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CHAPTER I

INTRODUCTION

Life is about decisions. Decisions, no matter if made by a group or an in-
dividual, usually involve several conflicting objectives. The observations that real
world problems have to be solved optimally according to criteria, which prohibit
an “ideal” solution, optimal for each decision-maker under each of the criteria
considered, has led to the development of multiobjective optimization. Optimiza-
tion is central to any problem involving decision making, whether in engineering
or in economics. The task of decision making entails choosing between various
alternatives. This choice is governed by our desire to make the best decision. The
measure of goodness of the alternatives is described by an objective function or
performance index. Optimization theory and methods deals with selecting of the
best alternative in the sense of the given objective function.

Rigorous mathematical analysis of the optimization problem was carried
out during the 20th century, the roots can be traced back to about 300 B.C;
when the Greek mathematician Euelid evaluated the minimum distance between
a point and a line. Optimization may be regarded as the cornerstone of many
areas of applied mathematics, computer science, engineering, and a number of
other scientific disciplines. Among other things, optimization plays a key role in
finding feasible solutions to real-life problems, from mathematical programming
to operations research, economies, management science, business, medicine, life

science, and artificial intelligence.

Optimization deals with the study of those kinds of problems in which one
has to minimize or maximize one or more objectives that are functions of some
real or integer variables. This is executed in a systematic way by choosing the
proper values of real or integer variables within an allowed set. Given a defined
domain, the main goal of optimization is to study the means of obtaining the best
value of some objective function. Single objective optimization deals with the
task of finding the “best” solution, which corresponds to the minimum or maxi-
mum value of a single objective function that lumps all different objectives into

one. This type of optimization is useful as a tool which should provide decision



makers with insights into the nature of the problem, but usually cannot provide a
set of alternative solutions that trade different objectives against each other. On
the contrary, multiobjective optimization (MOP) (multicriteria or multiattribute
optimization) deals with the task of simnltaneously optimizing two or more con-
flicting objectives with respect to a set of certain constraints. If the optimization
of one objective leads to the automatic optimization of the other, it should not

be considered as MOP problem.

However, in many real-life situations we come across problems where an
attempt to improve one objective leads to degradation of the other. Such problems
belong to the class of MOP problems and appear in several fields including product
and process design, network analysis, finance, aireraft design, bicinformatics, the
oil and gas industry, automobile design, etc.

Compared fo single objective problems, MOP problems are more difficult to
solve, because there is no unigue solution; rather, there is a set, of acceptable trade-
off optimal solutions. This set is called Pareto front. MOP is in fact considered as
the analytical phase of the multi-objective decision making process, and consists
of determining all sohitions to the MOP problem that are optimal in the Pareto
sense. The preferred solution, the one most desirable to the designer or decision
maker, is selected from the Pareto set.

Due to increasing imterest in solving real-world MOTD problems using proximal
point algorithms (PPA), researchers have developed a number of proximal point
multi-objective algorithms. The presence of multiple objectives in a problem, in
principle, gives rise to a set of optimal solutions (largely known as Parcto-optimal
solutions), instead of a single optimal solution. In the absence of any further
information, one of these Pareto-optimal solutions cannot be said to be better
than the other. This demands a user to find as many Pareto-optimal solutions as
possible. Classical oﬁtinﬂzation methods (including the multi-criterion decision-
making methods) suggest converting the multiobjective optimization problem to
a single objective optimization problem by emphasizing one particular Pareto-
optimal solution at a time. When such a method is to be used for finding multiple
solutions, it has to be applied many times, hopefully finding a different solution

at each simulation run. There are many algorithms for solving multiobjective



optimization problems.

The proximal point algorithm is a widely used tool for solving a variety
of convex optimization problems. The algorithm works by applying successively
so-called “resolvent” mappings associated to the original object that one aims to
optimize. The first instance of what came later to be known as the proximal
point algorithm can be found in a short communication from 1970 of Martinet
i1]. Starting with the pioneering paper of Rockafellar [2], which clearly fix some
existing ideas in the previous literature and gives much more insights on the
potential of the algorithin when applies to optimization problems, an important
literature has grown on possible extensions and gencralizations of this algorithim
(see, for example the survey paper [3] and the refercnces therein). Some attention
was focused also on the case of multi-objective optimization, see [4--8].

On the other hand, Fixed point theory is a fascinating subject, with an
enormous number of applications in various fields of mathematics. Fixed point
theory concerns itself with a very simple and basic mathematical setting. It is
one of the most powerful and fruitful tools of modern mathematics and may
be considered as a core subject of nonlinear analysis. The presence or absence
of fixed point is an intrinsic property of a function. However, many necessary
and/or sufficient conditions for the existence of such points invelve a mixture of
algebraic order theoretic or topological properties of mapping or its domain. In
a wide range of mathematical problems the existence of a solution is equivalent
to the existence of a fixed point for a suitable map. The existence of a fixed
point is therefore of paramount importance in several areas of mathematics and
other sciences. Fixed point results provide conditions under which maps have
solutions. The theory itself is a beautiful mixture of analysis (pure and applied),
topology, and geometry. Over the last 50 years or so the theory of fixed points
has been revealed as a very powerful and important tool in the study of nonlinear
phenomena. In particular, fixed point techniques have been applied in such diverse
fields as biology, chemistry, economics, engineering, game theory, and physics. A
physical example of a fixed point of a mapping is the center of a whirlpool in a
cup of tea when it is stirred. (The fact that the center of the whirlpool moves

over time is just due to the fact that the mapping is changing over time.)



It was an integral part of topology at the very birth of the subject in the work
of Poincare in the 1880. In the last 50 years, fixed point theory has been flourishing
area of rescarch for many mathematicians. The origins of the theory, which dated
back to the later part of the nineteenth century, rest in the use of successive
approximations used for proving existence of solutions of differential equations
introduced independently by Joseph Liouville [9] in 1837 and Charles Emile Picard
[10] in 1890. But formally it was started in the beginning of twentieth century
as an important part of analysis. The abstraction of this classical theory is the
pioneering work of the great Polish mathematician Stefan Banach [11] published

in 1922, which provides a constructive method te find the fixed points of a map.

Fixed point theory has played central role in the problems of nonlinear func-
tional analysis and fixed point theorems have provided powerful tools in demon-
strating the existence of solution to a large variety of problems in applied math-
ematics. Fixed point theorems are mainly useful in existence theory for the so-
lutions of differential equations, integral equations, partial differential equations,
random differential equations. Also the theory has numerous applications in other
related areas like eontrol theory, game theory, economics etc. Besides this, fixed
point theory has very frmitful applications in eigenvaltie value problems, bound-
ary value problems and best approximation problems. Many existence theorem

of analysis can be treated as special cases of suitable fixed point theorems.
This thesis is organized as follows.

In Chapter 2, definitions and auxiliaty results are presented as well as non-

smooth analysis.

In Chapter 3, proximal point algorithm for obtaining the solution of a multi-
objective optimization problem introduced by Bento et al. [5] is studied, under
some weaker conditions, the well-definedness of the generated sequence of al-
gorithm is established when the objective function is locally Lipschitz, and the
convergence to a Pareto critical point of the objective function is proved.

In Chapter 4, inexact proximal point algorithm for obtaining the solution
of a multi-objective optimization problem is introduced, the well-definedness of
the generated sequence of algorithm is established when the objective function is

locally Lipschitz, and convergence theorems of the introduced algorithm is pre-



sented.

In Chapter 5, modified proximal point algorithm involving fixed point it-
erates and multi-objective optimization is introduced. The convergent behaviour
of the introduced algorithm is studied and discussed. Finally, in Chapter 6, we

present proposals for future research and conclusions.



CHAPTER II
PRELIMINARIES CONCEPTS

In this chapter, we give a brief introduction of elementary concepts and

some results, which will be used throughout the next chapters.

In this thesis, R and N denote the set of all real numbers and the set of all
natural numbers, respectively. The notation ||.|| denotes the Euclidean norm and

both (a,b) or aTb stand for inner product of a,b in Euclidean space R".

The main goal of optimization is to study the means of obtaining the best
value of some objective functions. An optimization problem can be defined as
follows:

Consider a function fi: R* — R, the aim is to determine an element z! € R” such

that
h(z') € h(z), Vo cR",
is called the minimization and
h(z') > h(z); VYo R,

is known as maximization. Here the domain of #, is called the search space, and
the elements of R" are called candidate or feasible solutions. The function h is
called an objective function/cost function/energy function. A feasible solution

that optimizes the objective function is called an optimal solution.

2.1 Multiobjective optimization and optimal points

Now, we remind some basic concepts and properties of multiobjective optimization
(MOP), which can be found in [14].
Let I :={1,...,m}, then

R ={ze€R™:a;>0,jcl},

RY, ={z eR":z;>0,5 €I}



Throughout the thesis, the notations = and < stand for the following orders on
R™ for y, z € R™,

z ¥ y(ory % z) means that z — y € RY,

and

m

z = y(ory < z) means that z —y € R,

In MOP, one has to optimize several objective functions simultaneously. Having
several objective functions, the notation of “optimum” changes in MOJP, because in
MOP, the goal is to find compromises (or “tradeoff’) rather than a single solution
as in global optimization. The notion of “optimum” most commonly adopted is
that of originally proposed by Francis Ysidro Edgeworth and later generalized by
Vilfredo Pareto.

