '#382', strokeColor: 'yellow', strokeWidth: 1, strokeOpacity:

0.8},

 styleMap: new OpenLayers.StyleMap({

 "default": new OpenLayers.Style(null, {

 rules: [new OpenLayers.Rule({

 title: 'ถนน',

 symbolizer: {

 "Line": {

 fillColor: '#1C1C1C',

 fillOpacity: 0.3,

 graphicName: "circle",

 strokeColor: '#1C1C1C',

 strokeOpacity: 0.5,

 strokeWidth: 1.5,

 graphicZIndex: 1,

 pointRadius: 2

 }

 }

 })]

 })

 }),

 projection: new OpenLayers.Projection("EPSG:3857"),

 visibility: false

 });

var plk_hospitals = new OpenLayers.Layer.Vector('Hospital', {

 strategies: [new OpenLayers.Strategy.Fixed()],

 protocol: new OpenLayers.Protocol.HTTP({

 url: 'data/plk_hospitals.geojson',

 format: new OpenLayers.Format.GeoJSON()

 58

 }),

 //style: {fillColor: '#382', strokeColor: 'yellow', strokeWidth: 1, strokeOpacity:

0.8},

 styleMap: new OpenLayers.StyleMap({

 "default": new OpenLayers.Style(null, {

 rules: [new OpenLayers.Rule({

 title: 'โรงพยาบาล',

 symbolizer: {

 "Point": {

 externalGraphic: "img/hos.png",

 graphicWidth: 20,

 graphicHeight: 20,

 graphicYOffset: -26,

 graphicOpacity: 1

 }

 }

 })]

 })

 }),

 projection: new OpenLayers.Projection("EPSG:3857"),

 visibility: true

 });

 click = new OpenLayers.Control.Click();

 map.addControl(click);

 var start_style = OpenLayers.Util.applyDefaults({

 externalGraphic: "img/start.png",

 graphicWidth: 14,

 graphicHeight: 26,

 graphicYOffset: -26,

 59

 graphicOpacity: 1

 }, OpenLayers.Feature.Vector.style['default']);

 var stop_style = OpenLayers.Util.applyDefaults({

 externalGraphic: "img/stop.png",

 graphicWidth: 14,

 graphicHeight: 26,

 graphicYOffset: -26,

 graphicOpacity: 1

 }, OpenLayers.Feature.Vector.style['default'])

 var ems_style = OpenLayers.Util.applyDefaults({

 externalGraphic: "img/pinkmark.png",

 graphicWidth: 40,

 graphicHeight: 40,

 graphicYOffset: -26,

 graphicOpacity: 1

 }, OpenLayers.Feature.Vector.style['default']);

 var result_style = OpenLayers.Util.applyDefaults({

 strokeWidth: 7,

 strokeColor: "#FF0040",

 hoverFillOpacity: 0.7,

 strokeOpacity: 0.7,

 fillOpacity: 0.6

 }, OpenLayers.Feature.Vector.style['default']);

 start = new OpenLayers.Layer.Vector("Start point", {style: start_style});

 stop = new OpenLayers.Layer.Vector("End point1", {style: stop_style});

 result = new OpenLayers.Layer.Vector("First route", {style: result_style});

 tour = new OpenLayers.Layer.Vector("Tourist POI", {style: ems_style});

 he = new OpenLayers.Layer.Vector("he POI", {style: ems_style});

 map.addLayers([start,stop,result,tour,he]);

 60

 //pgRouting start here (add start stop)

 }

function simpleProcessing() {

 var lon = $("#start").val();

 var lat = $("#end").val();

 var mtd = $("#method").val();

$.ajax({

 url:

url+'startpoint='+lon+'&finalpoint='+lat+'&method='+mtd+'®ion=ways&srid=385

7',

 success: function(data){

 var GeoJSON = new OpenLayers.Format.GeoJSON();

 var features = GeoJSON.read(data);

 result.removeFeatures(result.features);

 result.addFeatures(features);

 }

});

 //alert (feature);

var controls = {

 start: new OpenLayers.Control.DrawFeature(start),

 stop: new OpenLayers.Control.DrawFeature(stop)

 //go: new OpenLayers.Control.DrawFeature(go)

 }

 for (var key in controls) {

 map.addControl(controls[key]);

 }

 }

function touristpoi() {

 61

 var url = 'http://localhost/example_routing_on_web/work/find_poi.php?';

 var nearh = $("#start").val();

 var lat = $("#end").val();

// if (isNaN(lat)) {return alert("End point not found!")};

