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ABSTRACT

This thesis prescnts the study of Faddeev-Jackiw formalism on the generalized
of Proca field. Purpose of this work is to calculate degree of freedom and to check that
the number of degrees, of freedom is as epected. An important point is that Lagrangian
density of the system is written in first order form. Procedures for this work are canonical
momenta, canonicat [-form, symplectic two-form, constraint calculation and inverse of
the symplectic 2-form calculation, respectively. According to flowing steps, the degrees

of freedom of the system equals to three.



CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Scientists try to explain the Universe [1] from the beginning era to the present
age. The early Universe is called inflation and at the present is called late time accelerated

expansion of the Universe [2]

At the present, there are various models for discussion the late time accelerated
expansion of the Universe . In particular we are inferested in two models which are

Generalized of Proca field [3], and cosmology in case of two barotropic fluids [4].

This work will explore some aspects of the two models. Firstly, for the general-
ized of Proca field is a constrained system. It is expected to have three degrees of freedom
[3]. There are many kinds of methodology to study and to confirm the degrees of freedom
of constrained systems for example Dirac formalism [5], and Faddeev-Jackiw formalism
[6]. Starting from the first, the Dirac formalism is a method used for constrained systems
[5]. We are interested in calculating the number of degrees of freedom of the system,
The calculation involves reclassifying all of constraints of the system. In case of there
are many constraints and complicated constraints, this process may be complicated and
inconvenient. The second is the Faddeev-Jackiw formalism {6} which is also a technique
used for a constrained system. If we want to find the degrees of freedom number of the
system, one can use the constraints of the system to directly calculate the number. The

Faddeev-jackiw formalism is more easier than the Dirac formalism [7] [8] [9].



This work, we use Faddeev-Jackiw formalism on the generalized of Proca field
[10}]. The reasons that we select this formalism are the generalized of Proca field [3] is
a constrained system, Lagrangian density form of the system is too complicated and this

formalism is applied on the Proca field [7] [8] [9].

The second model is cosmology in case of two barotropic fluids. In this model
we apply by non-linear Schradinger-type formalism. We want to connect the Ermakov-
Pinney equation {11] and the Friedmann equation to study some events of the Universe
in the context of cosmology, which is called non-linear Schrodinger equation (NLS) with

two barotropic fluids [4].

1.2 Objectives

The aim of this work is to study the generalized of Proca field by using the

Faddeev-Jackiw formalism and NLS of scalar field cosmology.

1.3 Frameworks

Scope of this work 1s to study the generalized of Proca field with derivative

self-interactions from Ly to £y [3] and NLS of scalar field with 2-barotropic fluids.



CHAPTER 1I

THEORIES AND TOOLS

2.1 Classical Mechanics
2.1.1 Lagrangian Formalism in Classical Mechanics

Considering a point particle in d dimensional spaces, action of this system is

given by
to .
S / AI(7.3.0), @.1)
t1
where L(q, ¢;t) is Lagrangian of the system, that can be extended as
(G40 = Hd &y 6, ¢ 62,4, b (2.2)

where §'is coordinate, and ¢'is velocity of the system. Equations of motion can be written

as
d (oL oL
— (2} 22 <0 2.3
dt (6(;") dq’ 2:3)
where 7 runs for 1, ..., d. The equation (2.3) is called Euler-Lagrange equation.
2.1.2 Hamiltonian Formalisi in Classical Mechanics
Hamiltonian formalism is defined by using Legendre transformation as
H@Gt) =5 ¢~ L@ 4,1, 2.4)
In this context, p is conjugate momentum which reads
aL
Pi= g (2.5)
Considering the equation (2.4), the equations of motion are written as
: OH
;o 2.6
q apl 3 ( )
0H
— a7 2.7)

pt = 8(1, )



Phase space function in d dimensional spaces of the system is g(7, ¢, t), time

derivative of g is in the form of

dg ag Bqu (")qdp
dt ot f)q dt = op dt

= at I+ Z ( % i+ w—p;) (2.8)

We are interested in the case in which the phase space functions are not explicit functions

of time. Therefore the equation (2.8) becomes

dg /0y - 0
- = e ; 2.
dt ; (8q*q Lo, 8p1 ) 2.9)
Substituting the equation (2.6) and (2.7) into the equation (2.8), one can see that
dg dg 8H 09 0H
dat Z (8q Op; Op; Ogt ) @19

=

The right hand side of the equation (2.10) is Poisson bracket,

4 dg OH  dg 0H
LN A ; (aqf dp;  Ops aqi)' @.11)

Considering the equation (2.11), the meaning of the Poisson bracket between the the
phase space function g and the Hamiltonian /1 is time derivative of the phase space
function. Using the Poisson bracket relation to calculate the Poisson bracket between

phase space function g with the phase space variable ¢°, and p; respectively, one can see

that
d 4 .
i dg 9¢ _ 99 d¢'
{9.4} = ij(aq;apj 8pjaqj)
dg
_ _Y99 2.12
By (2.12)
and
d
N dg Op;  Jg Op;
lopi} = ;(Oq i Ops aqf)
_ 99 2.13)

dq?



In generally, the Poisson bracket between phase space variables ¢ and p is in the form of

dq* Op,,  Opy Og*

( dq' 9p;  Oq' Op; )

M=~

{qi:pj} =
=1

I
—
o

(2.14)

2.2 Classical Field
2.2.1 Lagrangian Formalism in Classical Field

Considering a field ¢*(¢, T), the action in d-dimensional space time is written-

das
S = / d* e L($%, 0,4, (2.15)

where £(¢%, d,¢") is Lagrangian density. In this context, « is a label, which runs for
1,.., IV, p is space-time index, g = 0,1,2...,d, and a#=(¢, <! 22, ..., z%). From the

equation (2.15), the is in the form of

L(t) / AL, 049, 2.16)
The equation of motion can be written as
ar oL
3"(6(@@0)) O @.17)

The equation (2.17) is called Euler-Lagrange equation.
2.2.2 Hamiltonian Formalism in Classical Field
The Hamiltonian can be written as
H= f d*TH, (2.18)

where # is Hamiltonian density . From the section 2.1.2 is stated that the Hamiltonian

density is defined by using the Legendre transformation as

N
H=> I.¢"— L, (2.19)
a=}



where 11, is defined as conjugate momentum of the field ¢°, which is calculated as

II, = 8.11 . (2.20)
dg?
Letting (7 and #' are phase space function, which read in the form of
G = G(¢°I,,1),
o= F(¢°,11,,¢). (2.21)

Likewise, the Poisson bracket between the phase space function and the Hamil-
tonian in classical mechanics is shown in the equation (2.10). If we are interested in the

classical field, it is written as

Q@) 6H - 6G(F) OH
{C(x), HY = Z/dd WZ)(SH & 6Ha(z”)5¢“(é’))' (2.22)

The Poisson bracket between the phase space function and phase space variable are pre-

sented in the equation (2.12) and (2.13). In classical field, the Poisson bracket relations

are in the form

R o S [ g SO B G 6@
TR Z/ i )
$G()

B Sl (2.23)
and
5G(#) dIL(y)  SG(E) oTTy(3)
(@ Lo} = Zf oo o1, ~ o1, 603
__ 0G(@)
T S (2.24)

where a, b arc labels of the phase space variables.

In generally, the Poisson bracket between the phase space function G and F is

in the form of

G(T) 6F(y) 0G(Z) dF(y)
e Zf “(p@ime M) °




2.3 Tools

In this thesis, we use various mathematics techniques. Examples of the tech-

niques are Dirac delta function, differential form and differential equation.

2.3.1 Dirac delta function

We use the Dirac delta function for canonical momenta calculating in the pro-
cess of Faddeev-Jackiw formalism. The Dirac delta function é{x) is not a function. For
example, the Dirac delta function at any point except z = 0 equals to zero, and the Dirac
delta function at = 0 cquals to infinity as

0, it z#0

§(z) = { : : (2.26)

o, if  a=0

Properties of the Dirac delta function with integration can be written as

f S{z)de =1 (2.27)
and
|- r@sis = 1), @)
In case of the spike moves from = = 0 to point a, the equation (2.26), (2.27) and (2.28)
becomes
g, if  z#a
&z — = .
(’L (L) {oo, if z=a (2 29)
/ dz —a)dz = 1 (2.30)
f F@)o(z —a)ds = fla). 231)

If we consider the Dirac delta function in d-dimensional spaces, the Dirac delta function

is written as

§UF) = 6(x1)8(wz), ..., 6{zq). (2.32)



In d-dimensional spaces, the equation (2.30) and (2.31) become
/ §4D)64(F) =1 (2.33)
and

[ 1@8 - )@ = o). (2.34)

In this work, we interested in case of Dirac delta function integration. Especially,
in the canonical !-form momenta calculation of Faddecv-Jackiw formalism. Example

calculation for this work is

/ﬁo(m)é(fz,‘ — 2"z = 7™a’). (2.35)

2.3.2 Differential form

In this section we usc differential form by applying with wedge product, interior

product and exterior derivative. Firstly, we will start to explain the differential forms.
In a coordinate basis, a differential p-form is written as

1 ) -
W) = ﬁwil_,_,’pdw“ A datr, (2.36)

where A is wedge product. The wedge product between p-form and g-form can be written

as

1

Mail..,;pﬁjlquda:“ Ao AdatP Adas? A Adade, (2.37)

apy A By =
The property of the wedge product is similar to cross product as
ap) A Bg = (1) By A ag).- (2.38)

For this work, we usually consider 1-form and 2-form in the process of Faddeev-Jackiw

formalism. For example, one can see the 1-form and the 2-form in the process of the



canonical 1-form and the symplectic 2-form respectively as

A = / B[ Aa8A0() + An8Ai(w) + A, 87()], (2.39)
F o= f x| — (mofw) A5 Ao(z)) + (5m; A G A(a)

— (molz) A 9Y(=))]. (2.40)

The form of the equation (2.39) is called canonical I-form, and the equation (2.40) is

called symplectic 2-form, which is the wadge product between 1-form.

We use the wedge product between 1-form in the process Faddeev-Jackiw for-
malism. That process is the symplectic 2-form calculation Next, we use interior prod-
uct in the process of Faddeev-Jackiw formalism, that processes are contraction with the
symplectic 2-form and constraint calculation of the system.the definition of the interior

product is in the form of
1, DP - DPTL (2.41)

where ¢, is interior product operator, D? is differential p forms. Considering the equation
(2.41), After using the exterior derivative operation, it can be reduce the order of the
differential form of the process. Example of the interior product with the symplectic

2-form is written as
i F = /dsﬂ:[(w—z"'”éAg + 206m0) + (276 A; — 246m;) 4 (—2™8y + 27dmy]. (2.42)

Finally, we use exterior derivative in the process of Faddeev-Jackiw formalism, that pro-
cesses use for calculating of the symplectic 2-form and constraint. The definition of the

exterior derivative reads
S0P — pPTY (2.43)

where 4 is exterior derivative operator. After using the cxterior derivative operation, it

can be increase the order of the differential form of the process. Example of the exterior
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derivative in this work is written as
(Sﬁu = (5 [ —Eﬂ'@”ﬂ' —_ 'ﬂ}'(‘()iAo) — 5771 A“A e ZEJF ]d'B

e[ 1 e e -0

— mEAMSA, — F(0:6A;))dw. (2.44)

2.3.3 Linear Ordinary Differential equation and Non-Linear Ordinary Dif-

ferential equation

Ordinary differential equation (ODE) is differential equation when the deriva-
tive dy /dx, d®y/dz?, ... arc total derivative namely, the solution y = y(z) is only depend
on onc variable. The term linear is means that taking ordinary derivative is a operator
(£). An ODE is called linear if the operator £ satisfy linear operator. Considering linear

functions ¢(z) and (), the functions are able (o write dowa as linear combination
U(z) = aplz) + by (2.45)

where a and b are constant coefficients. Taking operator £ to (2.45), the operator is linear

(in general) when one satisfy
LY (x) = aly(z) + bLY. (2.46)

For example first order derivative, £ = d/dw, linear operator satisfy

dap(z) + b)) dp  di
V(z) = =a— +b— 2.47
L (z) dx ad:v + da (247)

Thus, linear ODE appear as linear operator equation
Lp=F (2.48)

where 1) is general solution, F is a known function, and £ is a linear combination of
derivative operating on ?. If ' = 0 called homogeneous, F' # ( calied in-homogeneous.
For example, if F'(2}, G(z), and P(z) are continuous function, linear differential opera-

tor is taken to the form £ = d?/da® + F(x)dy/dz + G{z). (Second order) Differential
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equation is given by

@ -+ F(m)gﬂ + G(z)y = P(x), (2.49)

dz? dz
where y are general solutions. In this case, we denote y” is defined as d%y/dzx? and o' is
also written as dy/dz. Examples of the linear and non-linear differential equation arc in

the form of

¥ +ay +aty = e, (2.50)

y' +2y = 0, (2.51)

Note, according to linear relation, combination of general solutions y still solution of

differential equation.