We consider the following general MOP:

min H(z),

xeC

where H : ¢’ C R® — R™1s a vector function with H (x) := (hy{x), ha(z), ..., hin{2))
, hi : € — R and €' is nonempty closed set.
The solution notion for MOP is defined with respect to an ordering cone which is

used for ordering the criterion space R™.

Definition 2.1.1. (Pareto optimal point) A point * € € is called Parcto optimal

point of H, if there exists no other & € €' such that
H(z) = H(z"),
and H(z) # H(z*),

Definition 2.1.2. (weak Pareto optimal point) A point 2* € C is said to be weak

Pareto optimal point of H, if there exists no other z € C' such that

H(z) < H(z*).

If we have two objectives fy(2) and ho(x), then we can see the Pareto and

weak Pareto solutions in the below figure:



h_2(x)

Pareto-optimal solutions

Y

h_1({x}

Let € 1= (€1, €m) € R

Definition 2.1.3. {e-weak Pareto optimal point) A point &% € C is called e-weak

Pareto optimal point of H, if there exists no other z € C such that
H{z) +e < H(z%).

Definition 2.1.4. (e-quasi weak Pareto optimal peint} A point #* € C' is known

as an e-quasi weak Pareto point of H if there is no x € ¢ such that

H(x) +¢||lz — =f|} < H(z").

We denote the set of Pareto, weak Pareto, e-weak Pareto and e-quasi weak
Pareto solutions of H by argmin{H(z)|z € C}, argmin,{H(z)|z € C},
argmin,, {H(z)|z € C} and argmin,,_,{H(z)|z € C}, respectively. For more

details, we refer to [12] and {13].

Remark 2.1.5. It is noted that Pareto optimal point is also a weak Pareto optimal
point but the converse is not true. Also, it is apparent that, if ¢ = 0, then the
notions of an e-weakly Parcto solution and an e-weakly quasi Pareto solution
defined above coincide with the usual one of a weak Pareto solution. Also, for
the case, ¢ # 0 we can see that, argmin,{H(z)lz € C} C argming{H(x)|z
C} and argmin,{H(z)|z € C} C argming_,{H(z)|lz € C}. While, the sets



arg ming,{H(z)|z € C} and argming.,{H(z}|z € C} might be two different

sets. For more details see [13].

For a multi-objective mapping H : R"* — R™, we say that H has a directional

derivative at £ € R" in the direction of v € R® if

DyH(z) = lim Az +tw) - H(w)

t—0 t

If vector function A is differentiable at xz € R", then all of its directional deriva-
tives at x exist. For a differentiable function H, we denote the Jacobian of H at

z € R" by
JH(z) := (VR(z), .y Vi (2)),
and the image of the Jacobian of H at a point z € R” by
Im(JH(z)) = {JH(@)v = (Vhi(z),v), ..., (VI,(z),v)}, ve R} (2.1.1)

A vector function H is differentiable at z, iff all of its components are differentiable
at 2. For a differentiable function H, D, H(z) = JH(z)v.

The first order optimality condition for problem (2.2) is given by
ze R, Im(JH(z))N(—RT)=0. (2.1.2)

In general, (2.1.2) is necessary, but not sufficient condition, for optimality. A point

z € R" satisfying (2.1.2) is called a Pareto eritical point (see for instance, [14]).

2.2 Fixed point iteration scheme

Let a mapping 7 : R® — R™. Then
F(T)={zeR": Tz =z},

is the set of fixed points of mapping T' or we can say that a point whose position
is not changed by transformation is called a fixed point.

The following definitions will be in the next chapters.
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Definition 2: Suppose a mapping 1" : R" — R”. The mapping T is called a

nonexpansive mapping if it satisfies the following
Tz —Ty|| < ||z —yl, Ve,y € R". (2.2.1)

The following fixed point iteration has been studied by many authors for approx-
imating either fixed points of nonlinear mappings (when theses mapping already
have fixed points) or solutions of nonlinear operator equations:

The Mann iteration process

In 1953, Mann invented iterative method, see [15], and used to obtain convergence
to a fixed point for many functions. Let a mapping 7' : R? — K", then the Mann

iteration process is defined as follows:

2! ¢ R®, chosen arbitrarily
2* V= (1 —ap)2* + Tz = M(2*, ay,T), k€N

where {ay} is real sequence in (0, 1).

In fact, we would like to peint out that the modified proximal point algorithm in-
volving single objective optimization and fixed point iteration in the framework of
Hilbert spaces and Banach spaces have been intensively studied by many authors,

for instance, (see [16,17]) and the references therein.

2.3 Proximal point algorithm

The proximal point method is a conceptually simple algorithm for minimizing a
function h : R* — R on R™. At first glance, each proximal subproblem seems no
easier than minimizing A : R" — R in the first place. On the contrary, the addi-
tion of the quadratic penalty term often regularizes the proximal subproblems and
makes them well conditioned. Despite the improved conditioning, each proximal
subproblem still requires invoking an iterative solver. For this reason, the proxi-
mal point method has predominantly been thought of as a theoretical/conceptual
algorithm, only guiding algorithm design and analysis rather than being imple-

mented directly. The PPA of a closed convex function i : R* — R is

A
prox} () = arg minyepn {h(’y) + §Hy — q;||2} (2.3.1)
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The proximal point algorithm solves a single optimization problem by solving a
sequence of optimization problems (2.3.1) which starts at a point z' € R" and

generates recursively a sequence of points {z*}%°,, where

. : Ak .
proxi (%) = 2" = arg min,cpn {h.(y) + ?L”y - .7:"||2}, (2.3.2)

and {A\;} is a sequence of positive numbers.

The proximal point method has long been ingrained in the foundations of opti-
mization. Recent progress in large scale computing has shown that the proximal
point method is not only coneceptual, but can guide methodology. Proximal al-
gorithms can be effective and often lead to more easily interpretable numerical
methods as compared to the ditect mnethods.

In 2005, Bonnel et al. [6] generalized the famous Rockafellar results from scalar
case to vector case, in which they investigate convex vector optimization prob-
lem in Hilbert spaces. After that, Ceng and Yao [30] developed both an absolute
and a relative version of approximate proximal point algorithm. They considered
the approximate proximal method via the subproblems of finding weakly efficient
points for suitable regularizations of the original mapping.

Later, in 2015, Papa Quiroz et al. [31] proposed an inexact proximal point method
of constrained multiobjective problems involving locally Lipschitz quasiconvex ob-
jective functions. They used proximal distances and assumed that the function
is also hounded from below, lower semicontinuous for convergence analysis of the
method. They proved that the sequence generated by the proposed method con-
verges to a stationary point of the problem. After that, in 2018, Joao Carlos de O.
Souza. [34] studied the convergence of exact and inexact versions of the proximal
point. method with a generalized regularization function in Hadamard manifolds
for solving scalar and vectorial optimization problems involving Lipschitz func-
tions. In 2018, Bento et al. [21] considered the exact proximal point method
of the constrained nonsmooth multiobjective optimization problem. They used
nonscalarization approach for convergence analysis of the method, where the first
order opthmality condition of the problem is replaced by a necessary condition
for weak Pareto points of a multiobjective problem. For more information on the
related works in this direction, ones may see |7,8,21,27,32-35] and the references

therein.
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2.4 Auxiliary concepts

The domain of h, denoted by dom i, is the subset of R” on which A is finite
valued. A function h is sald to be proper when dom(h) # 0. We say that a
function b : R* — R U {+oc} is lower semicontinuous function at a point & € R?

if for all sequence {z*} C R™ such that limy_, ,z" = %, we obtain that
h(2) < liminfy_, yeoh(z%).

For a closed set ¢ < R, it is well known that the indicator function of C,

Jo R" = R U {400} is a lower semicontinuous function,

We say that a scalar valued function ki R" - RU {-t-ec} is locally Lipschitz
continuous at z € R" if there exist a neighborhood U of 2 and a positive real

number L such that
|h{z) = h(w)| < Lliz —yll, Vz,yeU.
Next, we remind Fréchet and Mordukovich subdifferentials concepts.

Definition 2.4.1. Let h be a lower semicontinuous function. The Fréchet subd-

ifferential of i at © € R" is defined by

R {:B* c R™: liminf hly) = h(z) {5y = z)
Oh(z) = YOI yFE lly = |l

0, ifz ¢ domh.

= O}, i fe € domh,

As noted by Bolte et al. [18], the Fréchet subdifferential is not completely
satisfactory in optimization, since éfl(:b‘) might be empty-valued at points of par-

ticular interest. This justifies the choice of the following subdifferential:

Definition 2.4.2. Let h be a lower semicontinuous function. The Mordukovich-

subdifferential of i at x € R" is defined by

Ih(z) = {'v e R" : I(a*, %) € Graph(6h) with (2F,9%) = (,v), h(z") = h(:c)},

where Graph(dh) := {(y,'u.) ER"xR":1ue éiz.(y)}.



13

We can see that dh(z) C dh{z). In the particular case when h is differen-
tiable at x € R, then dh(z) = Oh(z) = {Vh(z)}. If h is convex, then both
subdifferentials 5]1(:1:) and dh{z) coincide with the usual subdifferential for each

z € dom h.

Definition 2.4.3. Let ¢ C R” be a nonempty convex set. Then for each z € C|

the normal cone is defined by
Ne(z) = {veR": (wyy—2z) <0, y€ C}. (2.4.1)

Remark 2.4.4. For nonempty closed and convex set C, 86¢(z) = Ne(z).