//url+='startpoint='+lon+'&finalpoint='+lat+'&method=rc®ion=plk_roads&srid=38

57';

 url+='startpoint='+nearh+'&method=rc®ion=ways&srid=3857';

//alert (url);

//alert (lon);

//alert (lat);

//alert (features);

//var urlroute = 'http://localhost/routing/work/routing_nu_new.php?';

//var poihos =

$.ajax({

 url: url,

 success: function(data){

 var GeoJSON = new OpenLayers.Format.GeoJSON();

 var features = GeoJSON.read(data);

 tour.removeFeatures(tour.features);

 tour.addFeatures(features);

 }

});

var controls = {

 ems: new OpenLayers.Control.DrawFeature(ems)

 }

 62

 for (var key in controls) {

 map.addControl(controls[key]);

 }

 }

function healthpoi() {

 var url = 'http://localhost/example_routing_on_web/work/find_poi_health.php?';

 var nearh = $("#start").val();

 var lat = $("#end").val();

// if (isNaN(lat)) {return alert("End point not found!")};

//url+='startpoint='+lon+'&finalpoint='+lat+'&method=rc®ion=plk_roads&srid=38

57';

 url+='startpoint='+nearh+'&method=rc®ion=ways&srid=3857';

//alert (url);

//alert (lon);

//alert (lat);

//alert (features);

//var urlroute = 'http://localhost/routing/work/routing_nu_new.php?';

//var poihos =

$.ajax({

 url: url,

 success: function(data){

 var GeoJSON = new OpenLayers.Format.GeoJSON();

 var features = GeoJSON.read(data);

 he.removeFeatures(he.features);

 he.addFeatures(features);

 63

 }

});

var controls = {

 ems: new OpenLayers.Control.DrawFeature(ems)

 }

 for (var key in controls) {

 map.addControl(controls[key]);

 }

 }

function toggleControl(element) {

 for (key in controls) {

 if (element.value == key && element.checked) {

 controls[key].activate();

 } else {

 controls[key].deactivate();

 }

 }

 //alert(element.value);

 }

</script>

</head>

<body onload="init()">

 <table width="70%" height="90%" align="left" border="1" bdcolor="red">

 <tr> <td>

 <div id="map" style="width: 100%; height: 100%;"></div>

 </td></tr>

 </table>

<table width="30%" height="100%" align="left" border="4">

 64

 <h3> Shortest Route </h3>

 <img src="start.png" alt="Start point" width="18" height="26"

/>

 <input id="start" onclick="setcoordinates('start');" />

 <img src="stop.png" alt="End point" width="18" height="26"

/>

 <input id="end" onclick="setcoordinates('end');" />

</table>

<!--

<table width="30%" border="1" bdcolor="red"><tr> <td>

 <input type="radio" name="type" value="select" id="selectToggle"

 onclick="toggleControls(this);" />

 <label for="selectToggle">Road closed

information</label>

</td></tr></table> -->

<table width="30%" border="1" bdcolor="red"><tr> <td>

 <select id="method">

 <option value=>...Choose your option...</option>

 <option value="ST">Shortest Times </option>

 <option value="SPDD">Shortest Path Dijkstra</option>

 <option value="RTD">Main Roads and Safest</option>

 <option value="SPSB">Shortest Path Shooting Star -</option>

 <!--

 <option value="SPDD">Shortest Path Dijkstra - directed (BBox)</option>

 <option value="SPA">Shortest Path A Star – spdd directed</option>

 <option value="SPSB">Shortest Path Shooting Star - </option>

 65

 <option value="SPS">Shortest Path Shooting Star</option>

 </select>

 <label >Car:

 </label>

 <input type="button" value="ShortestRoute"

 <input type="button" onclick="touristpoi();" value="Tourist_Area" />

 <input type="button" onclick="healthpoi();" value="Health_Facilities" />

</table>

 <!--<div id="AB" align = "lefe"> </div>-->

 <div id="CD" align = "lefe"> </div> <!-- route 1 table-->

 <div id="CD2" align = "lefe"> </div> <!-- route 2 table-->

 <!-- <div id="CD1" align = "lefe"> </div> --> <!-- reverse table-->

 </body>

</html>

Appendix 2

Server side PHP script

 This appendix script of PHP makes the routing query from starting/ending

coordinates by clicking on the map. It searches for the nearest edge to get the staring

node and ending node to call the pgRouting function and send the result to the web

interface.

 define("PG_DB" , "final_work");

 define("PG_HOST", "localhost");

 define("PG_USER", "postgres");

 define("PG_PORT", "5432");

 define("PG_PASS", "user");

 define("TABLE", "ways");