If operator £’ does not satisfy linear relation eq.(2,46), We will say that this is

non-linear differential equation. For example,
Yy o+ ay = 0, (2.52)

is a non-linear differential equation because the first term "y is not follow the linear

relation (2.46).

2.4 Basic cosmology

According to general relativity context, gravity can be described as curvature
of spacetime influenced by matter as a source. Albert Einstein proposed a set of 10

independent equations which is known as Einstein field equation,

1 8y, .
G,rw - R,uv - Eg[LVR - "CT-[;wa (253)

where p, v run over 0,1,2,3 in 4-dimensional spacetime. Th quantity ,,,, is calied Ein-
stein tensor. The LHS of equation (2.53) represents curvature of spacctime and RHS
of (2.53) describes source (mass) of matter. The quantity 7, is called energy momen-

tum tensor. Einstein tensor G, in According to €q.(2.53) can be constructed from Ricei
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tensor fi,,,,

Ry = 0\, — 0,10, + 3,1, — T, (2.54)

i vpt

where I'!, , is Christoffel symbol,

o

1
Ff:u = §gpa(apguo' + aug,ua' - 809,”,), (2.55)

Ricci scalar R,

R = ¢"" Ry, (2.56)
and metric tensor, g,,, whichis dynamical variable of theory.
For large-scale, the universe can be described as being homogeneous and isotropic.

This is called cosmological principle. The line element which corresponds to the cosmol-

ogy of expanding universe is Friedmann-Lemaitre-Roberson-Walker (FL.RW) metric,

ds* = gadatda” (2.57)
dr? .
= =2dt? + a(t)? (1 ’ ozt r?d6% + 1‘zsin29d¢2) : (2.58)
where a(t)} is a scale factor, & is £ = —1,0, 1 corresponding to open, flat, and closed

universe respectively. In this case, non zero FLRW melric element are
(1.2 . .9
goo = =1, gy = N a’r?  gag = a*rising. (2.59)
Using FLRW metric tensor one can compute all non zero component of Christoffel sym-

bols F”

e

Ricci tensor, [, Ricci scalar, H. The RIS of (2.53) corresponds to energy

momentam tensor which satisfy to cosmological principle is perfect fluid,

Ty = (p + f—z) Uyl + PG (2.60)

where u, = {—¢,0,0,0) is a four-velocity, p is energy density, and p is pressure of the
fluid. Hence using FLRW metric (2.58) and perfect fluid (2.60), the Einstein equation

(2.53) gives

i An(F P
2= T L 2.61
a c? (p+3c2) 2.61)
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and

R A AnG
T ST Sl FA Y 2.62
I R 2@ pc) (2.62)

Substituting equation (2.61) into (2.61), we have Friedmann equation

kc?
m=",_ 2.63
5P g (2.63)

where Hubble parameter H = a/a, and k2 = 8x(l is constant. Now we have two
equations, (2.63), (2.61) but we have three variable, a, p,p. We need more equation
to solve the solution. Let us consider conservation law of energy, time component of

covariant derivative of energy momentum,
v, =10 (2.64)
or
V. [(p 4 Z)_‘z) w4 pg‘“’} =0 (2.65)

Time component solution is given by
: AN
o3 (p+ 62) &0 (2.66)

But the fluid equation €q.(2.66) is a consequence from Friendmann equation (2.63) and
acceleration equation (2.61). This is means that the fluid equation is not independent to
Friemann and acceleration equation. Hence, we need to search for more equation which
relates energy density and pressuve. So, the related equation between p and p is equation
of state,

p=wpct, (2.67)

where w is equation of state parameter. We may classify the ingredients which are con-

tained in the universe as follows

1. Non-relativistic matters or dust have w = 0 (pressurcles matter)

2. Relativistic matters or radiation have w = 1/3
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3. Dark energy driving accelerating expansion,

Now we assume the homogeneous and isotropic universe, and energy momentum which
correspond to cosmological principle is perfect fluid. According to Friedmann equation

(2.63), the energy density is total energy density namely

Prot = P+ Pr T Pdes (268)

where pi, Py Pde are energy density of mater, radiation and dark energy respectively.
If we add other ingredient to model for example scalar field, holographic dark energy,

barotropic fluid it will appear on the Friedmann equation.

According to observation, the universe does not only expand but also acceler-
ately expand by observing red shift. Let us consider equation (2.61). By using equation

of state (2.67), acceleration expansion gives condition

) 4n
or
1
¥ 2.70)

It means that some mysterious matter driving the accelerated expansion which is called
dark energy have equation of state parameter less than —1/3, or one have negative pres-
sure. There are many datk energy model but one candidate of dark energy is cosmological
constant, A, which proposed by Albert Einstein. The equation of state parameter of cos-
mological constant is —1. In addition, intcrpretation of cosmological constant is vacuum
encrgy. But, there is inconsistency between energy density of cosmological constant and
quantum field vacuum energy density. This problems is known as cosmological con-
stant problem. Now, the origin of dark energy is still unknown. There arc many theories
in order to solve the problem, one of the theories is modified gravity theories. As part
of this thesis, we are interested in scalar-tensor theory which represent scalar field as a

source of dark energy. The simplest scalar-tensor theory is called quintessence model.
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Moreover, we are inferested in two-barotropic fluid as a ingredient of the model. Finally,
we are able to rearrange Friedmann and acceleration equation as non-linear schrédinger

type formalism, the exact solutions are studied.



CHAPTER III

DIRAC & FADDEEV-JACKIW FORMALISM
AND APPLICATION ON EM & PROCA FIELD

3.1 Dirac Formalism

Dirac formalism [12] is a technique usc for studying constrained system. The
aim of Dirac formalism is to find types of constraints and numbers of the degrees of
freedom. If the system is a constrained system, there are at lease one constraint, that
is primary constraint. In this context, constraints mean relation between phase space
variables. Especially, the constrained equations have to write with out time derivative
terms of the phase space variables of the system. In case of the first constraint we met,
the primary constraint [13], it comes from the conjugate momentum calculation of the
system, which is a phase space relation form. Next step is to check that there are others
constraints by using Poisson bracket between the primary constraint and the Hamiltonian

of the system. That process is time evolution of the primary constraint,

Ifthe Poisson bracket between the primary constraint and the Hamiltonian equals
to zero, it presents that the time evolution of the primary constraint remains on the con-
straint surface. On the other hand, if the result is non-zcro, that result is defined as a

secondary constraint.

To continue the process of finding other constraints by using the time evolution
of the constraint, if it is non-zero, it presents next order of the new constraint in the name

of tertiary constraint, quaternary constraint, quinary constraint, etc.
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Conjugate momenturn calcutation

Figure 1 Dirac process

If it equals to zero, it presents that the constraint is on the constraint surface.
After finishing the time evolution calculation of the constraints, next step is constraint
reclassification by using Poisson bracket between all of constraints. Ifthe Poisson bracket
between all of the constraints equal to zero, it shows that all of the constraints are first-
class constraints. On the other hand, if the Poisson bracket between the any constraints
is non-zero, it means that any constraints are second-class constraints. After finding the
constraints of the system, and reclassifying all of constraints, Finally to calculate number
degrees of the freedom of the system, which is a purpose of the Dirac formalism by using

the formula [10] as
PSS — 2711 — 2712

n
DOF = 9 ,

(3.1)

where, nnpg is number of the phase space variables, n, is number of the first-class con-

straints and ny is number of the second-class constraints.

Dirac Formalism [12] is a well known technique used for constrained systems,

the Lagrangian density is in the form of

L($a(x), Oua(w)), (3.2)
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where ¢ = 1,2, - -, N. If the determinant of the Hessian
oL
aq‘ﬁaaéb

is zero, then the system is a constrained system.

(3.3)

Starting from the Lagrangian density of the constrained system L£(@q (), .da(2)),
one defines conjugate momenta as

aL
7= —. (3.4)
Ia
Another way to check a constrained system or an unconstrained system is proved
by conjugate momenta of the system. From equation (3.4), If one can write b in terms
of ¢, and 7°, it presents that this system is not a constrained system. On the other hand, if

the system is a constrained system, one can get primary constraint of the system in terms

of ¢, and «®. The constrained systems not consist of dot terms.

Next step is the procedure to check other constraints by calculating Poisson
braket, Firstly, to find Hamiltonian density of the system H by using Legendre transfor-

mation.

3.2 Faddeev-Jackiw Formalism

Faddeev-Jackiw formalism is a technique applied for constrained systems [6]. A
purpose of Faddeev-Jackiw formalism is to calculate number of the degrees of freedom.
The beginning of Faddeev-Jackiw formalism is to find constraint from the conjugate mo-
mentum calculation of the system to create first order form of Lagrangian density. The
first order form of the Lagrangian density consists of terms with no more than first order
derivative in time and constrained terms, each of which is a multiplication between La-
grange multiplicr and constraint. After getting first order form of the Lagrangian density,
next steps to get constraint of the system are canonical momenta calculation, canonical

1-form, symplectic 2-form, and zero-mode calculation, respectively.
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For canonical momenta, they come from partial differential of the first order
form of the Lagrangian density with respect to time derivative of semplectic variables,
where the variables consist of the phase space variables and the Lagrange multipliers.
After that, one then automatically obtain the canonical 1-form. In case of the symplectic
2-form, it comes from taking exterior derivative with the canonical I-form. Next step is
to find the zero-mode by using the interior product with the symplectic 2-form. Ifthe zero
mode equals to zero, there is no more constraint. On the other hand, if the zero exists,
next step is to find the remain constraints, After that, adding multiplication between
Lagrange multiplier and the new constraint in to the first order form of the Lagrangian
density, one can get the new first of order form of the Lagrangian density. Next step is to
repeat all of process from canonical momenta calculation until vanishing of zero mode

calculation.

Recall that the goal of this work is to get the number of degrees of freedom, so
to reach that purpose we have to find inverse of symplectic 2-from, which is the Dirac
bracket of the system. As a result, using the Dirac bracket and the formula from the

section ?? to calculate, one ean get number of the degrees of freedom.

Lsor |m> Lror

4

Lpor=1Li+ L, @

/\

’}—aﬁl%o Ifa5|r—0

No constraint Constraintse

Poisson’s Brackets

Figure 2 FJ process
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The figure 2 shows the steps of the Faddeev-Jackiw formalism from the first to

the final, which is first order form of the Lagrangian creation to Dirac bracket calculation.

Technical process of the Fadeev-Jackiw formalism is to create the first order

form of the Lagrangian density (Lzor), which is written as
Lror = 1¢a — H + 1. (3.5)

Considering the 1% term of the right hand side of the equation (3.5), 7 is conjugate
momentum which is similar to the equation (3.4). If we want to get constraint, one can
calculate by using the conjugate momentum. Next parameter, ¢, are time derivative of
field and @ runs for 1,2, ..., N. The 2"? term is Hamiltonian density (7£), which can be

written as
H($a,m) = 10 — Lsor. (3.6)

Recall that, Hamiltonian density in the equation (3.6) comes Legendre transformation.
The last term of the equation (3.5) is multiplication between Lagrange multiplier, yx,
and constraint £y, where & = 1,2, ..., N. This term is called the constraint term, After
sustituting all parameters into the equation (3.5), one can get the first order form of the

Lagrangian, Lrop.