A necessary {but not sufficient) condition for ¢ € int(dom) A to be a minimizer

of h is
0 € oh(z). (2.4.2)

A point z € R™ satisfying the above inclusion is called limiting-critical or simply
critical. Given a lower semicontinuous function g : R* — R and C # @ a closed
and convex set, for the case where h = g + d¢, we have h is a proper lower semi-
continuous function with domh = €. Then the first order optimality condition

takes the following form:
0 € dg(z) + Ne(w), (2.4.3)

see ( [19], Theorem 8.5).

The following propositions are important in subsequent chapters.

Proposition 2.4.5. Let h; - R® — R be locally Lipschitz continuous at © € R"
for allie {1,...,m} and g : R" — R defined by:

g(z) = pax hi(x).
Then, g is locally Lipschitz continuous at  and
dg{x) C conv{dh;(x) : i € I{z)}, (2.4.4)

where “conv” denotes the convexr hull of a set and

IHz):={icl: h(z)=yg(x)}
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Proof. See { [20], Theorem 3.46(ii)). I

Proposition 2.4.6. Let hy, he : R" = R be functions such that hy is locally

Lipschitz continuous at & € R" while hy is proper lower semicontinuous with
he(Z) finite. Then

8(]2,1 + hg)(i‘) C Ohy (i) =+ ahg(’f)

Proof. See( [19], page 431). O

Proposition 2.4.7. Let h: R® — RU{40c0} be a proper locally Lipschitz function
and {y*} C dom h a bounded sequence. If {#*} is.a sequence such that 2 € Sh(y"),
then {2*} is bounded,

Proof. The proof follows by combining ( [19], Theorem 9.13 and Proposition 5.15)
for f = h,8 = Oh and B = {y*}. 0

Note: If in Proposition 2.4.7, we take {y* = &} and {zF € 9A(y* = #)}, then
{z*} C R™ is bounded. So it has a convergent subsequence and consequently

Oh(z) is relatively compact, that is, 9h(Z) is compact.

Proposition 2.4.8. Let h = R" — R be a RT-quasi convex locally Lipschitz
function on R*. If g € Oh(z), such that (h, % — ) > 0, then h{z) < h(z).

The next result ensures that the set of minimizers of a function, under some

assumptions, is nonempty.

Proposition 2.4.9. [19] Suppose that h : R™ = RU{+oc0} is proper, lower semi-
continuous and coercive, then the optimal value h is finite and the set {argmin h{z) :

x € R"} is nonempty and compact.

Next, we recall some concepts of Clarke directional derivative.
The Clarke directional derivative of a proper locally Lipschitz function i : R" —
R U {400} at z € R™ in the direction of d € R" is denoted by h°(z,d), and is

defined as

h td) — h(,
he(z,d) = limsup Uy + td) h(y).

=0, 5y t
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Now, we recall some concepts involving locally Lipschitz functions and non-
convex constrained sets.
Let C' C R® be a nonempty and closed set. We denote the distance function

d:R* — R of a point € R? to a set ' C R" as
do(z) = inf{||z — ¢|| : c € C}. (2.4.5)

We say that a point € C' is a Pareto-Clarke critical point of H in C if, for any

Teo(z), there exists ¢ = 1,...,m such that
hi(z*,v) = 0, (2.4.6)

where Te: () := {v € R* : d% (2, v) = 0} denotes the set of all tangent vectors to ¢/
at x. As mentioned in { [22], page 11), a vector v belongs to Te(z) if and only if it
satisfies the following property: for every sequence {z*} in C' converges to z and

k¥ converging to

every sequence fi in (0, co) converging to 0, there is a sequence v
v such that @® 4 fxu* belongs to C' for all k. The normal cone is the one obtained
from tangent cone T:(x) by polarity.

Therefore, the normal cone Ne(z) to C at x is as follows:
Ne(z) = {s e R {g,v) < 0,Yv € Te(z))

see [21]. If C' is convex, Np(a) coincides with the cone of normals in the sense of
convex analysis; see ( [22];, Proposition 2.4.4),

Now, we remind Clarke subdifferential concept of scalar and vector functions.
The Clarke subdifferential of scalar valued function & : R" — R at z, denoted by
O°h{z), is defined as

Oh(z) = {w e R": {w,d) < h°(z,d), Vd € R"},

see Clarke [23)].
The Clarke subdifferential of H : R* — R™ at 2 € R", denoted by 0°H(x), is
defined as

PH(z) = {U e R™" . UTd < H(z,d), vd e R"},

where H°(xz,d} := {h$(z,d), ..., h% (z,d)}.
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Proposition 2.4.10. ( /23], Proposition 1.4) h®(z;v) = max{{ v : £ € 0°h(z)}.

Remark 2.4.11. Tt is noted in [21] that, combining (2.4.6) with Proposition
2.4.10, we have the following alternative definition: a point z € R" is a Pareto-
Clarke critical point of H in C' if, for any v € T (z), theve exist ¢ € {1,...,m} and
£ € dh;(x) such that {&,v) > 0. Thus, if = is not a Pareto-Clarke critical point of
H in C, there exists v € Tz(2) such that Uv < 0, VU € 8°H(x).

The necessary condition for a point to be a Pareto-Clarke critical point of a
vector-valued function can be found in Bento et al. ( [21] Lemma 1), and is given

below,

Proposition 2.4.12.° [21] Let w ¢ RT \ {0} ond assume that C is closed and
nonempty set. If —UTw € Ne(z) for some U € O°H(x), then x is a Pareto
Clarke-critical point of H.

For the nonconvex case, a formula for the Clarke sudifferential of the distance

function (2.4.5) defined in Burke, Ferris and Qian [24] is as follows:

Proposition 2.4.13.  [24] Let C'C R™ be a nonempty and closed set. If v € C,

then
&de(z) C B[O, 1] N Ne(a), (2.4.7)

where B[O, 1] denotes the closed unit ball in R™.

Next propositions will be nuseful in next chapters.

Proposition 2.4.14. { [26], Theorem 8.2.1) Let C C R™ be a non empty set and
h:IR" — R be a Lipschitz function on R™ with constant L. If & is a minimizer

for the constrained minimization problem,
mink(z), =€ C, (2.4.8)
and T > L, then T is also a minimizer for the unconstrained minimization problem
min{ha(z) +rdc(z)}, =z € R™ (2.4.9)

If 7 > L and C 1s o closed set, then the converse assertion is also true: Any
minimizer T for the unconstrained problem (2.4.9) is also a minimizer for the

constrained problem (2.4.8).
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Proposition 2.4.15. ( [27], Proposition 2.6.1) Let & be a Pareto-Clarke critical
point of a locally Lipschitz function H : R™ — R™. If H 1is RT'-convex, then & is
a weak Pareto solution of the problem (4.0.1). |

Proposition 2.4.16. ( [28], Proposition 5.8(ii)) For @ function h : R* —» R
locally Lipschitz at & € R™ with modulus [ > 0, it holds that

|lz*|| <1, Vz* € I°h(Z). (2.4.10)

Proposition 2.4.17. ( 28], Theorem 5.10) Let hy, hg : R* — R be locally Lips-

chitz functions at T € R". Then,
O*(hy + ha)(T) CO°hy (T) 4 0% (). (2.4.11)

Proposition 2.4.18. [22] Let h; : R* — RU{+ock, i = 1,2,...,m, be locally Lips-
chitz functions at © foralli = {1, ..,m}. Then the function h{z) = max{h;(z)|i €

{1,...,m}} s also locally Lipschitz at & and

& h(z) C conv {8°i1,,-(a:)|/\g > 0, Z)\i = 1, M[hi{Z) — h(Z})] = O}-

=1
Proposition 2.4.19. ( [29], Theorem 2.1} Let h: R" = R U {+o0} be a proper
quasiconvex locally Lipschitz function on R". If z* € 8°h{x), such that (z* & —

z) > 0 then, h(z) < h(Z).

Next, we will see that Lipschitz continuity of a function is the weaker condition

than continuously differentiable condition,

Example 2.4.20. Let h - R — R defined by

3;2

1
in— 1 2 # (
sin — if ax#
0 if 2 =0

It is easy to see that the above example is Lipschitz continuous and differen-
tiable everywhere and
2zsin— —cos— if  2#0

R(z) =
0 if z=20
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exists but has an essential discontinuity at = = 0.
Next, we recall some basic concepts related to multi-objective optimization.

A sequence {z*} ¢ R™ is called a decreasing sequence if 2 < a* for k < p.
A point Z is said to be an infimum of z*, if there is no z such that z < 7 and
z < xF satisfying # < 2 for all k € N. A vector function H : R* — R™ is said
to be positively semi-continuous if, for every z € RY, the extended-valued scalar
function x — (H(z), 2) is lower semicontinnous.

The next definitions and results which can be found in [14] will be useful in

the next chapters.
A vector valued function H : R" — R™ is locally Lipschitz if all components of
H are locally Lipschitz.

We need the following in the sequel chapters:

Definition 2.4.21. [14] Let I/ : R" = R™ be a vectorial fanction.

o H is called R7}-convex iff for every z,y € R", the f{ollowing holds:

H((1=e+tty) 2 (1 ) H () +tH), t €0/1].

o H is called R¥-quasi convex iff for every z,y € R®, the following holds:
H((1 = )0+ ty) < sup{ H(@), H{y); | te 0,1,
where the supremum is considered coordinate by coordinate.

o H is called pseudo-convex iff H is differentiable and, for every z,y € R",

the following holds:

H(y) < H(z) == JH(z)(y —2) < 0.