 // Retrieve start point

 // $start='100.19533576766561 16.752196023246402';

 $start = explode(' ',$_REQUEST['startpoint']);

 $startPoint = array($start[0], $start[1]);

 // Retrieve end point

 // $end = '100.1969665507453 16.73600428680829';

 $end = explode(' ',$_REQUEST['finalpoint']);

 $endPoint = array($end[0], $end[1]);

 //echo $startPoint;

 // Find the nearest edge

 $startEdge = findNearestEdge($startPoint);

 $endEdge = findNearestEdge($endPoint);

 // FUNCTION findNearestEdge

 function findNearestEdge($lonlat) {

 // Connect to database

 $con = pg_connect("dbname=".PG_DB." host=".PG_HOST."

password=".PG_PASS." user=".PG_USER);

 67

 $sql = "SELECT gid, source, target, geom,

 ST_Distance(geom, ST_GeometryFromText(

 'POINT(".$lonlat[0]." ".$lonlat[1].")', 3857)) AS dist

 FROM ".TABLE."

 ORDER BY dist LIMIT 1";

 // echo "
";

 // echo $sql;

 $query = pg_query($con,$sql);

 $edge['gid'] = pg_fetch_result($query, 0, 0);

 $edge['source'] = pg_fetch_result($query, 0, 1);

 $edge['target'] = pg_fetch_result($query, 0, 2);

 $edge['geom'] = pg_fetch_result($query, 0, 3);

 // Close database connection

 pg_close($con);

/*

echo $sql;

echo "
";

echo $edge['gid'];

echo "
";

echo $edge['source'];

echo "
";

echo $edge['target'];

echo "
";

echo $edge['the_geom'];

echo "
";

 68

echo "
;

 return $edge;

 }

 // Select the routing algorithm

 switch($_REQUEST['method']) {

 case 'SPDD' : // Shortest Path Dijkstra*

 $sql =

 drop table if exists result;

 create table result (gid bigint);

 select

addgeometrycolumn('result','geom',3857,'MULTILINESTRING',2);

 insert into result(gid,geom)

 SELECT gid, geom FROM ways w,

 (SELECT * FROM pgr_dijkstra(

 'SELECT gid as id,

 source,

 target,

 length + dynamic_cost AS cost

 FROM ways',

 ".$startEdge['source'].",

 ".$endEdge['target'].",

 directed := false)

)as rt

 where w.gid=rt.edge;

 SELECT ST_AsGeoJSON(w.geom) AS geojson, geom FROM

ways w,

 69

 (SELECT * FROM pgr_dijkstra(

 'SELECT gid as id,

 source,

 target,

 length + dynamic_cost AS cost

 FROM ways',

 ".$startEdge['source'].",

 ".$endEdge['target'].",

 directed := false)

)as rt

 where w.gid=rt.edge;

 ";

 break;

 $sql = "

 drop table if exists result;

 create table result (gid bigint);

 select

addgeometrycolumn('result','geom',3857,'MULTILINESTRING',2);

 insert into result(gid,geom)

 SELECT gid, geom FROM ways w,

 (SELECT * FROM pgr_dijkstra(

 'SELECT gid as id,

 source,

 target,

 length + dynamic_cost AS cost

 FROM ways',

 ".$startEdge['source'].",

 ".$endEdge['target'].",

 70

 directed := false)

)as rt

 where w.gid=rt.edge;

 SELECT h.name,ST_AsGeoJSON(h.geom) AS geojson FROM

result r, poi h

 where st_intersects(st_buffer(r.geom,1000),h.geom);

 ";

 // echo $sql;

 break;

 } // close switch

// Connect to database

 $con = pg_connect("dbname=".PG_DB." host=".PG_HOST."

password=".PG_PASS." user=".PG_USER);

 // Perform database query

 $query = pg_query($con,$sql);

 //echo $sql;

 // Return route as GeoJSON

 $geojson = array(

 'type' => 'FeatureCollection',

 'features' => array()

);

 // Add edges to GeoJSON array

 71

 while($edge=pg_fetch_assoc($query)) {

 $feature = array(

 'type' => 'Feature',

 'geometry' => json_decode($edge['geojson'], true),

 'crs' => array(

 'type' => 'EPSG',

 'properties' => array('code' => '3857')

),

 'properties' => array(

 'id' => $edge['id'],

 'length' => $edge['length']

)

);

 // Add feature array to feature collection array

 array_push($geojson['features'], $feature);

 }

 // Close database connection

 pg_close($con);

 // Return routing result

 header('Content-type: application/json',true);

 echo json_encode($geojson);

Appendix 3

 PHP code for finding the Point of Interest(POI) for Health Facilities.