Next process is canonical t-form calculation, that reads

A= / d"z [ A 0€7( )] Ga.7
Paramiter A, is canonical momenta, which is calculated by
dLror
Agr = 0{1 , (3.8)

where &7 are symplectic variables; £ = (¢q, 7%, W), and [ = 1,2,...,2N + k. Tak-
ing exterior derivative with the canonical 1-form in the equation (3.7), one then obtain

symplectic 2-form as

F=03A. (3.9)
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We want to find zero-mode (z‘fl), so we have to take interior preduct (4,) with

the symplectic 2-form and set it to the zero, one can sce that
. = 0. (3.10)

From the equation (3.10), one then automatically obtain zero-mode (2'5[), which means
eigen vector of the zero eigen value. if there is no zero-mode, it presents that this system
is no more constraint, on¢ can continue to the final process of the faddeev-jackiw for-
mailsm. On the other hand, if the zero-mode exist, it present that this system has more
constraints. To calculate others constraints, firstly we have to define £,,. Considering the
equation (3.5), £, is the first order form of Lagrangian density without time-derivative
terms and constraint terms. After that, using the exterior derivative with £, and then

taking the interior product with the £,, term, one can sce relation that
Qp =14,(0L,). (3.1

The equation (3.11) shows constraint of the system. After that, we have to add the new
tern into the the first order form of the the system, Recall that, the new term is multiplica-
tion between Lagrange multiplier and the constraint from the equation (3.11). Therefore,

the new first order form of the Lagrangian density is in the form of
Lror(new) = Lror + 128, (3.12)

where 7y, is the Lagrange multiplier of the constraint {2;. To repeat the process of the
Faddcev-Jackiw formalism from the canonical 1-form calculation to the zero-mode cal-
culation, if the zero-mode is non-zero we have to calculate the new constraint to create
the new Lagrangian density again. On the other hand, if the zero-mode equals to zero, it

presents that there 1s no more constraint.

Next step is to find number of the degrees of freedom by starting from the inverse

of the symplectic 2-form calculation (F~1). Recall that, the F~! is the Dirac’s bracket
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which we want to use for calculation the number of the degrees of freedom of the system,

that is the aim of this work.

3.3 Application on Electromagnetic Field

Motivation of studying in this section is the first term of Lagrangian density (L)
of the generalised of the Proca field is the electromagnetic field (EM). We will start from
basic ideas of the electromagnetic field. After that we will apply the Dirac formalism on
the EM field. The last topic of this section is application on the EM field by using the

Faddeev-Jackiw formalism.

3.3.1 Electromagnetic Field

This part starts with electromagnetic four-potential, component form of field
strength tensot, equation of motion of electromagnetic ficld, and Maxwell’s equations

respectively.
Electromagnetic four-potential
Starting from the anti-symmetric field strength tensor £, is written as
INF = AW (3.13)

where A, are electric four-potential, A, = (&, /f), p=0,1,2,3, Ag is an clectric scalar
potential, A; = (A); are magnetic vecter potential. The electric field [ and magnetic

field 53 that are associated with the four-potential as

E = V¢, (3.14)

oe]
I

VXA, (3.15)
where component form of B is written as

B{ = e,-jk(?jAk. (316)
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- Component form of the field strength tensor

Considering equation (3.13), because Fy, is an anti-symmetric matrix. There-
fore, one can see that

Eu/ = ”Fv,u . (317)

Using the anti-symmetric property to calculate all components of the matrix F),,,

1. Incase of t = v = 0, one can see that

Foo = ~Fyp
ZF(}() = 0
oo = 4. (3.18)

2. Likewise, ncascof p = v =1, p = v — 2, and p — v = 3, one can see

that

Fi = Fyy = Fay = 0. (3.19)

3. Considering Fy; = F; ,where j = 1,2,3, one can see that I{;, o, and

Iy = Ey, By, and By respectively.

4. On the other hand, Fjy = —F; ,where 1 = 1,2, 3, one can sec that Fig, Fy,

and F3g = — Fy, —Fy, and — E3 respectively.
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5. Considering Fy; = €;;x By ,where 4, j, k = 1,2, 3, one can sce that

FlZ
F12

g

€125 B,
E397BT- meTB?P €123 B3,
B3, (3.20)
€13k Br,

£ 0
EasrBU+F €13283 + £33583,
_B,, 3.21)
€a3rc By,

E 0

€231 81 + £239835 + £93585,
B,. (3.22)

6. Using the anti-symmetric property, equation (3.20),(3.21) and (3.22) become

Fyn = -5, (3.23)
F3 = By, (3.24)
o oS A (3.25)

To write 4 x 4 metrics, we can see that

o
Fio
F#V =
P
| Fyo

Foa
Iy

4
22

Fos _

o | | Foo For (3.26)
Fi3 I F 1i:i3><3

Fzs |
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Using the equation (3.20) to the equation (3.25), the equation (3.26) becomes

By = , (3.27)

Y (3.28)

Es —By, By 0

Considering the equation (3.28), it presents that the inverse matrix of the matrix F),, .
Equation of motion of electromagnetic field

To find the Maxwell’s equations, firstly one have to calculate cquation of the
electromagnetic field. Starting point of calculating is electromagnetic action in the form
of

Sy, L 3.2
_ — ?4“ Jrey X ( . 9)

Using variation with the equation (3.29), we see

1
05 = “1/44555[””1*}”] =0
l 1y o v
= =3 [ EAPSE + Rl Fog)] = 0

1 |
- - f P 5(£,)) + FPS(Fog)] = 0

1
08 = - [ do[FWE(F,,) =0 (3.30)
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Substituting F,,, = d, A, — d, 4, into equation (3.30), we then obtain

59 _-%/ﬁ%wwaam~aﬂgym
:.é/ﬁwmwmwmmﬁwam¢m=o
_ _; f B[, (5A,) — FH0,(6A,)] =0
_ _%/waww%wAg+FW¢wAN=o

i / L F™8,(5A,)] = 0

- Wﬂ/w f P ol(84,)0,(F")] = 0

55 — / (A8, (F*)] =0 (3.31)

Considering equation (3.31),the equation of motion of the electromagnetic field can be

written as
a, I = 0. (3.32)
Maxwell’s equations

As we get the equation of motion of the electromagnetic field which is shown in
(3.32). Tn order to get Maxwell’s equations, one can calculate these equations by starting

from the equation of motion

1. Incase of » = 0, one can see that

" =0

S F 4 O F° 4 9, F2 + 93 F%0 = 0 (3.33)
In this work, using 7, = (—1,1,1,1), equation (3.33) becomes

0
DoF 4 O FO 4 ,FP 1 0,FY = 0

—N Lo — DaFoy — sl = 0 (3.34)
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Considering 4 x 4 matrices from equation (3.28) and substituting value of each

component into equation (3.34), one can see that

—O1(—F;) — Oa(—E2) — O5(—F3) = 0

V.-E = 0. (3.35)

2. TIn case of v = 1, one can see that

9 =0

ol + Ok B £ 0,FS — 0
O F™ 4- O F®! ¢ 93 =0
O(—E)) + O2(=DBs) + 05(DB;) = 0

—p By — (0283 — &3.By) = 0. (3.36)
3. Incase of v = 2, one can see that
AFE =\0
0
Do F? + 012 4 PP 4 05F°% = (. (3.37)
4. Likewise, in case of v = 2, one can see that

G F1 =0

0
Do F% 4 O F® 4 9, F™ + 9T — 0, (3.38)
From equation (3.36),(3.37) and (3.38), can be written in the form of

QF — V x B =0, (3.39)

3.3.2 Dirac formalism on Electromagnetic Field

Previous topic is basic information of the electromagnetic field. It is well known

that the electromagnetic field has 2 degrees of freedom. Dirac formalism is an approach
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to prove that. At the beginning, Lagrangian density of the electromagnetic field is

1
Leym = —ZF”"FW' (3.40)

To check that the electromagnetic field is a constrained system, one can see via conjugate
momentum calculation. In case of electromagnetic field, the conjugate momentum is in

the form of

7 = df”?“”, (3.41)
8A,

substituting the equation (3.40) into the equation (3.41), one can sce
_19(B.E)

4194,
= (3.42)

7 =

Considering the equation (3.42), in case of p == 0 and p = 1, one can see

= F% = 0. (3.43)

= F" = —Fy. (3.44)

Because of Fj, = 8,4, — 9,4, thercfore the equation (3.44) becomes

Ai =t + 8,'140. (345)

As the results, the cquation (3.45) is written in the form of canonical variables, n; and
Ay. Likewise, the equation (3.43) can not be shown as the equation (3.45). Therefore,
one can conclude that the equation (3.43) is a constrained equation and %0 is a primary

constraint of the clectromagnetic field, which follow by Dirac formalism.

Next step of the Dirac formalism is to find secondary constraint by using Pois-
son bracket between the primary constraint from the equation (3.43) and Hamiltonian
density of the electromagnetic field, At the beginning of this calculation is to find the

Hamiltonian density of the field as

H(A,, ") = ﬁpAp — Ly, (3.46)
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where p runs for 0 and 3 = 1,2,3. Substituting the equation (3.40) into the equation

(3.46), one can see
, 1
H(A,, n") = 0 Ag 4+ T A + —F}”,F“”,
=7 Ag + i A + (FUOFUO 4 FyF% + FioF'® + EUF”) (3.47)

F,,, is an anti-symmetric matrix, therefore the equation (3.47) becomes

1 . . 3
H(Apm?) = 7o+ Ai 1+ 2 (FOGF 1 (= Fio) (—F©) + Fo "™ +Fl:jF”),

= ’H'DAO -t ﬂlAi —+ Z (FOQ_FGD ND Q.Fion R ﬂjFU) . (348)

Substituting the equation (3.43) and (3.45) into the equation (3.48), Hamiltonian density

of the electromagnetic field can be written as
VAL 1 a1 i
?{(AP,TE"D) =T [TT = ()iA()] N\ 5[71';’][7[’ ] + ZEjFJ’
N : 1 )
= §7r,;ﬂ‘ + 78 Ao) + EF}J-F”. (3.49)
The equation (3.49) is the Hamiltonian density equation of the electromagnetic field.

Next step is Poisson bracket between the primary constiaint and the Hamiltonian of the

system as

2B 010 _ore ot
@, )= [l o s aams O

To consider the equation (3.50), the 1% term vanishes and the 274 term is in the form of

(%) OH(t) _ )
Ome (i) 9A,(Y)

Substituting the equation (3.51) into the equation (3.50), one can sec that
{0,100} = [ dy[o-89G - ~om@)],

= &m(i‘)

@~ ( - omi(@))- (3.51)

(3.52)

For the electromagnetic field, there are one primary constraint and one secondary con-
straint which are #°(%) and 8;m;(Z) respectively. Next process is reclassification the con-

straints by wsing the Poisson bracket between the primary constraint and the secondary
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constraint as

3, ) Omi(%) B’N( ©) Oy (%)
(7(&,1), Bimi(%)} = fd B z?’)afrf’(@) ~ w3 04 (ﬁ)] 0.  (3.53)

From the equation (3.53), the result equals to zero, which presents that both 7%(Z) and

d;m;(¥) are the first-class constraints of the electromagnetic field. On the contrary, if the
Poisson bracket exists, which means that both n%() and d;n;(Z) are the second-class

constraints.

In conclusion of this part, Dirac formalism on the electromagnetic field in 4-
dimensional space time, there is a primary constraint, therefore the clectromagnetic field
is a constrained system. After that, using the Poisson bracket between the primary con-
straint and Hamiltonian density of the field, there is a secondary constraint. Results of
Poisson bracket between all of constraints show that there are two 1-class constraints,

Finally, the formula for finding number ofthe degrees of freedom is
1
DOF == [N=2(F) - S] , (3.54)

where N represents number of phase space, F means number of first-class constraint, and
S presents number of second-class constraint. As a result, using the equation (3.54), one
can see that number of the degrees of freedom of the electromagnetic field equals to 2,

that we cxpected.