Note that H is convex (resp. quasi-convex) iff H is componentwise convex
(resp. quasi-convex), see Definition 6.2 and Corollary 6.6 of ( [14], pages 29
and 31), respectively. It is noted in [14] that if H is convex, in particular, it is
also quasi-convex (the reciprocal is clearly false). If H is componentwise pseudo-
convex, then f1 is pseudo convex, although the reciprocal is false.

We need the following propositions in our proofs.
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Proposition 2.4.22. [25] Assume that H : R" — R™ is differentiable. Then H

s convex function if, only if, for every x,y € R",
JH(z)(y — =) = H(y) — H(z). (2.4.12)

Proposition 2.4.23. [25] Let H : R* — R™ be differentiable. Then H is quast-

convex function if, only if, for every xz,y € R,
H(y) < H(z) = JH(z)(y—z) 20. (2.4.13)

Remark 2.4.24. If H is differentiable, then from the characterization (2.4.12), it
follows that convexity is a sufficient condition for pscudo-convexity. On the other
hand, from the characterization (2.4.13), we obtain that pseudo-convex functions

are quasi-convex. Note that the reciprocal, in both the cases, is false.

The next proposition shows that under pseudo-convexity, eriticality is equiv-

alent to weak optimality.

Proposition 2.4.25. [25] Let H : R" — R™ be a pseudo-conves function and
z € R*. Then z s a weak Pareto optimal point of H if, only if,

Im(J H(@)) 0 (<R}, = 0.

Definition 2.4.26. [14] A subsct A of R™ is said to be R-complete, if any
decreasing sequence of 4 is bounded by an element of A, i.e., whenever {2} C A

is a decreasing sequence, then there exists z € A such that o < 2* for all k& > 0.

Proposition 2.4.27. ( [14], Lemma 8.5) If A C R™ is closed, has a lower bound

(i.e., 3 some a € A such that for all z € A, a X ), then A is R -complete.

Proposition 2.4.28. ( [14], Theorem 3.3) Consider the multi-objective problem
(4.0.1). Then argmin{H(z)|z € C} in nonempty iff H{C) has a R} -complete

section.

We end this section by recalling some concepts of proximal point mapping.

It was shown in [36] that the fixed point set F(prox}) coincides with the set
of minimizers of proper convex and lower semi-continous function i : R" —

R U {+oc}.
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Some other relevant characteristics of prox} of function A : R* — R U {400}

are incorporated in the following couple of lemmas:

Lemma 2.4.29. [87] Let h : R* = R U {+oc} be proper convex and lower
semi-continuous function. For any A > 0, the prozimal point mapping prox’; 18

NONeTPANSIvE.

Lemma 2.4.30. [38] Let h : R* — R U {40} be proper convex and lower

semi-continuous. Then for all x,y € R" and X > 0, the following inequality holds
1 1 1
2—/\|| proxt o —y||* — o ||m—y|f2+a||:c —prox? z||* < A(y) —h(proxh z). (2.4.14)

Lemma 2.4.31. [387] Let h : R" — R U {+oo} be a proper conver and lower

semicontinuous function. Then the following identity holds:

=
prox? o = proxﬁ ( 5 a proxh o -+ %:{:) , VeeR" and A > > 0.

We will end this section by recalling some auxiliary facts which will be useful
for providing the convergence results of the proposed iterative algorithm in next

Chapters.

Definition 2.4.32. A sequence {r‘"} ¢ R"™ is said to be Fejér monotone to a

nonempty set / iff, for all x € U
l&**! —af| < fla* — 2], k=01,

Definition 2.4.33. A sequence {.’L‘h} C R™is said to be quasi Fejér monotone to

a nonempty set U iff, for all z € U,
lz" T — 2 < [|l2® — 2|® + 9k, k=0,1,...
where 9, > 0 and ) 5o 9 < +o0.

Lemma 2.4.34. [40] Let U < R* be a nonempty set and {’U‘} C R" be a Fejér
‘monotone sequence to U. Then, {fc"} 18 bounded. Moreover, if an cluster point

of {2*} belongs to U, the whole sequence {z*} converges to T as k goes to +00.

Lemma 2.4.35. [{1] Let U C R" be a nonempty set and {:c"} C R" be a quasi
Fejér monotone sequence to U. Then, {:L"} is bounded. Moreover, if an cluster
point T of {a*} belongs to U, the whole sequence {a*} converges to T as k goes

to +o0.
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Lemma 2.4.36. [39] Let z,y € R". Let a € R and R denote the set of real

numbers. Then
laz + (1 — a)yll* + a(l — a)||lz — yl|* = allz]]* + (L — o) {lyl*

Proposition 2.4.37. [6] Let C' < R® be convez set and H : R" — R™ be o

proper RT -conver map. It holds that

arg min, {H(y)|ly € C} = U arg min{{H (y), 2)|y € C}, (2.4.15)
2R\ {0}

Proposition 2.4.38. ( [42], Coerollary 1} Let H : R* - R™ and C C R" be a

nonempty feasible set. It holds

argmin, {H(z)lr € R"} N C C argmin, {H(z)lz € C}.



CHAPTER III

PROXIMAL POINT METHOD FOR PARETO
OPTIMAL POINT OF SMOOTH QUASI-
CONVEX FUNCTIONS IN MULTI-

OBIJECTIVE OPTIMIZATION

In this chapter, we continue to study the Algorithm proposed by Bento et
al. [6]. In 2014, Bento et al. [5] presented a scalarized proximal point algorithm
for multiobjective optimization by assuming an iterative process. By scalarization
methods, one formulates a single objective optimization problem corresponding
to a given multi-objective optimization problem. With respect to the convergence
analysis, they showed that, for any sequence generated from this algorithm, each
accumulation pointis a Pareto critical point for the multi-objective function. The

Algorithm is given as below:

3.0.1 Algorithm

INITTALIZATION. Choose &' € R",
STOPPING CRITERION. If z* is a Pareto critical point STOP. Otherwise.
ITERATIVE STEP. Take a bounded sequence of positive real numbers { A},

e:=(1,..,1) € R™ and choose 2**1 ¢ R" such that

2" € argmin, cp. @ (H(:L) + &g, (x)e + %”’L — .'t:k||26) ,
where

W= {z eR": H(z) < H(z")}, (3.0.16)
and dg, denote the indicator function of €2, and ® : R™ — R is given by:

(I)(y) = MaXier (y'» ei)a
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where {e;} C R™ is the canonical base of the space R™. This nonlinear scalariza-

tion function can be rewritten as follows:
O(yy=inf{t c R:te e y+ R}, e:=(1,...,1) € R™,
The function ® satisfies the following properties:
Oz +ae) = O(x) + o, P(te) =tP(z), € R™, acR, t>0. (3.0.17)
x <y = dz) < Py), z,y€R™

In this chapter, we use the weaker assumptions of differentiable and locally Lip-
schitz properties on the above algorithm of the considered objective function in-
stead of continuously differentiable assumptions. We show that under these as-
sumptions, the method is still well defined and that the accumulation points of
any generated sequence, if any, are Pareto critical point for the multi-objective
function. Full convergence of the sequence generated by the Algorithm 3.0.1 is

also considered.

3.1 Main results

In order to provide the convergence of the Algorithm defined by iterative step

3.0.1, we consider the following asswmptions.

Assmuption 3.1.1. There exists iy € I such that hy, : R" — R is bounded below.
Assmuption 3.1.2. For alli € 1, h; is locally Lipschitz.

Assmuption 3.1.3. H is differentiable.

Assmuption 3.1.4. liminf; , o Az > 0.

Proposition 3.1.5. The Algorithm 8.0.1 is well-defined.

Proof. Define ¢y, : R™ — RU {+o0} by
A .
dr(z) = (I)(H(:L) + dq (z)e + %Hm - :1;"||2e), for each z € R". (3.1.1)

From Assumption 3.1.1, it follows that ¢, is bounded from below. Hence, we have

that ¢ is coercive. Now, as H is a continuous function, then {2 is a closed set
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and, in particular, §g, is lower semicontinuous. As ¢ is lower semicontinuous
and coercive, then using Proposition 2.4.9, we obtain that there exists z¥+! € R,

which is a global minimizer of ¢y. ]

Remark 3.1.6. The main improvement of the presented work in [5] is that we
consider the differentiability and locally Lipschitz properties of the objective func-
tion H instead of a continuously differentiable property (sce Assumptions (3.1.2)

and (3.1.3)).

Lemma 3.1.7. Assume that Assumptions 8.1.1 and 8.1.4 hold. Then the sequence
{a*} generated by Algorithm 8.0.1-is bounded.

Proof. For each k € N, define ¢, : R” — RU {+00} by
Ax
() =@ (H(:ﬂ) + 0g, (%)e + %H'c — :1:1"||26), for each 2 cR". (3.1.2)

It follows that 2**! € arg mingegn ¢(z). Then, from the definition of ¢y, we get

a e, , ‘ 1| B
D(H (@) +00, )+ 84 = oF|° < B(H (")) +-0a, (&) + 5 e — <1
Thus, by the definition of dg, (.), it follows that
My & , . ,
—2£||.q;’~+1 2P < (H (<)) — (I (2*)), kEN. (3.1.3)

Ax
Hence, by z* # 281 k € N, we deduce EI‘H:L'A'“ < 2*||2 > 0 and so
®(H(z"h) < S(H(2")},
thus by Assumption 3.1.1, we can assert that {®(H (z"))} is a convergent sequence.