// Database connection settings

 define("PG_DB" , "final_work");

 define("PG_HOST", "localhost");

 define("PG_USER", "postgres");

 define("PG_PORT", "5432");

 define("PG_PASS", "user");

 define("TABLE", "ways");

 // Retrieve start point

 // Select the routing algorithm

 switch($_REQUEST['method']) {

 case 'rc' : // Find the nearest hospital

 $sql = "

 SELECT h.name,ST_AsGeoJSON(h.geom) AS geojson FROM

result r, health_facilities h

 where st_intersects(st_buffer(r.geom,500),h.geom)

 ";

 // echo $sql;

 break;

 } // close switch

// Connect to database

 $con = pg_connect("dbname=".PG_DB." host=".PG_HOST."

password=".PG_PASS." user=".PG_USER);

 // Perform database query

 $query = pg_query($con,$sql);

 //echo $sql;

 73

 // Return route as GeoJSON

 $geojson = array(

 'type' => 'FeatureCollection',

 'features' => array()

);

 // Add edges to GeoJSON array

 while($edge=pg_fetch_assoc($query)) {

 $feature = array(

 'type' => 'Feature',

 'geometry' => json_decode($edge['geojson'], true),

 'crs' => array(

 'type' => 'EPSG',

 'properties' => array('code' => '3857')

),

 'properties' => array(

 'id' => $edge['id'],

 'length' => $edge['length']

)

);

 // Add feature array to feature collection array

 array_push($geojson['features'], $feature);

 }

 // Close database connection

 pg_close($con);

 // Return routing result

 header('Content-type: application/json',true);

 echo json_encode($geojson)

Appendix 4

 PHP code for finding the Point of Interest(POI) for Tourist Area.

<?php

 // Database connection settings

 define("PG_DB" , "final_work");

 define("PG_HOST", "localhost");

 define("PG_USER", "postgres");

 define("PG_PORT", "5432");

 define("PG_PASS", "user");

 define("TABLE", "ways");

 // Retrieve start point

 // Select the routing algorithm

 switch($_REQUEST['method']) {

 case 'rc' : // Find the nearest tourist_area

 $sql = "

 SELECT h.name,ST_AsGeoJSON(h.geom) AS geojson FROM

result r, tourist_area h

 where st_intersects(st_buffer(r.geom,300),h.geom);

 ";

 // echo $sql;

 break;

 } // close switch

// Connect to database

 $con = pg_connect("dbname=".PG_DB." host=".PG_HOST."

password=".PG_PASS." user=".PG_USER);

 // Perform database query

 75

 $query = pg_query($con,$sql);

 //echo $sql;

 // Return route as GeoJSON

 $geojson = array(

 'type' => 'FeatureCollection',

 'features' => array()

);

 // Add edges to GeoJSON array

 while($edge=pg_fetch_assoc($query)) {

 $feature = array(

 'type' => 'Feature',

 'geometry' => json_decode($edge['geojson'], true),

 'crs' => array(

 'type' => 'EPSG',

 'properties' => array('code' => '3857')

),

 'properties' => array(

 'id' => $edge['id'],

 'length' => $edge['length']

)

);

 // Add feature array to feature collection array

 array_push($geojson['features'], $feature);

 }

 // Close database connection

 pg_close($con);

 76

 // Return routing result

 header('Content-type: application/json',true);

 echo json_encode($geojson);

?>

Appendix 5

 This Appendix from 5 to 9 are the main PHP and HTML code for the web

application for the administrator side.

<?php session_start(); ?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet"

href="http://localhost/example_routing_on_web/work/bootstrap/css/bootstrap.min.css

">

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script

src="http://localhost/example_routing_on_web/work/bootstrap/js/bootstrap.min.js"><

/script>

</head>

<body>

<div class="container" style="margin-top: 30px">

<div class="row">

<div class="col-sm-2"></div>

<div class="col-sm-8">

<h2>WELCOME TO THIMPHU ROUTING SYSTEM</h2>

<div class="panel panel-default">

<div class="panel-body">

<form id="login-form" method="POST" role="form">

<?php if (isset($_GET['err'])) { ?>

<div class="alert alert-danger text-center"><?php echo "Login failed! Invalid email-id

or password!"; ?></div>

<?php } ?>

<div class="input-group">

<i class="glyphicon glyphicon-

envelope"></i>

<input type="text" name="username" placeholder="Username" required class="form-

control" />

</div>

<div class="input-group">

<i class="glyphicon glyphicon-lock"></i>

<input type="password" name="password" placeholder="Password" required

class="form-control" />

</div>

 78

<div class="form-group">

<input type="submit" name="submit" value="Login" class="btn btn-primary btn-

block" />

</div>

<div class="form-group">

<hr/>

<div class="col-sm-6" style="padding: 0;">User? Click

Here</div>

</div>

</form>

</div>

</div>

</div>

<div class="col-sm-2"></div>

</div>

</div>

</body>

</html>

<?php

if($_SERVER["REQUEST_METHOD"] == "POST"){

$username = $_POST['username'];