3.3.3 Faddeev-Jackiw formalism on Electromagnetic Field

The second order form of the Lagrangian is written as
—1 12
['SOF = -"'II?,HVF! . (355)

The first order form of (3.55) is written as

A | 1 .. :
Lrop = At — -2~7mr* - ZFijFU + Ag(9yc*). (3.56)
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The canonical one form of the system are

An (@) =007 (@) + 50 (), (3.57)

Azi(zy =0. (3.58)

The symplectic two-form is

0 — (&% + 849
Fap = (55 +200%) Sz — a'). (3.59)
(67 + 65 %) 0
o= Z;’%é—:, (3.60)

Since | Fog| =0, next step, we have to find the constraints £2; of the system by using

oL

= Z}*g:, (3.61)
where Z¢ are the zero modes and Ly(z) = —3mi(a)m () — § Fyy(w) 7 (x)), which gives
Q= = Zao(y 0510 F ()], (3.62)

so the constraint is
~8;{a.F4 ()] =0. (3.63)
8 ()] = 0. (3.64)

Because the left hand side equals to zero so, by using gauge fixing the constraint of the

gystem is in fact
9i|A*(z)] = 0. (3.65)

The constraint of the system is &{A!()]. The new first order form of the Lagrangian is

written as

.. 1 .1 " . .
EFOF = A{;"(J — ‘{jﬂ'iﬂ'l — ZLEjFH —+ Ag(alﬂ’l) + (8,;/1’) . (366)
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The canonical 1-form are

Ay () =87 (@) + S50 (@), (3.67)
Az @) =0, (3.68)
Azy =034 (). (3.69)

The symplectic two-form is expressed as

0 — (8% +850;) (9™ — 860")
Fop=| (5 + 053 0 0 §(x —a'). (3.70)
(—9” + 659%) 0 0

The determinant of (3.70) is 9;0'[0?&}d(z - «'). The inverse of (3.70) is called the

“Dirac’s Brakets” of this constrained system .
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3.4 Application on Proca Ficld

3.4.1 Proca Field

The Proca theory is the theory describing a massive vector field, which propa-
gates the corresponding three polarizations. It is one such simple modification of Maxwell

theory. The Lagrange density is given by

1 1
L= —EFWF“" — -Q-mzA“A", (3.71)

we can be written the standard Proca action
M L Y \ 24, AF 3
AU L “’[“ZFF‘”' A, ] (3.72)
Then, we obtain the equation of motion

(> +m*A, = 0. (3.73)

Introduction of the mass m of the vector ficld A, allows the propagation in the

longitudinal dircction due to the breaking of U(1) gauge invariance .

In the Horndeski theory, what happens for a vector field instead of a scalar field.

There is Maxwell ficld which massiess spin 1 particle. Tts Lagrangian is given by

1
L=="F.F (3.74)

There are two transverse polarizations, namely, electric and magnetic fields. This lead
to 2 degrees of freedom. However, there is Proca field which massive spin 1 and its

Lagrangian can be written

L

£:4

1
B P — P A AP, (3.75)

There are 2 transverse and 1 longitudinal, namely, 3 degrees of freedom. Introduction
of the mass 1 of the vector field A, allows the propagation in the longitudinal direction

due to the breaking of U(1) gauge invariance.
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3.5 U(1) gauge transformation

Then, we show U(1) gauge transformation and the mass term break U (1) gauge

invariance. In the gencral non-abelian gauge transformation is given by
Au(x) = U@)Au(2)U ()" +4i8,U (@)U (=) (3.76)
By using U {z) = e~*(%), we obtain U(1) gauge transformation
Ay A, = Ay + Do) (3.7

Let us consider Proca Lagrangtan

£ = —%F#_VF‘”’ - é—m%lﬁA‘“. (3.78)

Then, we consider

FE™ = (9,4, —3,A )" AY — & A™)

py

= L™, (3.79)
and

A;‘A'“ = (A +0u0) (A + 04 a)

— A AR 24,0+ O,00", (3.80)

these underline terms break U(1) gauge invariance.

Proca field is the a system which combines with massless Maxwell field and

massive spin-1 field. Lagrangian density of the field can be written as

1 1
Lproca = —5 F: — §7n2(A)2, (3.81)

where F2, is defined as F,, F*”. In this case F},, is 8, A¥— 8, A* and (A)?is in the form of
A, A”. Because this field is an Electromagnetic field, as a result the field is automatically

transverse wave which shows that the Flectric field is perpendicular with magnetic field.
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Morcover, both fields are perpendicular with velocity of the system. Featurc of this field

is vibration of the both fields which the directions are similar to the velocity.

3.5.1 Dirac formalism on Proca Field

From the previous topic shows the general features of the Proca field, which it
has 3 degrees of fredom. To check that , this part also applies the Dirac formalism on
the Proca field similar to the section 3.1. This proof is beginning with the Lagrangian

density of the Proca field is in the form of
,C,p = LR 2A,A 3.82
roca | s 2777» 1t ( . )

To confirm that this system is a constrained system, we use conjugate momentum calcu-

lation to prove if.

ap = DEproea , (3.83)
dA,
To substitute the equation (3.82) into the equation (3.83), one can see
L LOELP) 1 BAA)
4 94, 2 A,
= (3.84)

The equation (3.84) shows the conjugate momentum of the Proca field. Con-
sidering the section 3.3.1, The conjugate momentum of the Proca field is similar to the
conjugate momentum of electromagnetic field. From the equation (3.84), if p = ¢ one
can see that 7 = 10 — —F. If p = 0, it is 7° = F® = 0. In this case, p° is a primary
constraint of the Proca field, which exactly like the primary constraint of the electro-
magnetic field. As a result, because the Proca field has a primary constraint, therefore
this field is a constrained system, Next step is to find Hamiltonian density of the Proca

system by using the quation (3.46). Where p runs for 0 and ¢ = 1,2, 3, the Hamiltonian
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density of the Proca ficld is

1
Fo "+ 2mZA A,

H(A,, w") = 70Ag + 7' A; + = i

= WOAQ + ﬂ'iAt'

1 : . .
+ :L (FODFOO + FOiF{}-z _}_EDFtO + I?‘ijFU)

;m (A(}AO + A; A’) (3.85)

Substituting 7° = 0 and A; = m; + 8;Ap, the equation (3.85) becomes

i 1 ~N\ L |
(A ) = mifit | 0ol = 5 lmlla} + 5 EigF T b2 (- Ag? 1 A7)
l i i ]' 1 1 2 2
7 46T + 7' (0;Ap) + 4F Y Sm (ﬁAg + A; ) (3.86)

The equation (3.86) is the Hamiltonian equation of the Proca system. The reason that
we calculate the Hamiltonian density of the Proca system is we want to find the Poisson
bracket. Next step is the Poisson bracket between the Primary constraint and Hamiltonian
of the Proca system. Substituting the primary constraint and the Hamiltonian into the

equation (3.50), one can see

2 ) l(t) - on’(F) dH (1)
(@0, 10) = | d4] aApm D)~ o) 0

The First term of the equation (3.87) vanishes. For the 2" term, one can prof that

o’ (z) OH (t)
One(§) OA(Y)

Substituting the equation (3.88) into the equation (3.87), therefore the Poisson bracket

(3.87)

= 5O g’)é”(— Bm(@')(sg+1712[—Ag(1j)6g+f1,-(3}’)]6f). (3.88)

between the primary constraint and the Hamiltonian of the Proca system is written as
(@0, HO) = [ dy] - 00@ - 95— om0+ Ao + A

- / g6 — ) [ (i) — mP[- Ao(@)85 + Ai()Y)]

- am(:i") — ﬂleo(f) (389)

The result from the equation (3.89) shows that 9;m;(Z) — m?* Ag(Z) is the secondary con-

straint of the Proca system. Now, we have one the primary constraint and one secondary
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constraint. Next step is reclassifying all of the constraints into 1%-class and 2%t-class con-
straints by using the Poisson bracket between each of all constraints of the Proca system.
Because in the Proca field there are 2 constraints, therefore the Poisson bracket between

the primary constraint and secondary constraint can be written as

(3.90)

B 4 ar a5 B oF a5
(rsy= [ (54 5 50 ) ~ oG AT

where P and S represent the primary and the secondary constraint, respectively.In case
of the primary constraint and the secondary constraint equals to 7%(%) and dmi(Z) —

m? Ay () respectively, the result of the equation (3.90) becomes

20( ) (am-(.q-f) _ mZAO(f))

Sl fdsy 04,17 om )
(%) } O G;mi(F) — mP A (&)
gm}@) ( T )] (3.91)

From the equation (3.91), the result is 9;m; (&) 4 m* Ag(Z). Ttis called 2nd_class
constraint, because it comes from the Poisson bracket between the primary constraint
and the secondary constraint. As a result, using the equation (3.54) due to the Proca
system there are one primary constraint, one secondary constraint and one second class

constraint, therefore number of the degrees of freedom calculation is in the form of

DOF- = =|N=2(F) - S]

W oD
| —
oo
I
D
P
<
o
I
o)
| S

(3.92)

Summary of this part, using the Dirac formalism on the Proca field in 4-dimensional
space time, there is only one primary constraint, as a result the Proca ficld is a con-
strained system. Next, After using the Poisson bracket between the primary constraint
and Hamiltonian density of the field, there is one secondary constraint. The Poisson
bracket between the primary constraint and the sccondary constraint exists. The result

presents that, this theory consists of 1 primary constraint and one secondary constraint.
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After reclassifying the primary and the secondary constraint, there are two second class
constraints. As a result, using the equation (3.92), one can see that number of the degrees

of freedom of the Proca field equals to 3, that we expected.

3.5.2 Faddeev-Jackiw formalism on Proca Field

Because this work relates with electromagnetic field, so the details of this section
are consisted of the electromagnetic four-potential, component form of the field strength

tensor, equation of motion of clectromagnetic field and Maxwell’s equations.

Lagrangian density of Proca field in 4 dimensional space times is written as

_ole T e
Lpreen = = = 5mHA, (3.93)

where F2 is F,,, ", F,,, = OyA, — 0L A, (A)? is A, A*and 1 plays the role as mass

v

of A. In this case, y, v runs for 0,1,2,3.

Beginning point of the Faddeev-Jackiw formalism is the Lagrangian density of

the system is in the first order froin as
Lrop = mPA,(n?) = H{Ay7P), (3.94)

where 7? is conjugate momentum of the system, A,, is time derivative of vector A and
7{ is Hamiltonian density of the system. p runs for 0, 4, in this case ¢ = 1, 2,3. Next step
is calculation of Hamiltonian density of the system, firstly one can find the conjugate

momentum in the form of

_ aLPT‘om

! 3.95
o (3.95)

-
Substituting the equation (3.93) into the equation (3.95), one can get the conjugate mo-
mentum of the Proca field as

7P = 70, (3.96)

Considering equation (3.94), we want 70, Ay, 7, A; respectively, so we calculate those

things by using the equation (3.96).
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1. Incase of p = 0, one can see that

7’ = F% =0, (3.97

2. In case of p = 4, one can see that

ﬂ—i - FliO — —1'40,
= —8iAo + Do,
o= A — A (3.98)

Using the result from equation (3.98), one can get
Ay = 7+ ;A0 (3.99)

Conclusion of the results of equation (3.97, 3.98) and (3.99) is #° = 0, which presents
the constrained equation of the Proca system. Afterwards, we try to find the Hamiltonian

density of the system in the form of
H(A,,n?) = 7T"’A = Lipita (3.100)

Substituting 72, 7, A; and the Lagrangian density of the Proca system from the equation
(3.93) into the equation (3.100), one then obtain

H{Ap, 7)) = é’if +mi (@ Ag) + mzA AF 4 iFg (3.101)

Next, one can find first order form of the Lagrangian density of the Proca system by

substituting the equation (3.101} into the equation (3.94), one can see that

, 1 1 1
Lpop =" Ap — s — (8 Ag) — 5?”2(A)2 - gﬂia (3.102)

or one ¢an write as

. L 1 . 1 1 y
Lpop = T Ag + 7' A; — ;é'iriﬂ” —mi(3Ap) — EmzAﬂA" — ZiﬂjFU + 7%, (3.103)

The first order form of the Lagrangian density of the Proca system shows symplectic
variables of the system which are £ = (Ag, 7%, A;, 7, 7). After that, one can calculate

canonical momenta; a! ) = A{(o) of the system.