Also, by taking the sum of inequality (3.1.3), we obtain

{

{
Z %“ﬂjkﬁ—l — ;L‘k”g < E (‘I’(H(fgk)) _ (I)(H(:E}H-l))))
k=0

k=0

= O(H(2")) — ©(H(<").

o : ek o : : :
This implies that the series _2_||$z.+1 — z*||? is convergent. Using this one, in

view of Assumption 3.1.4, we have 3,5 f|lz**1 — 2*||? < +00 and

n—1 n-—1 +oo
" —a®)]] < | D (" =) < Y fla* =k < et 2| < oo
k=0 k=0 k=0
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Subsequently, it follows that {2*} is a bounded sequence. This completes the

proof. O

Lemma 3.1.8. Assume that the Assumptions 8.1.1, 8.1.2, 8.1.3 and 38.1.4 are
true. If T is a cluster point of {z*} then T is a Pareto critical point, provided that

. is a convex set for each k € N,

Proof. Observe that, by Assumption 3.1.2, we have (¥ is a closed subset of R",
for cach k£ € N. Next, since Qg C £, for cach k € N and z is a cluster point of

{2*}, then there is a subsequence {2/} converging to Z and
Q0D D ..

thus for ¢ € N, there exist jo € N such that k;, >4 which implies that Vn > ny,

kn > kyu, = ¢ So, we obtain
., C anﬂ < £2;.

and 2% € Qi for all i < n. Since {; is closed and subsequence zh € §; thus

T € ;.
T € Mg = Q. (3.1.4)
This shows that £ is a nonempty, closed and convex subset of R™.

Now, we will conclude the lemma by contradiction. That is we will assume
that Z is not a Pareto critical point. It would follow that there exists v € R? such

that
JH(T)v < 0. (3.1.5)

Since H is differentiable, then D H(z) = JH(Z)v. Subsequently, from the defini-

tion of directional derivative, we have that there is § > 0 such that
H(z + sv) < H(z), foreach s € (0,5).

This implies that T + sv € {, for k € N and s € (0,6).
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On the other hand, since z**! € argmingems ¢r(x), then by (3.0.17) and
(2.4.2), we obtain

0¢€ B(Q(H(-)) +8q, () + %H : —:L‘"'||2) (z**1), for each & cN.
Thus, from (2.4.3), it follows that

Ak . . :
0€ 8(®(H()) + ”2"!:” ' *ﬂ?l‘Hz)) (z*1) + N, (a¥11), foreach ke N.

Note that, from Assumption 3.1.2 together with Proposition 2.4.5, we know that

the function ® o H is locally Lipschitz. Thus, by applying Proposition 2.4.6 with
Ak

hi(h) = ®(H()) and hy(-}= §i|| — z*||?, the last inlusion becomes:

0 € (D o HY(zFH) 4 Mp(z**! — 2) 4 Ng (2, for each k€N,

Subsequently, there exist sequences {w®}, {v*}, with w1 € 9(® o H)(2**1) and

v*H € N, (2%7)) such that

0= Wt A (2" = 2¥) 4 oF T for each k€N, (3.1.6)

As ®o H is locally Lipschitz, then by applying Proposition 2.4.7 with ¥ = z*,
h = ®o H and z* = w", for each k € N, obey the fact that {2} is a bounded
sequence we obtain that the sequence {w*} is bounded. Subsequently, by (3.1.6),
{v*} is also a bounded seguence.
Next, let {#%} be a subsequence of {z*}, which converges to . Moreover, let
@ (resp. ) be a cluster point of {w"} (resp. of {v*}). We can assume without
loss of generality that the subsequences {w*i} of {w*} and {v*} of {v*} converge,
respectively to @ and ¥ as j goes to infinity. By replacing & by &; in (3.1.6), letting
7 goes to infinity and taking into account that limy , oo Ar, (:EI"J"“ — gk ) = [ we

obtain:
W= —7. (3.1.7)

Now, since v+ € Nay, (zP*1) and Q C Q, for cach j € N, from Remark 2.4.4,

we have

(W, —a%) <0, foreach =ze Q. (3.1.8)
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k

Since v converges to @, thus by letting j goes to infinity in the last inequality,

one can conclude that
(v,2— ) <0, foreach zefl (3.1.9)
So, in view of equality (3.1.7), this leads to

(W,2 — %) >0, foreach =€ (3.1.10)

On the other hand, since {®(H(z"))} converges to ®(H(Z)) as § goes to
infinity, it follows from the definition of (® o H) that w € (P o H). Moreover,
since H is differentiable, we have éh;{z) = {Vhi(z)}. Using the characterization
(2.4.4) with ¢ = ® o H and © = &, there exists a vector a = (a1, ...,am) € R,

with > " ey = 1 such that

w= Y aiVh(z) = JH(@)a. (3.1.11)

For given s > 0, combining (3.1.10) and (3.1.11) one has
(JH(Z)'a,3 + su— %) = s(JH(z) ' a,v) = s(a, JH(Z)v) = 0. (3.1.12)
In contrast, by combining the definition of a with (3.1.5), we infer
{a, JH(Z)v) < 0,

which contradicts (3.1.12). This completes the proof. O

Next, we will show the full convergence of the considered algorithm provided

that the objective mapping is quasiconvex.

Theorem 3.1.9. Assume that Assumptions 8.1.1, 8.1.2, 8.1.3 and 3.1.4 hold. If
H is a RY-quast convex function, then the sequence {z*} converges to a Pareto

eritical point of H.

Proof. Remind that from (3.1.4) in the proof of Lemma 3.1.8, we know that

Q= N2y, is a nonempty closed and convex set. Let z* € Q be given, consider

o — 2| = 244 = 2+ [l — 2 P2t — P 2R ), (3.1.13)




28

for each k& € N. By following the line of the proof of Lemima 3.1.8, we know that
there exist sequences {w*} and {v*} with w*" € 9(® o H){z*+!) and v**1 €
N, (z"**1} such that satisfying (3.1.6), this implies

: . 1 . .
g = gt = )\_(le +v**1), for each ke N.
k

Using this cquality together with (4.2.12), we have

2 _ Hmk+1 o m*H? n Halh _ $k+1||2 _ _z_(warl —|—'Uk+l,:c* . $k+1)

Ak

ot~

1

(3.1.14)

for each & € N.

Next, taking into account that w* € 9(® o H)(z*t") and using the Proposition
3 g

245 with ¢ = ® o H and © = Z, we see that there exists a vector o*t! =
(ad™, . akrl) € RP, with 377 ol = 1 such that
Byl Z ,k+lv] .o u! 5 .,
wh T = fa% i (2®h), for each ke N. (3.1.15)

icI(zk+l)

On the other hand, since 2* € (), we see that / (z*) = H(2*'1). Subsequently,
it follows from the quasi-convexity of H and Proposition 2.4.8, that for each
E=1,2,..,

(Vhi(z* 1), 2% — 2"} <0, for each i €{1,...;m}, and k € N.
Thus, by using (5.1.3), we get
(W g* — 281 <0, for cach ke N. (3.1.16)

From another stand point, since v**! € Ng, (2%1) and €2 is a convex set (because

H is quasi convex), for each k € N, it follows that, we have
(W a* — g%y <0, for each k€N. (3.1.17)

As ||a* — z¥*+Y|2 > 0, for each k € N, the inequality (5.1.5) becomes

3?—(11,'k+1,$* _ $k+1) .
k

2

! 2 ) 2
ot~ = st - -
Ak

(‘Uk—H, xt $k+l)

)

(3.1.18)
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for each k € N. Combining last inequality with (5.1.4) and (3.1.17}, we conclude
that

|z*tt — 2*|| < ||a* — «*||, for each k € N. (3.1.19)

This means {2} is a Fejér monotone to Q. Thus, in view of Lemma 2.4.34,
we conclude that the sequence {a*} converges to Z as k goes to +oo. Finally, by
Lemma 3.1.8, we have 7 is a Pareto critical point of problem (2.2). This completes

the proof. L

Corollary 3.1.10. Under Assumption 8.1.8, if H is pseudo-convex or convez,

then the sequence {z*} converges to a weak Pareto optimal point of H.

Proof. If H is pseudo-convex or convex, in particular, f is R{-quasi convex (see
Remark 2.4.24) and the corollary is a consequence of the previous theorem, then
the sequence {a*} converges to & as k goes to +co and 7 is a Pareto critical point.
By Proposition 2.4.25, under pseudo-convexity criticality is equivalent to weak

optimality which implies that z is a weak Pareto optimal point. ]

3.2 Conclusion

This chapter presented the proximal point method for solving multiobjective op-
timization problem under the differentiability, locally Lipschitz and quasi-convex
conditions of the cost function. The control conditions to guarantee that the accu-

mulation points of any generated sequence, are Pareto critical points are provided.



CHAPTER IV
PROXIMAL POINT ALGORITHM FOR «QUASI-
WEAK PARETO SOLUTION OF NONSMOOTH

LOCALLY LIPSCHITZ MULTIOBJECTIVE

OPTIMIZATION

In this chapter, our interest is to consider proximal point method for
solving nonsmooth multiobjective optimization problem (4.0.1). Using the same
technique as in Bento et al. [21], we propose proximal point algorithm for finding
the solution concepts as c-quasi weak Pareto optimal points for constrained non-
smooth multiobjective optimization problem. In terms of Clarke subdifferential,
we introduce Fritz-John optimality condition of an e-quasi weak Pareto solution,
which we use for eonvergence analysis of our method. We also show that our
proposed algorithm is well defined and the sequence achieved by the proposed
algorithm converges to a Pareto-Clarke critical point. For a convex objective
function 1, we obtain the convergence to a weak Parcto solution of the problem.
Throughout this chapter, We consider the following (constrained) multiobjective
minimization problem

min H (z), (4.0.1)

zel

where ¢ C R" a nonempty and closed set and H : ¢ — R™ is locally Lipschitz

Tunction.