$password = md5($_POST['password']);

include "connect.inc.php";

$sql="SELECT * FROM admin WHERE username='$username' AND

password='$password'";

$result = pg_Exec($db,$sql);

$count_rows=pg_NumRows($result);

if ($count_rows > 0){

$row = pg_fetch_row($result);

$_SESSION['username'] = $row['1'];

header("location:admin/index.php");

}

}

Appendix 6

<?php

session_start();

if(!isset($_SESSION['username'])){

header("location:../index.php");

exit();

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Leaflet Map</title>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link rel="shortcut icon" type="image/x-icon" href="docs/images/favicon.ico" />

<link rel="stylesheet"

href="http://localhost/example_routing_on_web/work/bootstrap/css/bootstrap.min.css

">

<link rel="stylesheet" href="https://unpkg.com/leaflet@1.5.1/dist/leaflet.css"

integrity="sha512-

xwE/Az9zrjBIphAcBb3F6JVqxf46+CDLwfLMHloNu6KEQCAWi6HcDUbeOfBIpt

F7tcCzusKFjFw2yuvEpDL9wQ==" crossorigin=""/>

<script src="https://unpkg.com/leaflet@1.5.1/dist/leaflet.js" integrity="sha512-

GffPMF3RvMeYyc1LWMHtK8EbPv0iNZ8/oTtHPx9/cc2ILxQ+u905qIwdpULaqDk

yBKgOaB57QTMg7ztg8Jm2Og==" crossorigin=""></script>

<script

src="http://localhost/example_routing_on_web/work/bootstrap/js/bootstrap.min.js"><

/script>

</head>

<body>

<div class="container-fluid">

<div class="row">

<div class="col-sm-8" id="mapid" style="width: 100%; height: 600px;"></div>

<div class="col-sm-4" style="margin-top: 20px;">

<h6>Logged in as: <?php echo $_SESSION['username']; ?> Logout</h6

>

<hr>

<form class="form-inline" method="POST">

<div lass="form-group">

<input type="text" name="gid" placeholder="Enter GID" class="form-

control"></input>

 80

</div>

<button type="submit" name = "submit" class="btn btn-info">Blocked

Road</button>

</form>

<hr>

<?php

include "connect.inc.php";

if(isset($_POST['submit'])){

$gid = $_POST['gid'];

$sql="update ways set dynamic_cost=10000000 WHERE gid='$gid'";

$result = pg_Exec($db,$sql);

$fetch_sql = "SELECT * FROM ways WHERE GID='$gid'";

$res = pg_Exec($db,$fetch_sql);

$row = pg_fetch_row($res);

$count = pg_num_rows($res);

if($count > 0){

?>

<h6>Blocked Route</h6>

<table class="table">

<tr>

<th>GID:</th>

<td><?php echo $row[0] ?></td>

</tr>

<tr>

<th>NAME:</th>

<td><?php echo $row[6] ?></td>

</tr>

<tr>

<th>Dynamic Cost:</th>

<td><?php echo $row[25] ?></td>

</tr>

</table>

<?

}else{

?>

<div class="alert alert-warning" role="alert">

GID <?php echo $gid; ?> not found.

</div>

 81

<?

}

}

?>

<form class="form-inline" method="POST">

<div lass="form-group">

<input type="text" name="gid" placeholder="Enter GID" class="form-

control"></input>

</div>

<button type="submit" name = "submit1" class="btn btn-info">Road Works</button>

</form>

<hr>

<?php

include "connect.inc.php";

if(isset($_POST['submit1'])){

$gid = $_POST['gid'];

//$sql="SELECT * FROM ways WHERE GID='$gid'";

$sql="update ways set dynamic_cost=length WHERE GID='$gid'";

$result = pg_Exec($db,$sql);