5((1
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1. Incase of £©® = Ay, one can see that

. © _ 9Lror(v)
Ado = O 3A0($')
__9 35[0 () A (2
= T d°z[n’ (z) Ap(z)]
- f 2(2)8(z — o)z
Ap, = 70 (3.104)

2. In case of £ = 7% one can see that

0 dLror ()
A ZIA o)
~ 979(; ’)f

Ao et (3.105)

3. In case of £ = A;, one can see that

ILror
Ay, = a® = B;;o (z)
= ‘l 7]'
QA ')f ol
= /'/T (2)(x = =)’z
. pr— (3.106)

4. In case of ¢ = 7%, one can see that

a® ILpor (%)
Awi = aﬂz (z)
_ 3.
- aw = / 0d
As = (3.107)

5. Incase of £ = 7%, one can see that

dLpor(x)
Ari == o ()

9 .
A = 0 (3.108)
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6. In case of £() = , one can see that

AL por(T)
w0y FOF
A= W)
d
= @) /WO(:J;)(IS(:U)
A, = —mp(a’) (3.109)

The canonical 1-form of the Proca system is in the form of
A- f Pl Ar 8 Ao(w) + ApSAi@) + A 6A(x)]. (3.110)
Substituting the equations (3.104),(3.105), (3.106) and (3.109) into the equation (3.110),
one can sce that
A= f drl(~mo(x)d Ag(x)) 4 (10 Ai(w)) — (mo(a)d As(x))]. (.11

Next step is calculation of symplectic 2-form of the Proca system by using variation with

the canonical 1-form of the Proca system as
F=06A= /d3$[~(5ﬁr0(ﬂ:) ASAg(x)) + (mid A Alz)) — (mo(x)d A Ay())B.112)

Using interior derivative with the symplectic 2-form of the Proca system in equation

(3.112), one can see that
iF = /fl%[(fzm’f?flo + z08me) + (2 8A; — 244 8;) + (— 208y + 276mp)(3.113)

The result of the equation (3.113) is written as £ = 0 except 2 = —2z7. Because
some of 2 are non-zero, so they present that the zero mode of the system exit. If the

zero-mode of the system is non-zero, one can find constraint of the system by using
Q) = 0Ly, (3.114)

Where £, of the system is a part of the first order form of the Lagrangian density of the
system, which except time derivative terms and Lagrange terms. Consequently, £, is
written as

1 1 1
L, =—gma' = (B Ag) — —2-mzA“A'“ - ;lﬂjF‘J. (3.115)



42

Tf we want to find the constraint of the system, firstly we have to use variation with £,
in the equation (3.115), we see

0L, = f& [ ~%m'ni —m{0; 4o) — %mzA,uA‘“ - %Fz‘jFﬁ]d""

5£u = f [ —"‘71"'(57Ti - (8,-A0)57Ti — Tri(ai5A0)
— mPA*SA, — FY(0;0A;))dz. (3.116)
After that, we want to calculate the zero mode of the system by using interior derivative

with 6L, in equation (3.116), one can see that
10L, = f [ —midm — (0 Ag)om" — mi(0:6 An) — m AP A, — FY(9:6A))dz
0L, = / [ —mz™ — (3iA0)2™ — 73(B210) —mP ARz — F(0;2Y)]dE3.117)
Using the result from the equation (3.113), the equation (3.117) becomes
0L, = /[(Bifr,-) — m2 A% A d. (3.118)
As a result, the constraint of the system can be written as
Q = Om; — m2A°, (3.119)

Next step, to find the new first otder form of the Lagrangian of the Proca by multiplying
new Lagrange multiplier () with the constramt from the equation (3.119) and adding
that result into the first order form of the Lagrangian from the equation (3.103), one can
see the new first order form of the Proca system as

. . 1 : 1 1 g
[’FOF = ’iFOAg -+ WZA,' — §7Ti71’% — 1r,-(c")iAg) - §m2A,,A‘“ — ZF‘,ﬁjFU -+ '}”HO

+ (O —mrAY), (3.120)

The equation (3.120) is the new first order form of the Lagrangian density of the Proca
system, The last term of the equation is the new Lagrange multiplier term, which consists
of the Lagrange multiplier (v,) and its constraint (9;r; — m?A®). Next process is calcu-
lation of the canonical momenta, canonical 1-form, symplectic 2-form and calculation of

its zero-mode of the system, respectively.
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considering the new first order form of the system in the equation (3.120), the
symplectic variables are £ = (Ag, 7% A;, 7', 7y, 71). The semplectic number of the old
one is 5, but the new one is 6. The reason for increasing of the symplectic number is the

new term in the first order form of the Lagrangian density of the Proca system.

1. Incase of £V = Ay, onc can see that

_ v — 9ror(z)

Aas, = a ,
e T A
9 .
= ; o (z) Ayl
o et )t
e /wo(a:)é(a:—w')(lsfﬂ
A, = m{z") (3.121)
2. In case of £ = 7, one can sce that
OLror(z)
Mo W) | 9Exkor
A = G 070 (x!)
% 3
= g | 4
Ao = 0 (3.122)
3. In case of £8Y = A;, one can see that
BJCFOF(IB)
.y e g adan
Ay CI-A; 8/‘11(.’?}’)
9 o
— _ d3l i Ai i
T | Fetr @A)
= fwi(:r)é(x—x’)d3$
FR— (3.123)

4. In case of £} = 7%, one can see that

g _ O9Lror(w)
Ant = Fraes)
. d 3.
- Ori(a) / 0d"

A = 0 (3.124)
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5. In case of é1) =+, one can see that

_ - 9ror(z)
'A’Y - agrl) - _g,},?;;)
9
= 3o / () d ()
A, = —npla’) (3.125)

6. Tn case of £0} = ~;, one can see that

ILpor(z)
_ (1) — AFOF
A’rh Gy 3,7(37/)
&

< f (Bm() = m? A())d* (2)

Ay = Om(a’) — mP A% (") (3.126)

The canonical 1-form of the system is written as
A f P el A Ao() + AndA) + A, 0v(x) + An, ()]l (3.127)
Using the results from the equation (3,121}, (3.122), (3.123), (3.124), (3.125) and (3.127)
and substituting into the equation (3.127), one then get
A= f e [ (—mo(w)8Ao(2)) + (m:dAi(z)) — (mo()dv(x))
+  (Omel) + m* Ag())om]. (3.128)

Next step is calculation of the semplectic 2-form of the system by using variation with

the canonical 1-form in the equation (3.128). 1t can be shown that
F =0A= /d% [ —(dmo(z) A 8Ag(z)) + (0m; A S A {(x)) — (dmo(z) A dy(z))

+ (85571}' FAN 5")’1) + 77125/‘10 A (571 (’L)] (3129)

Next calculation is to find the zero-mode of the system by using the interior derivative
with the canonical 1-form, one can see
i, F = fdsm [ (—2™8Ap + 298mg) + (2™ A; — 246m;) + (—2™8y + 270w

+ (D27 0m) — (2180m) + (mP2M06m) — (m*2"840)]. (3.130)
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As the result, it presents that the zero-mode of the system is equal to zero. Therefore,

there is no constraint. The process of the system reaches at the final part,



CHAPTER 1V

APPLICATION ON GENERALIZED OF PROCA FIELD:
FADDEEV-JACKIW FORMALISM

4.1 Generalized of Proca Field

The Lagrangian for the generalized Proca vector field with derivative self-interactions
is given by

5
1
ﬁgen.Pmca S _‘ZFIHVF“U 1) Z Q'n.cn, (4.1)

n—2
where the self-interactions of the vector fickd.
The simplest modification of the Proca action is promoting the mass term and

the potential interactions for the vector ficld to an arbitrary funetion fa,
L= f 4.2)

This trivially does not modify the number of degrees of freedom. This function can also
contain gauge invariant interactions which are invariant under the U(1) transformations
and terms which do not contain any dynamics for the temporal component of the vector
field

fo = fo F?, FF* A’ F? A’ FF*, AJAEPREY L) 4.3)

The first term that we can have to the next order in the vector field is simply
Ly=f30-A (4.4)

with fs an arbitrary function of the vector field norm f3(A4?). Tt is a trivial observation
that the temporal component of the vector field A, does not propagate, even if we include
the Maxwell kinetic term. The presence of the function fj is crucial since if it was simply

a constant, Then, one considers £4 which is given by

Ly = faler(D- A) + 020,A.0°A° + c38,A,07 A7) (4.5)
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with a priori free parameters ¢;, ¢z and ¢z and f an arbitrary function depending on
f1(A?). One need to fix the parameters such that only three physical degrees of free-
dom propagate. To eliminate one propagating degree of freedom, the determinant of the

Hessian matrix vanishes

2(61 + g + Cg) 0 0 0
v 62£ 0 "“262 0 0
W T fy . (46)
0A0A, 0 0 2, O
0 0 0 MQCZ)
One chooses ¢; + ¢z + cg = 0, ¢; = 1,and eg = —(1 -+ ¢). Therefore one obtains
Ly = [a(@- A2 c20,A,0° A% = (L4 ¢3)0,A,0° A7]. 4.7

If Hessian determinant of a system is zero, the system is constrained,
det(H7,) = 0. (4.8)

To find the expression for the constraint, we have to compute the conjugate momentum

my,,
0Ly
" _ . 49
L4 0 A# ( )
The zero component of the conjugate momentum is given by
19, = —2fs VA (4.10)

This equation does not contain any time derivative yielding the constraint equation. If
an equation contains only gencralised coordinates and conjugate momenta, but not gen-
eralised velocities, then such equation is called a constrained equation, which defines a

constraint surface. The constraint equation is given by
o1 =11, +2fiVA, 4.11)

this constraint ¢; is a primary constraint. This primary constraint (1) will generate a

secondary constraint () given by
. o _ OH 8901 oH 3901
é= e = OA, BLF ~ BTk DA,
= 2 (4.12)
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Then, consider the time evolution of the secondary constraint
{H,p2} = 0. (4.13)

Hence, there are two constraints ¢, and ;. we reclassify them into first-class and second-
class constraints. By definition, a first-class constraint weakly commutes with all other

constraints while a second-class constraint does not. One computes

{01,902} # 0. (4.14)

So, (1, @, are the second-class constraints, The canonical variables are I} , A,, the
second-class constraints are ¢y, @, and there is no first-class constraint. So the number

of degrees of frecdom is

(#canonical variables) — 2 x (#1st class) — (#2nd class)
2

(#dof) =

= 3| (4.15)

This agrees with the fact that a massive particle spin-1 has three polarisations. There are

2 transverse and 1 longitudinal.

Then, we consider Cs. In £s, one write all the possible contractions between

the derivative self-interactions

Ls = [sldi(0- A — 3da(D- A)D,A,07A° — 3ds(8 - A)D,A. 07 A?

+2d48,A,07AP0° A, + 2d50,A, 07 APD, A7) 4.16)

with a priori the arbitrary parameters dy, dy, ds, d4 and d5 and function f; depending only
on AZ. In order to have only three propagating degrees of freedom the parameters need

to fulfilled some conditions. Finally, the quintic Lagrangian is given by

Ls = fsl(8-A)? ~3da(0 A)0,A,0° A — B(1 — dp)(D - A)D, A, 07 A”

3dy 3d,

+2(1- 7) 9,A, 1A A, + z(ug—) 8,4, 87 APO, A7), (4.17)
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The Hessian matrix with this chosen parameters then becomes

/0 0 0 0 \

0 —Gdg (Az,;; -+ Ay.y) Sdg(A:c,y + Ay,:L‘ Sdg(Az’z -+ Az,:c
0 3dy(Apy+ Ays  —Bdy(Auyt Ay 3da(Ay. + Ay

\0 Bdx(Aps+ Ase 3da(Ays+ Asy  —Oda(Ayy + Asi )
(4.18)

HEY = f4(A?)

The vanishing of the determinant of the Hessian matrix guarantics the existence of a

constraint

dot(HA) = 0. (4.19)

To find the expression for the constraint, we have to compute the conjugate momentun

I,
aL
I =2
0A,

The Hessian mattix only contains one vanishing eingenvalue and hence only one propa-

(4.20)

gating constraint which is again given by the corresponding zero component of the con-

jugate momentum

ne. = *3f5(A2)(d2(Ai,z + Aiz -+ Ai}y) =24, Ay — -1+ da)Ay Ay
—l—dgAﬁ_y + (lgAim — A+ Ay A e+ 24, Ay o — 2daAcy Ay

tdp AL, — 2(—1 +dy) Ay Az ). .21

There is no time derivatives appearing in the expression of the zero component of the
conjugate momentum, representing the constraint equation. Associated to this constraint,
there will be a secondary constraint guarenting the propagation of the constraint equation

and removing the unphysical degree of freedom
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In this work £y, L3, L4, Ly is in the form of

Lo = fo

L3 = f30-A

Li = [0 A + 0,A,07 A7 — (1 + ¢),A,6° A7)

L5 = fs[(9+ AP —3dy(0- A)D,A0°A7 — 3(1 — dp) (D - A)0,A,0° A

+2(1 322)0 A 0T APOT A, +2(342)a Ao APO, AP) (4.22)

with & - A = 8, A* and the functions fy 345 are arbitrary functions [3]. The interactions

can be also expressed in terms of the Levi-Civita tensors

Ly, = Zfzdwaﬁa#vaﬂ = fy
Ly = —%amﬁepmﬁ Oudy = £20- A
Ly = J it goo a,.A,0,A wabers  0,A,0,A
4——2(8 €7 (3O Ae I As + C2E e 50 A0, A)
— (0 AP+ GOy T AT — (1 + ) 0,4, 07 4]
Ls = —fs ((1 L %dg)efwﬁgf’“'f Ok ApDs A DA+ %dzs“"“ﬁs‘m ﬁapA,,a,,Agan,Aa)
C A0 AP 33D A)9,A0"AT = 31— ds)(9- A)D, A, 0% AP
+2(1 . -3@)8 A 0T AP A+ 2(3d2)a A 7 APD. A] (4.23)
where )
+1 if pvpo is an even permutation of 0123
Epvpr = § —1 if pvpo is an odd permutation of 0123
LO otherwise.