4.1 Necessary optimality condition

In this section, we consider multiobjective optimization problem (4.0.1) of find-
ing the e-quasi weak Pareto point of a vector valued function H subject to the

following constrained set

C:={z € Dlg(z) <0, j=1,..,p},
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where D € R” is a nonempty and closed set and g; : R* — R is a locally Lipschitz
function. We provide necessary conditions for a point z* € C to be an e-quasi

weak Pareto solution associated to the problem (4.0.1).

Proposition 4.1.1. Let 2* € argmin,, {H(z)|z € C}. Then, there exist t; > 0
and p; > 0 fori € {1,...,m} and j € {1,...,p} with 32"t +>°7_p; =1 and

7 > 0 such that

mn

0621&3"!1 —I—Z,LLJG"QJ —I—ZteIB% + 70%dp(z*),

i=1
where h;  R® — R, ¢; € RY forde€ {1,...,m} and B, denotes the closed unit ball
of z*.

Proof. For eachz € C, put U(z )—maxzc{l' oy hi(E) —hi(a) el p—2*|], g5 (2)}
Observe that ¥(z*) = max{h;(2*) — h;{z* ){+ez||$ —a*||, gs(2*)}. Since g;(z*) <0,
then we have that ¥(z*) = 0.

Next, since z* is an e-quasi weak Pareto optimal point, then there isno x € ¢

such that
hi(z) + el|la — 2| < hi(z®), Vie {1,.,m}. (4.1.1)
It can be easily verified that 0 < W(«), which infers that for all z € C, we have

U(z™) = inf ¥(z).

rel

It follows that z* is also a minimizer to the constrained optimization problem

min ¥{z).

zeC
Proposition 2.4.18 and locally Lipschitz properties of functions h; and gy
imply that the function V¥ is also locally Lipschitz around z*. Let L be a locally
Lipschitz constant of ¥ at * and 7 > L, then applying the Proposition 2.4.14 to

the last problem, we obtain
0 € 3°(¥(a*) + rdp(z)). (4.1.2)
Also, the sum rule (2.4.11) implies that

0 € 80 (z*) + 70°%dp(z*). (4.1.3)
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Now, by Proposition 2.4.18 and invoking the sum rule (2.4.11) applied to the ¥,

there exist non-negative real numbers ¢; > 0 and j;; > 0 such that "7 4 +
ijl it; =1 and

{it@"h +§:t,EB +Z;L93°gj } (4.1.4)

and the desired result follows by combining (4.1.3) with (4.1.4). i

4.2 Proximal point algorithm

In this section, we consider ' C R™ a nonempty and closed set and H : C - R™
is locally Lipschitz function.

Next, we consider the inexact proximal point algorithm for obtaining a
Pareto-Clarke eritical point of H in C. Take a bounded sequence of positive real
numbers { Az} and a sequence {e*} € R™, such that ||¢*|| =1, for all £ € N. The

method generates the sequence {2*} € C as follows:

4.2.1 Algorithm

INITTALIZATION: Choose an arbitrary initial point
z! c C. (4.2.1)

STOPPING CRITERION: Given z*, if ¥ is a Pareto-Clarke critical point, then
stop. Otherwise go to the iterative step.

ITERATIVE STEP: Take the next iterate 27! € C as y such that there exists
= RT satisfying

Ak

y € argming,_, {H(z) + Sl — a¥|%ek |z € ), (4.2.2)

et < crk ||y — a¥||e, (4.2.3)

where ( := {z € C|H(z) < H(2¥)} and {0} C [0,1).

From now on, we will assume that 0 < H.
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4.2.2 Existence of iterates

Proposition 4.2.1. Let H : ¢ — R™ be a continuous function. Then, the
sequence {z*} generated by Algorithm 4.2.1, is well defined.

Proof. We proceed by induction: It holds for & = 1 due to (4.2.1). Assume that

k

¥ exists and define

() = H(z) + %nm — aby2et

Since z* € {1, we have H () # §. By assumption on H that is 0 < H, we get,
0 < Hp(z). Now, let {y?} C H; () such that y* — y. Since y? € H () therc
exists 2P € (4 satisfying y? = H;(2P), for any p. We claim that {27} is bounded,
if not, then there is {p;} C {p} such that 2* — co as j — oo, then coercivity of
Hy, infers that || Hp{zP}]| = 400 as j = oo, On the other hand, ||Hi(2")|| — [|¥||
because y? = H;(2?) and y” —» y, which is a contradiction. Hence, we proved that
{z"} is a bounded sequence. Subsequently, there are {27} € {2} and z € R”
such that 2% — z as j — co. Moreover, by the continuity of H, we know that 2
is a closed set. Hence, z € (.. Applying continuity of Hj and using uniqueness
of limit, we can assert that y € Hy({%). This proves Hy(S2) is closed.

Subsequently, by Proposition 2.4.27 and property of RY that all decreasing se-
quences having lower bound converges to its infimum, we know that H () is

R*'-complete. Thus, Proposition 2.4.28 infers that
arg min, { Hy{x)|z € 4}

is not empty. Therefore, by Remark 2.1.5, it follows that arg minx,_,,{ Hx{z)|z €
) # 0. A

Remark 4.2.2. Note that if Algorithm 4.2.1 terminates after finite number of

iterations, then it terminates at a Pareto-Clarke critical point.

4.2.3 Convergence Analysis

In this section, first we present some results which play an important role in our

subsequent considerations. Then, we show that the sequence generated by our
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algorithm converges to a Pareto-Clarke critical point.

Proposition 4.2.3. For all k € N, there exists Ay € R™**, o* gk € RT, 7, > 0
and w* € R such that

AR (of + %) + N1 (b ofV (@t — 2R 4 (Y o)k et =0, (4.2.4)

where v* € By, w* € B[0,1] N Ne(2*) and S0, (ak + 8F) =1, VE € N,

Proof. For every k, consider the functions

Ak
2
As, H and ||z — z*||? are locally Lipschitz, the coordinate functions (1W;)(.) :=

H() — H(z") and {(Hy); (.} = H() + %H —xtl%ek, i€ {1,...,m}, of Wi(z) and

Hy(z), respectively, are also locally Lipschitz.

* is an'e-quasi weak Parcto solution for

Wi(z) = H(z) — H(z"), and Hp(z) := H(z)+ 2",

o — 2|

Since z
min Hy_1{z) such that W;_;(2) <0,

hence the desired result follows by applying Proposition 4.1.1, for each & € N
fixed with h; and g; by Hy_; and Wi, respectively, and taking into account that

from Proposition 2.4.7, we have

de(2") € B0, 13N Nefah), VkeN.
In this case, AT = [uf. .l ], where uf € 8°hi(2*) with ¢ € {1,..,m}, ot =
(af,...,a* )T and g% = (B}, .., 6%)%. L
Proposition 4.2.4. If there exists k € N such that "t = z*, then 2% is a

Pareto-Clarke critical point of H.

Proof. Supposc that for any k& € N, 21 = z* which implies that € = 0. Then

by Proposition 4.2.3, we obtain

AL (@ 4 ) ! =0, (4.2.5)
which infers that

— AL, (@ 4 pEHY) € Ne(akth), (4.2.6)

Since 31" (a¥ ™+ 551 = 1, we can say that (o*+!+8+1) € RT\ {0}. Morcover,
Ajy1 € 0°H{z**1), then using Proposition 2.4.12, we obtain the desired result. [



Proposition 4.2.5. Let ko € N be such that o® = 0. Then z*° is a Pareto-Clarke
critical point of H.

Proof. If there exists ky € N such that ag, = 0 then, from (4.2.4), we have
A;i:gﬁku + Tkowko =0, (427)

where 74, > 0, w™ € Ng(2*). Since Ay, € 9°H(a*) and ff € R \ {0}, the

desired result follows by using Proposition 2.4.12. O

From now on, we will assume that the sequences {\.}, {e!} and {z*} are
infinite sequences generated by Algorithmn 4.2.1, then o # 0 and z*+! £ 2%, in
view of Proposition 4.2.4 and 4.2.5, respectively.

Next we prove that every cluster point of *, if any, is Parcto-Clarke critical point.

Theorem 4.2.6. Assume that there exist scalars a,b,e,d € Ry, such that a <
M<bce<et <d, op<d< 1, forallk € N and i € {1,..,m}. Then, every

cluster point of {z*}, if any, is a Pareto-Clarke critical point of H.

Proof. Since
: , Ak o @
¥ € argmingy, {H(z)+ EJ‘H'L —z*||%e¥ |2 € ),
we have

max {h,,-(:c") — hi(zF) Ef-‘||ﬂfj‘ — fﬂHl” —

1<i<m 2 o —a¥|Per} > 0.