}

?>

View Blocked Routes

</div>

</div>

<script>

var map = L.map('mapid').setView([27.46735, 89.64445], 13);

var osmUrl = 'http://{s}c.tile.openstreetmap.org/{z}/{x}/{y}.png';

var osmAttrib = 'Map data © OpenStreetMap contributors';

var osm = new L.TileLayer(osmUrl, { attribution: osmAttrib });

var Stamen_Watercolor = L.tileLayer('https://stamen-tiles-

{s}.a.ssl.fastly.net/watercolor/{z}/{x}/{y}.(Language(HTML))', {

attribution: 'Map tiles by Stamen Design, CC BY 3.0 — Map

data © OpenStreetMap contributors',

 82

subdomains: 'abcd',

minZoom: 1,

maxZoom: 16,

ext: 'jpg'

});

var Esri_WorldImagery =

L.tileLayer('https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/Ma

pServer/tile/{z}/{y}/{x}', {

attribution: 'Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX,

GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community'

});

var baseLayers = {

"Open Street Map": osm,

"Water Color": Stamen_Watercolor,

"Esri World": Esri_WorldImagery

};

var road = L.tileLayer.wms('http://localhost:8088/geoserver/final/wms?', {

layers: 'final:ways_final',

format: 'image/png',

transparent: true,

opacity: 0.7,

});

var tourist_area = L.tileLayer.wms('http://localhost:8088/geoserver/final/wms?', {

layers: 'final:tourist_area_final',

format: 'image/png',

transparent: true,

opacity: 0.7,

});

var health = L.tileLayer.wms('http://localhost:8088/geoserver/final/wms?', {

layers: ' final:health_facilities_final',

format: 'image/png',

transparent: true,

opacity: 0.7,

});

var road_GID = L.tileLayer.wms('http://localhost:8088/geoserver/final/wms?', {

layers: ' final:ways_gid',

format: 'image/png',

transparent: true,

opacity: 0.7,

});

var overlayLayers = {

"Thimphu Road" : road,

 83

"Tourist Area" : tourist_area,

"Health Facilities" : health,

"Thimphu Road GID" : road_GID

};

map.addLayer(osm);

L.control.layers(baseLayers, overlayLayers).addTo(map);

</script>

</body>

</html>

Appendix 7

<?php

session_start();

if(!isset($_SESSION['username'])){

header("location:../index.php");

exit();

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Leaflet Map</title>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link rel="shortcut icon" type="image/x-icon" href="docs/images/favicon.ico" />

<link rel="stylesheet"

href="http://localhost/example_routing_on_web/work/bootstrap/css/bootstrap.min.css

">

<link rel="stylesheet" href="https://unpkg.com/leaflet@1.5.1/dist/leaflet.css"

integrity="sha512-

xwE/Az9zrjBIphAcBb3F6JVqxf46+CDLwfLMHloNu6KEQCAWi6HcDUbeOfBIpt

F7tcCzusKFjFw2yuvEpDL9wQ==" crossorigin=""/>

<script src="https://unpkg.com/leaflet@1.5.1/dist/leaflet.js" integrity="sha512-

GffPMF3RvMeYyc1LWMHtK8EbPv0iNZ8/oTtHPx9/cc2ILxQ+u905qIwdpULaqDk

yBKgOaB57QTMg7ztg8Jm2Og==" crossorigin=""></script>

<script

src="http://localhost/example_routing_on_web/work/bootstrap/js/bootstrap.min.js"><

/script>

</head>

<body>

<div class="container-fluid">

<div class="row">

<h6 style="margin:10px;">Logged in as: <?php echo $_SESSION['username']; ?> Logout</h6

>

</div>

<hr>

<table class="table table-hover">

<h3>View all blocked routes</h3>

<tr>

<th>GID</th>

<th>Name</th>

</tr>

 85

<?php

include "connect.inc.php";

$sql = "SELECT * FROM ways WHERE dynamic_cost=10000000";

$result = pg_Exec($db, $sql);

$num=pg_num_rows($result);

$i = 0;

while($i < $num){

echo "<TR>";

echo "<TD>";

echo pg_Result($result, $i, "gid");

echo "</TD>";

echo "<TD>";

echo pg_Result($result, $i, "name");

echo "</TD>";

echo "</TR>";

$i++;

}

?>

</table>

</div>

</body>

</html>

REFERENCES

REFERENCES

Agrawal, S., & Gupta, R. D. (2014). Development and Comparison of Open Source

based Web GIS Frameworks on WAMP and Apache Tomcat Web Servers (Vol.

XL-4). https://doi.org/10.5194/isprsarchives-XL-4-1-2014

Bendib, A., Hadda, D., & Kalla, M. (2016, 05/01). Application of Webgis in the

development of interactive interface for urban management in Batna City.