Higher order interactions beyond the quintic order are trivial in four dimensions, being
just total derivatives, hence the series stops here. BExpressed in terms of the Levi-Civita

tensors this means that we run out of the indices. Lagrangian density of the generalized
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of the Proca field is in the form of

— 1 2 1 2 3 2 .
.C(;enpm = 411“, 2711 (A ) -+ 2(1-3(A )(8 A)
+ 204 (A)(D - A)2 — 204( AZ)(8,A,)(8° A7)

i s 4.24)
— 50s(A0)(0 A)° + — au(A%)(D - A)(0,A0) (7 A7)

— 5(42)(8,A,) (07 A7)0 A,)

3 H
Letting 5&3 = a3 =, 2004 = g and —§Q'5 = a5, S0 the generalized of the Proca field

reads

L 1
4F5,, — 5 2(A%) + oaa(A%(0 - A)

+ a(42)(9- AY? — as(A%)(9,A0)(@°A°)

‘C’GcnPro =
(4.25)
Fas(A)(0- A — 3a5(42)(0 - )@, )" 47)
£ 20(A2) 0@ AN A,)

There are construction of general derivative self-interactions for a massive Proca
field in more terms. The construction of the most general generalised Proca theories
remains an open question. In principle, a possible way to do this is by following the
idea of the original construction of generalised Proca theories, that is by starting from

demanding that Hessian is degencrate.

ﬁgenProca = 4 ;w -+ Z a L s (4.26)

where £,, are self-interactions of the vector fields in form of

Lo = [,

L3 = f3(0-4),

Lo = [0 A)? + 20, Ac0P A7 — (1 4 ¢3)8,A,0° A”)

Ly = f5|(@ AP —3da(8- A, A,8°A7 — 3(1 — dp)(D - A)D,A,07 AP

+ 2(1 - 35’*)3 A OTAP A, + z(gdz)a A 0TAPD. A, 4.27)
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In this work, we are interested in fo = f3 = f4 == fs = A% Therefor, the equation (4.27)

becomes
Lo = A%
Ly = A% A),

Lo = AY(@ A2+ c0,A,0° A7 — (1 + 03)8,A,8° A7)
Ls = AN A —3dy(0- A)D,A,07A7 — 3(1 — dp) (D - A)B, A, 07 AP

+ 2(1- 9%) 8, A, 07 APO" Ay + 2(%13) 8,A,07 A9, A%). (4.28)

Considering the cquation (3.81) (4.26) and (4.28), if ¢ = 1,d, — 1 one can see that the
Lagrangian of generalized Proca vector ficld with derivative self-interactions is in the

form of

1 1 ¢ AV
ﬁgen.Prooa - —ZLF:[?V T é'fnzAz + 3 [A2(8 . A) — AFA BI,A“]

oy [Aﬂ[(a LA - ,A,07 A — 24P AV, A,(8 - A) + ZA“A"&,A,,&)PA,J]

1
o[ A A + 80,4, A7 =28, 4,07 APO7 Ay
BARAT,AL(0- A — GAR A" D, A0PA (B A)

N

GAIAY D, ABP AL Ay — SA"A”a,,A,,apAgE)"AP] (4.29)

Considering the equation (4.29), Hessian matrix of generalized Proca vector field with

derivative self-interactions equals to zero, therefore this field is “a constrained system”.
We now consider the 3™ term of the right hand side of the equation (4.29), it is
grd _ [A2(a - A) - A“A"B,,AH]. (4.30)

Using by part with the 2nd term of the right hand side of the equation (4.30), one can
prove that
1
APAYO A, = ——Q—A“A“(&,A”)

= (AN ). (431)
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Therefore, the 3¢ term is written as

3rd = A AR, A7), (4.32)

The 4" term of the of the right hand side of the equation (4.29) is in the form of

4t — {AQ[(a A — 8,A,0° AP] — 2AP A8, A0 A) + ZA”A”B,,APO”AM]. (4.33)
Using by part with the 3™ term of the rigth of the (4.33), one can calculate that

—2AMA (D - A)D, A, = —AANBANE - A) — A AN AYD,(8,A7), (4.34)

and applying the same technique with the A% term of the right hand side of the equation

{(4.33), we see
2A* AVH,A,BP A, = —A AN OPAY)(0,A,) A AR A °(0,A,). (4.35)
Therefor, the 4" term can be written as

At A A(8,A°)(0,A7) — A AR (8, Aq)(07AP). (4.36)

e

From the equation (4.29), the 5t termn of the right of equation is written as
5 = A2 (@ A 4 80,007 A7 20, As0T AP0° A,
+ BA*AY0,AL(D - A)2 = GA“A"B,,APE)”A#(B - A)
+ 6A*AYO,A0PAO7A, 3A“A"8,,A“8,,AUBC’A”] (4.37)

Usin.g by part with the 4?* term of the right hand side of the equation (4.37), one can

calculate that
SARAY(D - AO,A, — HZ(AZ)(a LAY — 3(AZ)AV)(D - A)D,(D- A). (438)
Do the same technique with the 5t term of the right hand side of the equation, we sec
6AMAYD, A0 AP A, = — 3(A*)(0°A")(D,A,)(0- A)
— 3(AHAY0,(0- A) (D - A)

(AN AY(B,A,)0 (D - A), (4.39)
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Taking by part with the 62 of the right hand side of the (4.37), one can see
BAFAYD, AP A0 A, = — B(AR)(OTAVY D, AN OPA)
— 3(AN A9, A,) (O A,)
— 3(AM)AY(8,A,)87 (97 AY). (4.40)
We now usc by part with the last term of the right of the equation (4.37), one can calculate

that

3

2
3 UL [+8 1}

— 5(,42)14 ()V(OPAJ)(&) AP)

BARAY(0,A5)(0° A”) (B Ay) = — - (A")(@ - A)(9,4,)(0" A%)

- %(AQ)A"(O,,AC,)(?,,(E)"AP). 4.41)
Therefore, the 5 term of the right hand side of the equation (4.29) is written as

BEL = (AD)(9- A

— 3(A%)(0: A)(9,A.)(0" A)

(A7)0 AN Ar). (4.42)

Substituting the 374, 4% and the 5 term from the equation (4.32),(4.36) and

(4.42) into the equation (4.29), one can see that

1 1 3
['_qenProca(new) =W EF‘EV - ‘2'm2/12 + 50‘3142(8 . A)

+ 20[(40)(0- A — (A)(0,A4,)(0" A7)
_ ga‘5 [0 A 3(A%)(0 - 4)(9,40)(2° A7)
- 2(A2)(6pAc,)(8"’A”)(8°A.,,)]. (4.43)
Letting Sa3 = a3, 204 = ag and — 25 = a5, the equation (4.43) becomes
LgenProca(new) = %Fﬁv - %”12142 +azA*(D - A)
T oa[(A2)(@ - AP~ (A2)(@,A0) (7 A7)
+ o [AZ(B LAY — 3(A2)( - A)(8,4,)(67 A?)

A4 @,A,)(8A) DA (4.44)
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The derivatives applied on the vector field were partial derivatives in flat space-

time become covariant derivatives in curve space-time

5
. 1
'C.gz:l!-}g:"oca = —EFLWF!W + Zﬂnﬁm (445)

n=>2

where the self-interactions are encoded in the Lagrangian

EQ == (.X—)
Ly = Gy(X)(DuA")
Ly = Gy(X)R+ G4X[(D‘,A“) + ey DA, D7 AP — (1 + o) D, A, D7 AP
Ls = Gy5(X)GuD'AY — —Gr, X[(D;,,A") — 3do(D,AMYD,A,DP A7
3ds
_3(1 = dy) (D AM)D, A, DA + 2(1 / —)D A, DTAPD7 A,
+2(332)D A, DTAPD, A7 (4.46)
with X = —%Af‘. The two free parameters ¢z and ds as in flat space-time case. All these

interactions give rise to three propagating degrees of freedom.

The generalized Proca theories have been applied extensively to different phe-
nomenological scenarios, which include the construction of inflationary cosmological
models, the analysis of de Sitter solutions relevant to dark energy models, the study of
their cosmological implications in the presence of matter, the analysis of the strong lens-
ing and time delay effects around black holes, and the construction of static and spheri-

cally symmetric solutions for black holes and neutron stars.

The generalized Proca theory is the vector field version of the Horndeski theory
satisfies a necessary condition required to avoid the Ostrogradsky’s instability. One has
constructed the generalized Proca action for a vector field with derivative self-interactions

with only three propagating degrees of freedom.

The resulting theory is simple and constitutes four Lagrangians for the self-
interactions of the vector field. The constrained coefficients yield the necessary propa-

gating constraint in order to remove the unphysical degree of freedom.
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However, after the discovery of the Gravitational Wave GW 170187 event, the

higher order terms in Proca theories have been ruled out. By considering

2 26 + *¢Gsx
b2Gy — 202G x + HPPGs x’

(4.47)
and demanding that ¢Z ~ 1, we obtain

Lo = Gy(X)

Ly = Ga(X)(D,A")

Li = GuX)R+ Gixl(DA") + coDpAeD?A? — (1 + ) D, A D" A7)
Ly = Cs(X)GDrA" — éGE,,X[(D“A"P — 3dy(D,AM)D, A, DP A”

L3(1 = do)(D, A*)D, A, D7 AP+ 2 (1 N %)D,,AUD“’APD"A,,

2
3;‘52) D,A;DVAPD, A% — gs(X) F°* P Do Ag

1 -
L = GG(X)L“”“'ED“A,,DQAF@+EGG,X(X)F“ﬁF“"DQAuDﬁA,,, (4.48)

2

G4(X) and G5(X) need to be constant.

Although, the tems in L4, L5 was vanish, we can construct morc high-order
action. They can write the complete expression of the generalized Abelian Proca theory

in curved spacetime, which reads

1
»Cgen — _Z-F}wﬁ-wu + 'C'CUN |- Z En + Z L;: (449)

n>2 n>b
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where the complete expression of the Lagrangians

Lo = fC APAY - £5(X) Lo P TP

Ly = folAw Fukw),

Ly = [PXOLE,

L= = FPCOR- 2S5,

Ly = [f§(X)GuVIAY + 3[R (X)LEN + [ (X) L5,
L = AU

L, = freml(xypPemligy g pramd X)crem?,

-anS & ZfPenne X)ﬁi’ennz,

&/ = ZJ X)LE, (4.50)

all f and g being arbitrary functions of X, except f{°™ which is a constant, and

f2 which is an arbitrary function of A,,, F,,, and ﬁ'm,.
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4.2 Faddeev-Jackiw Formalism on Generalized of Proca Field

Because of the beginning of the Faddeev-Jackiw method is starting from first
order form of the Lagrangian density. So, in this section we use the result of the section
4.1. Therefor, to calculate the first order form of the Lagrangian density of the gener-
alized of the Proca field, firstly we have to find Hamiltonian density of the system by
using Legendre transformation.From section 4.1, we know that Lagrangian density of

Generalized Proca field [3] in casc of n-= 5 is written as

EG’cnPro 7 / _?4“1—:31, == Z On n. (451)
n==2
where K2, = F, ", @, is any constant and £ are self-interaction of vector ficlds.