Hence for any k, there exists some index ig := dg(k) € {1,...,m}, where the

maximum in the last inequality is attained. Thus,
Ak
k k+1 kofk k] Rkl k(2 k
o) — hig(=1) o ¥ — a4 — 2t P > 0
which provides us

Sk — ¥k, — et — 2 < g (o) = gl

By (4.2.3) and boundedness assumption of {)\;} and {e*}, we obtain

($A+1) > _L||ml.+1 _ wk||2e?0 _ Ei\OH‘,L,I&l _ ,Lh“

hiD(IEk) —h 5

fo
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Ak 1k Al i 2R
> _2!~;||IA+1 _ :1:"[|ze§‘0 _ aké‘Hm"H N {EA‘ 26?0
Ak g 9k
> (1= o) Sille** — at|Pef,

Then, from the boundedness of {\;}, {¢} and {0}, we obtain
ac

1—d)—=
-0

Combining (4.2.2) with the definition of Q, it follows that {H(z*)} is nonin-

e+ — 2| < hyg (&) = Ry ("), (4.2.8)

creasing sequence and by assumption on H, i.e, 0 < H, we have that {H(z*)} is

a convergent sequence. Hence, by taking k — 400 on (4.2.8), we get

lim (2F+! —2*) = 0, (4.2.9)

koo

Take z as a cluster point of {2}, then there exists subsequence {z*i} of
{z*} converging to Z. Therefore, by applying Proposition 4.2.3 for the sequence
{z%}, we have that there exist sequences Ay, ;1 € O°H(ah ™), oMt ghitl ¢ RY

and v*7 € B s such that

Az;+1(a'kj+l+ﬁkj+])+)\kj (ekj’akj+1)($kj+1_$kj)+<6kj, a,kj+1)vkj+l+7,kj+1wkj+l -0,
(4.2.10)

where Y7 (ot 4 g5 v 1 and whit! € Np(ahit),

From the convergence of {&*/}, we obtain that {z*} is bounded. By locally
Lipschitz property of H, it follows by Proposition 2.4.7 that their subgradients are
bounded. So from the above conditions the sequences Ay, v*i, afs, g5, w* are
bounded. Thus, equality (4.2.10) implies that 7, is also bounded. Now, without
loss of generality, we may assume that the sequences Ay, v%, a*i, g%, w" and
7y, converge to A, ¥, @, 8, w and 7 respectively. Also, since A, (e, a*it1) is
bounded, then by letting &; goes to infinity in (4.2.10), we obtain

AT(a+ B) +7o=0. (4.2.11)
Since @ € Ne(@), (@ + B) € R\ {0}, A € &°H(%), it follows from (4.2.11)
that
—A"(a+ B) € No(z),

and this together with Proposition 2.4.12, enables us to say that Z is a Pareto-

Clarke critical point of H. This completes the proof. ]
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Next, we present a technical result that will be useful in the convergence

analysis.

Lemma 4.2.7. Let {z} C [0,1) be a sequence such that >_ iy 2k < +00. Then

+o0

2k
ZZ—zk < 400 and H(1+2—zk) < 400,

k=

Proof. The first statement follows from the following inequality

2

< Zp
2""53;; ,

since z € [0,1) and > 200 oz < +oo. For the second statement, setting m =
2k

, then we have

2“2;;
! !
H 1—|—m < exp Zm
k=0 k=0

for all I > 0. In fact, as the function z + In(1 + 2) — @ deereases on [0, +o0) and

reaches its maximum value zero at z =0,
(1 + ) <,

for all & > 0. Smunming the last inequality over £ = 0, 1, ..., 1, we have

{

!
Zln(l +o) < Z'Um
k=0

k=0
for all { > 0. The result follows from the product rule for logarithims and from

basics properties of the exponential function. O

Next, we will present full convergence theorem of proposed Algorithm 4.2.1.
We will consider that I : ¢ — R™ is R7-quasi convex, (' is convex set, and the
following well-known assumption.

H1: The set (H(z") — RT) N H(C) is R7-complete.

Theorem 4.2.8. Assume that H1 holds true and Y ;50 < +oo. Then, the
sequence {z*} generated by the Algorithm 4.2.1, converges to a Pareto-Clarke

critical point of H.
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Proof. Define

Assumption H1 implies that E is nonempty. Take z* € £, which infers that

z* € ) for k € N. It is easy to see that:

llak — 2| = ||**t — 2|2 4 ||o* — 2P 2(at — 2t M — 27), VE e N,

(4.2.12)

Following the steps of the proof of Theorem 4.2.6,

Ap(eF, af ) (@f —af )y = AT (T R (F oM M b, VE €N

(4.2.13)
Now, combining (4.2.12) with (4.2.13), we get
% (”,EL S| = et = | — et — $k+1”2>
<Ak+l( KL 4 ghly (ko FIy IR b ket m*>
(4.2.14)

m
Z R ﬁk+1 ( Bl T k41 'L*) + 2 a‘f+16?‘(vk+l,(lﬁk+l _ a,*)

+ Ty 1 (W gt — z),

where by = (e¥, o1y, uf™ € &Phy(a*H), Yk € N and i € {1,...,m}. Since H is
R™-quasi convex function, in particular, h; is quasi convex for each i € {1,...,m}.

As z* € € and uft! € 3h;(z*t?), it follows by Proposition 2.4.19 that

m

S (bt B b g ) > 0, YR e N (4.2.15)
i=1

As C'is a convex set, w*t € No(z**!) together with 7,1 > 0 and characterization

of convex normal cone imply that
T (W 2F T — 2% >0, VR €N, (4.2.16)
By combining the inequalities (4.2.15), (4.2.16) with (4.2.14), we obtain

2

o — | — [l = a2 = ot — P > =
Mol

m k+1 A k41 R4+1 .=
i= 10' ( y L Z >
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e

for all k € N. As, 7 + s > 2y/rs holds for 7, s > 0, taking s := ||z**! — 2*|| and

r = [jz* — 2%+, we obtain
_ $*||2_ l|$k+1 _ 1’*”2 . ”,LA o mk+1|l2 > _% [||$k+1 —:Ek||2—l— ||:E*—a:k+1||2],

l*

for all k£ € N. Thus, we get
T s Lt e R
1— T
o (4.2.17)
< (1 v )Hmk — 2|4 Ve N
1 - ar
Since > pop 07 < 00, it follows that

+o0 2 400 2

20 0
K= Eo < d Ky = 1 : :
0 1— 20 B = JH(+1_20?)<+00

—ko

By (4.2.17), observe that for all £ > ko
2
T

~k+1_ S 2< 1
o Hallzx (A2 s
) (1 2 i

= I ||a* — 2%
This shows that {z*} is bounded. Then (4.2.17) becomes
Rl _ (2 B2 207 2
la¥t —a*|® < || — 2¥||" + —F= K*, Yk e N. (4.2.18)

20

- 2 a
where K = sup,, ||z* —2*||. Take n, = T K2 Since > 0and Y poy e < +00,
we obtain that {z*} is quasi-Fejér convergent to ¥ and boundedness of {z*}

implies that the sequence {2*} has a cluster point #. Since Theorem 4.2.6 implies
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that & € K. Therefore using Lemma 2.4.34 with U/ = F, we conclude that the
whole sequence {z*} converges to & as k goes to +o0, where  is a Pareto-Clarke

critical point of H. U

Corollary 4.2.9. If C = R", H : R" — R™ is R7'-convex and locally Lipschitz

function, then the sequence {z*} converges to a weak Pareto optimal point of H.

Proof. Tt is immediate from Proposition 2.4.15. (J

4.3 Conclusion

In this chapter, we presented an inexact proximal point algorithm for constrained
multiobjective optimization problems under the locally Lipschitz condition of the
cost function. Convergence analysis of the considered method, Fritz-John nec-
essary optimality condition of e-quasi weakly Pareto solution in terms of Clarke
subdifferential is derived. The suitable conditions to guarantee that the accu-
muilation points of the generated sequences are Pareto-Clarke critical points are

provided.



CHAPTER V
HYBRID PROXIMAL POINT ALGORITHM FOR
SOLUTION OF CONVEX MULTIOBJECTIVE

OPTIMIZATION PROBLEM OVER

FIXED POINT CONSTRAINT

In this chapter, we consider the convex constraint multiobjective opti-
mization problem as the fixed point set of nonexpansive mapping. By owing the
concepts of proximal method and Mann algorithm, we introduce the algorithm and
aim to establish the convergence results of the such proposed iterative algorithm
to compute a solution point of the considered constraint convex multiobjective
optimization problem. We consider the constraint multiobjective minimization
problem:

Dinf (v} . (5.0.1)
where H : R —» R™ and 7' : R" — R". We will show that under some suitable
conditions the following modified proximal point algorithin for multiobjective op-

timization involving Mann iterate in R, z ¢ R*\ {0}:

k

A
TV = arg 1ninyeRn{(H(y) + ?AH?J - 33k||26k, 2y}

(5.0.2)
oA = (1 — )3 4+ o TEF

couverges to a weak Pareto optimal point of the constraint multiobjective opti-

mization problem (5.0.1).
5.1 Multiobjective Optimization Problem Over Fixed Point
Constraint

In this section, we prove the main convergence theorem of proposed iterative

scheme. We will work under the following assumptions:
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(Al) H is R7-convex function.
(A2) H is positively lower semicontinuous function.
{A3) T is a nonexpansive mapping.

(A4) There is z € R \ {0} such that T, := argmin,p. {(H(y), 2) } N Fix(T) is

a nonempty set.

We proceed with the following main tools.
Lemma 5.1.1. Assume the the assumptions (Al)- (A4) are satisfied. Then,
under the following control conditions:

(i) {2} is a bounded sequence of positive real numbers,

(i1) {ap} 18 a sequence such that 0 < a < ap, < b <1, Yk = 1 and for some

constant a,b in (0,1),

the sequence {a*} which is generated by the algorithm (5.0.2), with respect to z,
satisfies the following items

(i) limp_,e0 l|2% — z*|| exists for all a* € T,;

(i3) limy_eo ||* — %)) = O;
(ii1) limg e || T2* — 2F|| = 0.