Journal of Engineering and Technology Research, 8, 13-20.

https://doi.org/10.5897/JETR2015.0579

Bhutan, T. C. o. (2018). BHUTAN TOURISM MONITOR 2018. P. o. t. T. C. o. Bhutan.

Chandniha, S., Goel, M. K., Rathore, D. S., Arora, M., & Gupta, R. (2017). The

application of openlayers on web gis for spatio-temporal data publishing. In (pp.

48-72).

Choosumrong Sittichai, H. C., Raghavan Venkatesh and Fenoy Gerald. (2019).

Development of optimal routing service for emergency scenarios using

pgRouting and FOSS4G. https://doi.org/10.1007/s41324-019-00248-2

Choosumrong, S., Raghavan, V., & Bozon, N. (2012, 09/01). Multi-Criteria Emergency

Route Planning Based on Analytical Hierarchy Process and pgRouting. Japan

society of Geoinformatics, 23, 159-168.

https://doi.org/10.6010/geoinformatics.23.159

Choosumrong Sittichai, R., Venkatesh,Realini and Eugenio. (2010). Implementation of

dynamic cost based routing for navigation under real road conditions using

FOSS4G and OpenStreetMap.

Chunithipaisan, S., Supavetch and Soravis. (2010). The Development of Web Processing

Service Using the Power of Spatial Database.

https://doi.org/10.1109/ICETET.2009.222

Deepa, G., Kumar, Priyank ,Angamuthu,Manimaran,Rajakumar k, and Krishnamoorthy.

(2018). Dijkstra Algorithm Application: Shortest Distance between Buildings

https://doi.org/10.5194/isprsarchives-XL-4-1-2014
https://doi.org/10.5897/JETR2015.0579
https://doi.org/10.1007/s41324-019-00248-2
https://doi.org/10.6010/geoinformatics.23.159
https://doi.org/10.1109/ICETET.2009.222

 87

(Vol. 7). https://doi.org/10.14419/ijet.v7i4.10.26638

Feng, T., Bi, J., & Hu, H. (2011). OpenRouter: OpenFlow extension and

implementation based on a commercial router.

https://doi.org/10.1109/ICNP.2011.6089045

Fischer, M. (2004). GIS and network analysis. In (pp. 391-408).

Haitao, J., Jin, F., Qing, H., He, Z., & Xue, Y. (2019, 07/31). Measuring Public Transit

Accessibility Based On Google Direction API. The Open Transportation

Journal, 13, 93-108. https://doi.org/10.2174/1874447801913010093

Han, Y. (2018). Digital mapping for cartographic narrative in Dublin using Leaflet

Digital mapping for cartographic narrative in Dublin using Leaflet for R.

Hendawi, A., Rustum, A., Ahmadain, A., Hazel, D., Teredesai, A., Oliver, D., Ali, M.,

& Stankovic, J. (2017). Smart Personalized Routing for Smart Cities.

https://doi.org/10.1109/ICDE.2017.172

Kumari Pritee, G. R. D. (2017). Identification of Optimum Shortest Path using

Multipath Dijkstra’s Algorithm Approach. International Journal of Advanced

Remote Sensing and GIS.

Lange, N., & Plass, C. (2008, 01/01). WebGIS with Google Maps.

Language(HTML), H. M. Retrieved June from https://www.w3schools.com/html

Leaflet. Retrieved June from http://leafletjs.com

Lizardo, L., & Davis Jr, C. (2017). A PostGIS extension to support advanced spatial

data types and integrity constraints. https://doi.org/10.1145/3139958.3140020

Longo, M., & Roscia, M. (2014). Sustainable transportation application for smart

mobility. https://doi.org/10.1109/SPEEDAM.2014.6872112

Mooney, P., & Minghini, M. (2017). A review of OpenStreetMap data. In (pp. 37-59).

https://doi.org/10.5334/bbf.c

OpenLayers. Retrieved July from http://openlayers.org

https://doi.org/10.14419/ijet.v7i4.10.26638
https://doi.org/10.1109/ICNP.2011.6089045
https://doi.org/10.2174/1874447801913010093
https://doi.org/10.1109/ICDE.2017.172
https://www.w3schools.com/html
http://leafletjs.com/
https://doi.org/10.1145/3139958.3140020
https://doi.org/10.1109/SPEEDAM.2014.6872112
https://doi.org/10.5334/bbf.c
http://openlayers.org/

 88

OpenStreetMap. Retrieved January from http://www.openstreetmap.org/

PHP. Retrieved June from https://www.php.net

Pritee, K., & Garg, R. (2017). Identification of Optimum Shortest Path using Multipath