Comtrs = [ da[ =R = (A7)
o (A2(8-A) = A“A"B,,Aﬂ)
- an( A%(0:A) = 0,A,0° A)
=AM, A, (0-A) + 240 AV O AP A
+ag (A?[-(@-A)?’ + 3(DA)0, A, 7AP — 20,4, 07 AP A
o 3ARAO, A A — 6AF A, 4,07 AL(0 - A)

+ 6AMAYQ,AO0PA07A, — 3AYAY8,A,0,A,0° AP )|, (4.52)
ke i nUp

where Fﬁy F B, A% = A AR, (9-A) = 8, A% and o3, aua, aus are arbitrary constants.

Rearranging some terms in equation (4.52) and sceing more details of this calculation in

appendix, the cquation (4.52) becomes

EchPraca = /dS: [_ %Fﬁu - %Tn’ (Az) + a3(Az)(8 A)
+ ag(AN(O-A) + ag(A2)(D-A)? (4.53)

1 as(A2)(8-A) — 3a5(A2)(9-A),A,87 AP + 2a5(f12)3p44387/1”3"/17} .

In the context of the Faddeev-Jackiw formalism, the starting point is “first order form

of the Lagrangian density” in the form of Lpop = 7¢A¢ — H(Ag, 7%). The equation
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consists of 2 terms, the first is time-derivative term and the second is the Hamiltonian

density term. Therefore, the first calculation is conjugate momentum as

aCG‘enPro
oAE
= FO 4 ag A A% | 204 A, AP (Q,A”?;O‘f — OEAO)

¢ =

+ 3agd,AM(8,AP) (0, AT ™ — 3as A, AM(D,A,)(07 AP

— 6o A AM(D,A)(DEAY) — B A, AP (D A) (B4 A,). (4.54)

The equation (4.54) is the conjugate momentum of the Generalized of the Proca field.

1. Incase of £ =0, one can see that

71‘0 = —G.’3AHA'““2(I4A”AF(8;’A;')

- 3G5A;¢Ait(aiAi)(ajAj) + 3@514!144“(85./13')(83;141'). (4.55)

2. Incase of £ = 4, one can see that

ﬂ'i = Fm M 2(1’414“14“(85./10)

S 6&514“14“(85140)(8:5‘4]') = 60'514,‘;4“(83,-140)(3,%1:,-). (456)

In this case 7, = (—, +, 4, +), using P = — Fyy = —8; Ay + 0y A; and rearranging the

equation {4.56), onc can see
A = T+ (81),40 - 20’444;‘14“(8,;/‘10)
- 6&5A/,Ap(a§Ag)(ajAj) + 60’514“14# (ale)(ajAJ) (457)
Because the second part of the first order form of the Lagrangian density is the Hamil-

tonian density of its system, so the Hamiltonian density of the Generalized of the Proca

field is in the form of

‘HGenProm = H(Aé)wg)

= 7%Ag 4wl ds — Loss. (4.58)



60

Substituting 7°, A; and £,y into the equation (4.58), one can see that

Because the first part of the first order form of the Lagrangian density is time-

derivative term as
néAS = n0Ay + 7' A, (4.59)
so, the equation (4.59) becomes
Ly Ly ( — g A AR — 20 A AN

— 305 A, A*(0,AP)(0,A%) + 305 A, A (0,A,)(07 A®)

£ GagA A, A Ag + Gaf,A!,A"(af’Ao)A,,) Ao

+ (F"{’ + 2004 A, A* (s o)

+ Gasd, AM0,AY) (0 Ag) 6a5A,,A"(8”A0)(82-AP)) A (4.60)
In this case ., = (—, +,+,+), 80 Fjp = ;A — A,-. From the equation (4.60), one can
see that A; is written as

Ai = -+ 8¢AD = 2(1’414“14“(81'/“10)

60(5A#A“ (a,;AQ) (83/‘1]) + 6&5/1,_,44“(83'}19)(61'%13') (46 1)
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“The first order form of the Lagrangian density is in the form of

£GERPT'O(FOF) - WOAO + ﬂ'iA‘ll
1 . 1 |
— Qﬂ’iﬂ’l — 7?,—(05/10) — EEjFU — ‘iﬂlZAluA'u

+- a3AﬂA“(8iA") - 2a42AHA“A,,A”(8iA0)2

+ oy A A0 A:)(0;4;) — ag A AP (0:A;) (05 A1)

+ 2a4A,1A"(65A0)7r1- - 2a4A,‘A"(8iA0)2

— 18052 A, AF A AY(0:40)2(8; A;) (0L AL)

+ 1205 A, A A AN D A YO AP) (05 A0) (8:45) (D:4;)

-+ 6a52A“A“A,,A"(8jA(,)(&Aj-)(akAO)(aiAk)

s A A (0 AD (8, A) (O Ar) + Bas Ay AP(D; Ac) (O Ax )i
4 Bag A, AN A0) (O Ar) — Sas A, AF(0:A;)(8;A:) (B Ak)
— QoA AN A0) (B A Yy — 205 A, AR (8:40) (05 A0) (8 Ay)
1 2054, AP (0;A;) (A (05 AL)

— 120asA, A* A, A (8;40)* (s Ar)

+ dorgons A AF A, A (85 A0) (85 40) (9;40) (05 A;)

+  milmo — as A A* — 2044, A%(0,A;)

- 3a5A“A“(8,;A.;)(8jAj) + 3(1'514;‘14”(81'/4_7)(83;/1{)] (462)

Considering the equation (4.62)the symplectic variables are £©) = (Ag, 7%, Ay, mi, 71).
Next step is to calculate the canonical momenta a};)) for the symplectic variables £(.

When £ = Ay, we see

Il ;'(CL‘) d .
Ay, = al)) = =2 = — /ﬁ»U*A=-, 4.63
A aAU aAO(ﬂ:I) aAO(IE') Lt {TT (:‘L) 0(1’)} ( )

= /71’0(33,)5(.'12 —z)dz,

ac T I
Apy = ff) = S0 = )

= —1o(z). (4.64)



When £ = mp, we see

OLror(x) 8 /
Ay = al® For 5 dPz {0} =0

d . .
A ;= o = - ld.‘ ‘i-iAi-‘ y
A; a’A,’ aA,(fB') BA"(R:’) /( x {'K ("L) (Q’)}

= fﬂi(:B’)5($ — 2 )d%a,

Ay = o) = E0ORE) o,
C AR

when £€© =, we see

L por(x) a
— (0) - POP = 3 B E—
Am s 871',("1?') 87:1',(58’) /d g {O} 0.

when £0) =, we see

= 0 _ YEEOFAT]
Ay oy, n(z)
d

. f Ao (mo — s Ay A¥ = 2044, A1 (B As)

Py ()
~ Bos A AN (OAN (95A7) + Bas Ay AM(B:A) (0541))

7

Ay, = mo(@) = agAu(a ) A (@) = 2aud, () AP () Ai()

— 3&514# (x')A“(w')'d,-Ai (.’Bf)ajAj (’IZ")

+ 3o A, () A (2 A; ()0 Ai().
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(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

Because A 4,, A4, A, # 0, so the canonical 1-form of the system is in the form of

A / @ (A Aof@) + AnSAde) + An, om(z) ).

(4.71)
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Substituting equation (4.64), (4.67) and (4.70) into cquation (4.71), we can sce

that

A= f Pr(] — mo()]iAo(e) + ri(e))6Ai(a)
+  fg(e) — oA, () AF (2) — 204 A, (2) A (2)0; Ai()
— BoasAu(x) A (z)0;Ai(z)0;A(x)

+ 305AP,(:L‘)A"(m)BfAj(rB)ajA,-(3:)]571(3:)). 4.72)

After we get canonical 1-form (A), Using vary with the canonical 1-form one can get

Symplectic 2-form (F) of the system in terms of wedge products

F= f Er( = Irofw) AdAo(x)] + m() A S 4x(e))
+ mo(@) A dmi(@)] — 2054 (2)[8 AL (@) A S71(2)]
A AR @)D A A () A o ()]
2, () A (@)ABA ) A Sy
= Bas A (2)0; Ai(x)0; A5 (@) [0 Au(e) A ()]
— Bay (@) A" ()05 A () |06 A (@) Advi(2)]
66 AL ()0 A ()05 AL ()5 A (&) A 671 ()]

+ 60'5A;‘($)A“(:L‘)B,‘Aj($)[BjéAi(:B)]&yl(m)). (4.73)
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Considering equation (4.73) and using interior derivative with the symplectic

2-form {F), we then obtain

]:::/d%:

+ + + T+

+ o+ o+ 4

[~z @5 Ag(x) + 2@ bmo ()] + [ P8 Ai(z) — 2P dmi(x)]
(2708 () — 27§y ()]

[—2a3 A* ()2 @y (2) + 203 A* (2) 27 DA ()]

[—do A* ()8, Ai(2) 2™ @y () + A A (2)0; Ai () 2™ @5 A, (z)]

[0 A, () A* (2)Dsz 5y (2) 204 Ay () A" ()™ ©)9,6 A ()]

(—Gag A (2)0;Ac(x)8; A ()24 ()
Bas A (@) 84, (x)0; A; () 2V DS Ay ()]
[6as A, () A" ()0 A5(2)0:2 @5y ()

Bas A (@) AF ()85 4, () 20,6 4; ()]

[6ovs AF ()0 A (@) 05 A ()22 =gy,
Bas AM(2)0; A;(2)0;A:(2) 2" S AL ()]
[6as A, () A4(2)D Az () D52 )b ()

Bas () A (2)0uAds ()2 @0;8 4, @]) . 4.74)
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Considering equation (4.74) and using integrate by part with the underline terms, so equa-

tion (4.74) is written as

f=/d3rr: (

_|_

—2™§ Ao + 208my + 26 A; — 2N 6y
200y — 2z émy

2o Al z Sy + 203 AV 2 S A,
4og AP O Az Sy + Ay A9, A2 B A,

204 Ay Al Dy’ bop —da AV O, A2 S A

2&’414“14“8{2715/-12'

by A, A; Bj AjZA“ 5’}/1
6(151‘1'“8514,'83‘/13'2“ 5/-1“
6a5AHA"8jAj3,-zA"571

120‘5AH05A“6_J'AJ' A (SA,

6(_1’5 A#A“c"),- 8j Aj 2 5141

6a5A#A"c")jAj6iz'“ (SAI

60’5 A‘“é),— AJ‘ Bj Ag'ZA‘" 6’)’1
6(1514”851‘13'8_?‘14;;2% 5Aﬂ
66!5%1“/‘1“85/13'33'2}11"6’)/1

12&514”83'14“6{143' 2 6Ai

6&514”14#81'83;/'1_.;2{“614,‘

Bos A, AFDA;0; z“éAi) .

(4.75)
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In this work, index ¢ = 0,7 where ¢ = 1,2, 3, to expand equation (4.75) by using index

in 4 dimensions, equation (4.75) becomes

F= /d%; ( —2"§ Ag + 2%0mg + ZT8A; — 2N,
+ 2§y — 2Méng
— 203 A%208y; — 203 ATz Sy, + 203 A% Ag + 203 A2 S A;
— 4ag A" A28y, — day AV O Az 6y
+ 4oy A9 A2 6 A+ 4y A9 Az 0 A

— 2(\3444#/1“83'2}4"(5’)’1*4&41‘1‘181'14“271 §Al

£ 0 AARDZ S A;

— B A" A0 Az Sy
+ 6&51‘1‘“8514583'[1;52“(514”
—  GasA, AR A0 6y,

— 12&514‘“8414“8:;145;271 5;41

N 6(15 Ay A“B,fé)jAjz'” 5.(41

¥ 60‘5/1“14‘“8}'143' 8,- = 6A,;

+ 6a5A“35Aj8inzA“5’yl
- 6035 A"BiAJ-Binz"'l 5A,u
6(15/1"/1“8{/13:8_?'2‘4'. 5’)’1

120.’544“83' A“ 8,;Aj M 6143

+ o+ o+

6(1’514#/1'” aiBjAj zM §A,<

+ oA, AM0A 02" 0 Ar). (4.76)

After we use the Faddeev-Jackiw formalism on th generalized of the Proca field, we then

obtain 2 constraints as
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O = 7%+ asfs(A%) + 20 fs (A% (V-A)
A;

+ 30'5f5(flz)(( YW @.77)

and

Y

Q= V7 =20 §(A) Ag + 205 (A7) | A(7 + V o) - Ag(\:/"-A)]
+ an |4 f(A7) (248 (m; + BiAg) T A; — 4,0;448;Aq
+ ADaEfAjaﬂAi) — 2 (AQ)VZAO]
_ dagdaf! (AQ) I (AZ)A' -V Ao + 16 f4 (A2) 7l (A2)A[='ajAgaﬁAf
+ 120 (f5(A%) (34(xF + 00 A6)0; 490, A4 1 24,0;06 2,09 Ay
— A A A0 Ay) + fo (42) " (95400:41))
+ 2Uasasf! (AZ) fo (Az) A:0Y A0 A,
— 2cuas (475 42) f5 ( 42) QM 4,05 404,
3/ (A?) I (A?) A8 Ag8; 410, AV

~ 432055 (47) (42 4107 430 Ay Ao A" (4.78)



CHAPTER V

RESULTS AND DISCUSSIONS

5.1 On constrained analysis and diffecomorphism invariance on generalised Proca

theories

In this section, we will review and conciude on the paper [10]. For this paper,
we are interested in the Faddeev-Jackiw formalism on the generalised of the Proca field.