Proof. Let 2”7 € T,. So, we have ¢* = Te* and 2* € argmin, g {(H(¥), 2)}.

Then for all y € R™, we acquire
% AA‘ Lk =127k < {H{: )‘k K2 R
(H(a%),2) + 2o — 2P, 2) < (), 2) + Sy — Pl )

Let us note that, since H is positively lower semicontinuous, then we have the
scalar valued function {H(y), ) is lower semicontinuous and convexity of H im-
plies the convexity of (H(y),z), hence ¢,(y) = (H(y),2) is proper, convex and

lower semicontinuous function.
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Now define 8, = Ap{e*, z). Note that, S > 0 because A, > 0, z € R\ {0},
{ef} C RT,. So we get that z* = prox,” «*.
(i) Now, we first show that limy e ||2% — 27| exists for all z* € T,. Noting that

@k = proxgi z* for all £ > 1. So, Lemuna 2.4.29 provide us

=k

I 4

— ] = proxf’g; at — proxg’ || < ”"Lk —2*||. (5.1.1)
It follows from the algorithm (5.0.2) and nonexpansiveness of T° that

¥ =2 = (1 = aw)i® + o T2" — 27|
< (1 - ap)[|@* = a5 — 27|
< (LBl =i+ axlzt = 2% (51.2)
= ||zt |
<|z* = 2*||, Vk > 1.
This shows that {[|2*—=2*||} is decreasing and bounded below. Hence limy_, e ||*—
z*|| exists for all z* € T,.

(ii) In order to proceed for part (ii), we assume without loss of any generality

that
lim ||lz® ~ 27| = ¢ > 0. (5.1.3)
k—y00

Indeed by (3.1.7), we have

1

§)TL (”%A a :L*||2 N ”:LA - 1"(“2 X “'LA v i"J!‘”Z) = ¢z(’L*) - qﬁz(i‘ik)

Since ¢, (z*) < ¢,(&*) for all k > 1, it follows that
Iz — &7 < fla® — 2| — 18" — 2|, (5.1.4)

Therefore in order to prove limy_, ||z —2*|| = 0, it suffices to prove |F*—z*|| — ¢,
because |z* — z*|| — ¢

Taking lim inf on both sides of the estimate (5.1.2), we have
¢ < liminf |2 — 2¥|. (5.1.5)
k—0a
On the other hand, by taking lim sup on both sides of the estimate {5.1.1), we get

limsup [|#* — 2*|| < limsup||z* — 2*|| = c.
k—co k—oo
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Hence, the above estimate together with (5.1.5) implies that
lim [j#* — 2*|| = e (5.1.6)
k—oo

Therefore, from (5.1.4), we obtain

lim ||z* — &%|| = 0. (5.1.7)
k—o0
(iii) Next, we prove that limy s ||72° — @¥|| = 0. As, we observe from Lemma
2.4.36 that

ot — 2|2 = |11 — @)t e Tah =
= {1 = ap}(@® = a*) + ap(@z" — 1)1
= (LagllE 2|7 al|zEt — a2

T Q’k(l — Ogt)”"lv,]l - T"IZRHZ
Since 7' is nonexpansive, it follows that
lz* 1 a ) < (1= o) |8 — 2711 + a3 — @°||* = arl — an)llE* — T2
< 2 P - an(1 = el - T
<|la® =¥ (P — a(1 - B & - TE"|P.

This implies that

1
a{l—b)

||&* — TaE || < (Jl* = 2*)|” = |lz*t* = 2*||*) = 0 (as k — o0), (5.1.8)

Since T nonexpansive and from {5.1.7), (5.1.8) we obtain that

|12 — Ta|| < 18" — T2"|| + | 7" — Ta|

(5.1.9)
< ||&F — T#*|| + |35 — 2% = 0 (as k — oc).
Now, we can prove that limyo ||2* — T2*|| = 0. From (5.1.7) and (5.1.9), we
obtain
|* — Tak|| < ||* — &% + |7F — T2*|| = 0 (as k — o0). (5.1.10)
4

Now we are in position to present our main theorem.
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Theorem 5.1.2. Assume the the assumptions (A1)- (A4) are satisfied. Then,

under the following control conditions:

(i) {Ai} is a bounded sequence of positive real numbers such that A, > A > 0,

for some positive real number A;

(ii) {c;} is a sequence such that 0 < a < ap < b < 1, Vk > 1 and for some

constant a,b in (0,1),

the sequence {z*}, which is generated by the algorithm (5.0.2), with respect to
z, converges to a weak Pareto optimal point of the constraint multiobjective opti-

mization problem (5.0.1).

Proof. In fact, it follows from (5.1.7) and Lemma 2.4.31 that

k

I prox§r & 2| < ffproxfs &* — %} + [l2* — 2|

= || prox$® z* leoxﬁ A||—|—H"L — ¥

A
= prox§* o —ploxA (ﬁ}‘ ploxﬂ ok + — )H
o2 y B

+ Jlg* - o)

: A P \V k .
< lzF = (1= E) prox’ o ——g¥|| +|z* — 2*||

By
Sal %)nmk = 4 [l ~ 2 = 0 (as K — o0)
(5.1.11)

Moreover, by (5.1.2), we have that {2*} is Fejér convergent to T,. So, it
guarantees that {z*} is bounded. Then there exists a subsequence {z*'} C {z*}

such that 2 - p*. By (5.1.10),
||zt — Taki|| — 0.
It follows that p* € Fix(T). Also, from (5.1.11), we have
l2¥ — prox$= abi|| — 0.

Since prox‘i" is a nonexpansive mapping. Then, we get that p* € Fix(proxf") =

arg min cpn$-(y). This shows that p* € T,. Therefore, using Lemma 2.4.35 with
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U =17, we conclude that the whole sequence {af‘} converges to p* as k goes to
0.

Further, we can see by equality (2.4.15)} that p* € argmin {H(y)|y € R"}. Hence
p* € argmin,{ H(y)|y € R"} NFix(7"). Finally, by Proposition 2.4.38, we obtain
that the sequence {z*} converges to a weak Parcto optimal point of the constraint

mmltiobjective optimization problem (5.0.1). This completes the proof. O

Remark 5.1.3. It is remarked that if we take constraint set Fix(T) = R", then
we get multiobjective optimization problem (2.2), which is done by many authors

by different methods, see for instance [6,7,9].

5.2 Conclusion

The purpose of this chapter is to consider the convex constraint multiobjective
optimization problem, as the fixed point set of nonexpansive mapping. By owing
the concepts of proximal method and Mann algorithim, we mitroduce the algorithm
and aim to establish the convergence results of the such proposed iterative algo-
rithm to compute a solution point the considered constraint convex multiobjective

optimization problem.



CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we studied and introduced some proximal point algorithm for mul-
tiobjective optimization. This thesis is composed of 5 chapters. We give here
necessary and useful information about these chapters.

In chapter 2, we summarized the various well-known definitions and results, which
provided and presented a necessary and essential background for the subsequent
chapters. All contents of chapter 2 are known and properly referred.

In chapter 3, we considered the proximal point algorithm for multiobjective op-
tinization which was introduced by Bento et al. [5]. The main is to relax the
conditions on the considered objective function. Indeed, the work presented in
chapter 3 extends the class of functions from continuously differentiable to differ-
entiable and locally Lipschitz.

In chapter 4, we developed an inexact version of proximal point method of Bento
et al. [21]. In terms of Clarke subdifferential, we introduced Fritz-John necessary
optimality condition of e-quasi weakly Pareto solution which we apply for conver-
gence analysis of proposed method. We have presented that the proposed method
is well defined and under some suitable conditions the sequence attained by pro-
posed method converges to a Pareto-Clarke eritical point. The newly proposed
inexact proximal point algorithm is important because of its practical point of
view. The proximal point method is a conceptual algorithm, and its computa-
tional performance strongly depends on the method used to solve the subproblems.
Hence, in practice computations introduce numerical errors in order to solve the
auxiliary minimization problems and these methods usually provide only approx-
imate solutions of the subproblems. Clearly, it is very important, from the view
of practice, to study the asymptotic behavior of iterations of the algorithm in the
presence of computational errors.

In chapter 5, we have considered the convex constraint multiobjective optimiza-
tion problem when the constrained sect is a fixed point set of nonexpansive map-
ping. By combining the concepts of proximal method and Mann algorithm, we

introduced the algorithm and provided the convergence results of such proposed
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iterative algorithm to compute a solution point of the considered constraint convex

multiobjective optimization problem.

In the future, we do think that the work in chapter 3 is extendable for the prob-
lems involving non-differentiable functions by defining the Pareto critical points
using directional derivatives. We also intend to introduce the proximal point algo-
rithm for quasi-convex multiobjective optimization constrained to non-expansive
fixed point mapping for finding weak Pareto solution, which can be seen as the

extension of work done in chapter 5.

The results in chapter 5 also suggest us the algorithm for finding the weak
Pareto optimal point of the considered problem (5.0.1), of course, the convergence
analysis of this suggested algorithm and also the (new) updated algorithms for
finding the Pareto optimal point of this problem (5.0.1) should be considered in
the future works. We also intend to propose a subgradient inethod for essentially
quasi-convex multiohjective optimization constrained to non-expansive fixed point

mapping for finding Pareto solution.
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