Dijkstra’s Algorithm Approach (Vol. 6).

https://doi.org/10.23953/cloud.ijarsg.321

Project, p. pgRouting Project. Retrieved December from www.pgrouting.org/

Prokofyeva, N., & Boltunova, V. (2017, 12/31). Analysis and Practical Application of

PHP Frameworks in Development of Web Information Systems. Procedia

Computer Science, 104, 51-56. https://doi.org/10.1016/j.procs.2017.01.059

QGIS. Retrieved January from http:qgis.org/en/site/

Road Safty and Transport Authority, M. o. I. a. C., Bhutan. (June 2019). Annual Info-

Comm and Transport Statistics 2019. www.moic.gov.bt

S. Singh, P., B. Lyngdoh, R., Chutia, D., Saikhom, V., Kashyap, B., & Sudhakar, S.

(2015). Dynamic shortest route finder using pgRouting for emergency

management (Vol. 7). https://doi.org/10.1007/s12518-015-0161-4

Shaw, S., & Gurram, D. (2015, 05/01). A Note on Computational Approach to

Travelling Sales Man Problem. International Journal of Computer Applications

(0975 – 8887) Volume 115 – No. 8, April 2015, 115, 975-8887.

https://doi.org/10.5120/20174-2374

Singh, P., Lyngdoh, R., Chutia, D., Saikhom, V., Kashyap, B., & Sudhakar, S. (2015,

07/23). Dynamic shortest route finder using pgRouting for emergency

management. Applied Geomatics, 7. https://doi.org/10.1007/s12518-015-0161-4

Xie Dexiang, Z. H., Yan Lin,Yuan Si and Zhang Junqiao. (2012). An improved

Dijkstra algorithm in GIS application.

Zhang, L., & He, X. (2012). Route Search Base on pgRouting. In (Vol. 115, pp. 1003-

1007). https://doi.org/10.1007/978-3-642-25349-2_133

http://www.openstreetmap.org/
https://www.php.net/
https://doi.org/10.23953/cloud.ijarsg.321
http://www.pgrouting.org/
https://doi.org/10.1016/j.procs.2017.01.059
http://www.moic.gov.bt/
https://doi.org/10.1007/s12518-015-0161-4
https://doi.org/10.5120/20174-2374
https://doi.org/10.1007/s12518-015-0161-4
https://doi.org/10.1007/978-3-642-25349-2_133

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	List of tables
	List of figures
	CHAPTER I INTRODUCTION
	1.1 Motivation and Background
	1.2 Research Objectives
	1.3 Problem Statements

	CHAPTER II REVIEW OF RELATED LITERATURE
	2.1 Network Analysis
	2.2 pgRouting
	2.2.1 Shortest Path Dijkstra Algorithm.
	2.3 Examples of different API and routing algorithm used in Routing system.
	2.3.1 Travelling Salesman Problem
	2.3.2 Google Direction API
	2.3.3 OpenRouteService

	2.4 GIS and the Web.
	2.4 Web GIS Architecture
	2.6 PHP
	2.7 Database Management System
	2.8 GeoServer
	2.9 PostGIS/PostgresSQL
	2.10 Leaflet and Openlayer
	2.11 Review

	CHAPTER III RESEARCH METHODOLOGY
	3.1 Study Area
	3.2 Creating and implement Data for Routing system.
	3.2.1 OSM Data.
	3.2.2 Implement road network data for Routing Application.
	3.2.3 Import Road Network Data and Point Data in to Database
	3.2.4 Create a Network Topology

	3.3 Shortest Path Search with pgRouting Functions
	3.3.1 Static Shortest path using Dijkstra Algorithm.

	3.4 Implementation of Web GIS for Dynamic Routing System
	3.4.1 Modification of Road Network Data
	3.4.2 Modification of functions in pgRouting functions
	3.4.3 Modification of functions for Dynamic Distance

	3.5 Development of web Application for the Routing Services.
	3.5.1 System Architecture
	3.5.3 Creating a PHP script for Routing Services.
	3.5.4 Creating a PHP script for Point of Interest (POI) along the shortest route

	3.6 Development of Web System Interfaces
	3.7 Updating of Client/Administrator Interfaces.

	CHAPTER IV RESULTS
	4.1 Result
	4.1.1 Web User Interface
	4.1.2 Administrator Web Interface

	CHAPTER V DISCUSSION AND CONCLUSION
	5.1 Discussion
	5.2 Conclusion
	5.3 Future work

	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	REFERENCES