Lgenl"roca(new) =~ =1 iFﬁu 2m2A2 + a3A2 (8 \ A)
¥ oau|(47)(0- A)? — (A)(0p4,)(00 A7)
b as42(0- A - 3(2)(0 M), AN (0 A7)

2D @ANO4) (0 4,) (5.1)
In this theory, there are 2 constraints [10]. The constraints can be written as

)

D = 7%+ f3(A2)+2a4 Fi{ A2 (V-A
A, ) (5.2)

1 Basfs(A) (VA7 = 04,0,
and
Qo = V7 20 fi(A)dg 4 2as fi(A) [ A7 + Vo) - Ao(V-A)]
447 (248 (s + B A0)DPA; — AD; 4D A,
+ AgalfAjaﬂAi) 9 f4(A2)V2AO]
— Aogaafy(A?) f1(ADA - V Ag + 16cs” f4( A?) 1A% AL 9; Agd?) A;
+ 12a504% f4(AD) Fi(A%) + AL, A A,
— AoAodUADNAs) — 24 A7)V Ay
1 2dagos f4( A2 FL(A%) + AL A0 A
+ 31(ADALD;ANG, A

+  —423(as)? fs (A fL(A?) (5.3)
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5.2 Non-linear Schrodinger-type formulation of scalar field cosmology: two barotropic
fluids and exact solutions
Phenomena in physic can often be described as solutions to same differential
equation. Ermakov-Pinney system is a non-linear 2°¢ order ordinary diferrentail equa-
tion, that is in the form

i)+ QOO = (5.4)

In this work, we want to use the Ermakov-Pinney equation to study some events of the
Universe in the context of cosmology. Ermakov-Pinney equation can be related to equa-

tions describing cosmology by using,
b(t) = ul(t) = a™* (), (5.5)

where a(t) is scale factor. From , ¢ and A are

/ Knd?
Q) = 1 2: (5.6)
Dn?g?
A= G.7)

If A vanishes, the equation (5.4) reduees to homogencous second order ordinary differ-

ential equation
b(t) + Q(t)b(t) = 0. (5.8)

These system is relate to flat FLRW cosmology where Fridmann and Klein-Gordon equa-~

tions are
W——%(;&+W@+g)a (5.9)
(b +3HP) ~ —%. (5.10)

Considei‘ing Ermakov-Pinney system eq.(5.4), this system can be reparamctrized by @{¢) =

u(z). The eq.(5.4) becomes 1-dimensional linear Schrédinger equation as

W'(z) + [E — P(x)]u(z) = 0. (5.11)



70

In this case,

" /2
Plz) = iflf, (5.12)
! Dn?k?
E = - . 5.13
12 (5-13)
Where ¢ = 1 and ¢ = —1 mean canonical scalar field and phantom field respectively.

In case of linear ordinary differential equation, one can use the equation (5.8) and (5.11)
to connect and study together. In this work we want to study in context of cosmology,

thercfore we will start from Friedmann equation and acceleration equation as

k2 k
H? = —por = —, 5.14
SPtt ) (5.14)
2
a K
P —“E(PtomLSP:oa), (5.15)

where H is Hubble parameter, # is constant (Gravitational constant), k is curvature, a is
scale factor, p,; and py,; is total energy density and total pressure respectively. According

to scalar-tensor theory, the energy density and pressure of scalar field is given by

po = 5+ V(9) (5.16)
po = e S V() (5.17)

In the case of barotropic fluid, the energy density and pressure can be written as

py = Dyfa, (5.18)

Py = Wy Py, (5.19)

where n = 3{1+w). Consider FLRW universe which has non-interacting two barotropic
and minimally coupled scalar field, ¢, as a sources. The density and pressure of two

barotropic fluid read
D, Dy

y P2
at am

n—3\ I» m—3\ Dy
— -1 | — 2 ) 22 5.21
Pt ( 3 ) a0 P2 ( 3 ) am (-2

= (5.20)

and




71

where n and m implies types of 1% and 2™ fluids respectively. In this case study, the

Friedmann equation (5.14) can be expressed as

K2 k
H? = g(ﬂl +p2t+pg) — 2

W 1 . D D
= [-@2 +V(@) + o+ =2 = (5.22)
2 a* o™

3

and acceleration cquation (5.15) yields

i K2
s = % (pl + po + pe + 3{p1L + P2 +p¢]),
r‘ﬁg Dl Dg 1 12 (ﬂ, - 3) D1 (m — 3) D2
AR ) B T vV 3 it 22
6 ([a“ > a’“+26¢ = (qb)] + [ 3 at + 3 am
1.,
+5ed* = V(g)]),
2 . D D
= 4 (26(;52 Z2V(¢) + (n— 2)== + (m = 2)—2> . (5.23)
6 ar am
Recall that
oA (5.24)
a
So time derivative of the Hubble parameter is written as
. - 2 ..
= 2% e, (5.25)
a a a
therefore
G 4 2
- = H+H-. (5.26)
a
Substituting into eq.(5.23) this gives
. g2 - D D
H+H = _% (2@2 —2V{($) + (n— 2)@—711 + (m — 2)51-3) (5.27

According to Friedmann equation (5.22), substituting 772 into (5.27) this gives

6 (. k ., 2Dy 2D, . Dy Dy
() vt SR = g ey
6 . k . 20 20 D 2D D 2D
—E(H——z)+36¢2+ T e e R
K a an a™ a™ a™ a a

. 2 /. k nl) ml)
R - S 1 mby
€ K2 ( a}) 3an® 3am

(5.28)
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Substituting (5.28) into Friedmann equation (5.22), the potential, V'{¢), can be obtain as

v D 2] -
H2+§H+:—:; = %2[(6—;1) €§+<6;?71>%+V(¢)]

V(g) = 52 112+§+§;)+(ﬁ~-;—6)%+(m;6>%

(5.29)

Note that it is sufficient to consider Friendmann and acceleration equations because
Klien-Gordon equation is a consequence of these two equation. The value of n or m
determine types of fluids i.e. n = 0 forw = —1 (cosmological constant), n = 2 for
w = —1/3, n = 3 for w == 0 (non-relativistic matier), n = 4 for w = 1/3 (radiation),

and n = 6 for w = 1 (stiff fluid).

Now, we accomplish to construct Fridmann equation and acceleration one for
scalar field and two barotropic fluids as a sources. Then, we need to construct Schrodinger

formalism (5.11) which associate with two barotropic finid. Let us define
u(z) = alt)?, (5.30)

By using (t) = u(z), the Schrédinger formalism (5.11) can be calculated as follows.

First, let us take derivative with respect to z to equation (5.30),

w(zx) =

H
()

H

du dudt -—n __,a
—_——I= e = —— (]}, n/zﬁ
de didz 2u a

~2
?U () '
—n . dt —-nH

A 5 B A ol
2 dz 2 u
-2

—u"(z)u(z)

7

Furthermore, from eq.(5.30), we obtain the following useful relations

a=1u

—-2/n
1

" =u?, "=

(5.31)

(5.32)

(5.33)
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Then, substituting H and H into Friedmann equation and using potential equation (5.29),

this gives

W21 ., 3 /(4 ., -2, 2%
{ e + o2 ('n?(u) +og ('c)u(m)-l-@

Finally, the equation (5.28) and (5.29) can be obtained as,

where

n=6\Di, (m=6\D: Di_ Dy| k
6 ar 6 am oo gn a*’
1. 12 — 2k
§€(,f)2 + = 5 ’)2 -+ 32 u"('c)u(rb) -+ “‘*2*&5
n=6YDi, (m—6\Di Dy Di 3k
6 ar 6 a®  a* a™ w2a?’
1 -2’1!.2(513) n 27, mby n—m_ 2 k Tt(fﬁ)
26¢ w(z) 6 (@) + 6 w(z) r2a® u(z)’
1 12 n . n - L2 S5 k 1
26(,15 a"(t)u(z) + : ufz) + 6@ u(x) 2% ()’
2 ,ZD -2 .2 D
< w(z) + ﬂ6¢2 ") + B2 g u(z)
12 1 12 )
—E P(a)
_z?’_k.rul(m) (4_71)/'1'
(5.34)
: , k
w(x) + [B — Plo)ulz) = —%u(m)@—ﬂ)/", (5.35)
2,2
E = —“13 Dy, (5.36)
.2 . D
P(z) = %a(t)“eq')(t)ng nzgzﬁgna”"’”. (5.37)

We encounter non-linearity equation (5.35) which is called non-linear Schrédinger equa-

tion (NLS). We can express kinetic term, eqﬂz(t), and potential, V' (¢), and other cosmo-

logical quantities as a function of u(z). According to kinetic term eq.(5.28) and potential
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(5.29), using (5.30), (5.31), (5.32), (5.33) and (5.36) this gives

- 2 (-2 nDy?  mDyu?n
cp(t)? = —5 (?uﬂu . kutlln) - 31 L 23___,
4, 2kutr ABW?: mDp®mm
= ;{};‘2’[1, U+ h‘,z -+ 1m2 - 3 s (538)
and
3 (4(u)? 2w 2kut/m n—06 , [m—6 5
Vv - _ D L2 Dou m/n
9) K2 ( n? 3n + 3 + 6 e 6 24
12(w')  2u"u N 2kt 2BW’  12FW m—6Y o emm
n?k? nK? s nK? n2k? 6 2
(5.39)
Let us consider eq.(5.37). We are able to rearrange this term as
Ko, f 4, 2kut™ ABy® | mDou®h
HANS i (7—1;315 ] o 3 )
TIIDQ 2 2, 2mfn
g T,
2P(x)u? 2 2kut™ 2Bwu? 3kt
B h-(%z T ¥ k2 nk2 g2 (5.40)

Substituting into equation (5.39), we obfain the expression of potential as function of u

12(:&’)2 2P($)u2 Sku‘l/n 12E?_L2 a 6 -
n2x2 N 12n * K2 n2p2 - Dou / (5.41)

V(g)

The scalar field energy density and pressure can be expressed in terms of u by using

kinetic term, eq(5.38), and potential, eq.(5.41),

2 ., N kut™ 9B melgumn N 12(u')? QP(.’L‘)«H%_%_ 3kt
= —u'u — —
Pe nk? 2 nK? 6 n?k? K2n K2

_'_152}_:::2 +%—%92g@— D2u2m/n’

o 12(uf)? N 3kut/n N 12Bu® Doylmin
 n2k2 K? n?x? ? '
120’ 2 3k 4/n
B 71(2’{:;2) + ,?2 — Dyu? — Dyu®™ " (642)
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and

be = s V()

1202 3ku*n 5 omsm 6 (AN 2w 2kt
e il G B

-0y — 6

12(u)? 3kut 24(u)? du'u dkut/
n2K2 K2 n2R? + nx? 2

n—3 m— 3 ;
f( 2 >D1u2 P ( ; )Dgﬁzm[ﬂ',

12(u)? k™ dul'u n—3 m—3
- y . == D 2 D 2m/n
n2k? K2 \” nk? 3 3L 3 2

K

(5.43)

In this case, the total energy density and pressure (scalar field + two barotropic fluids)

can be expressed as function of u

Pot = Pat p1+ P2,
12(w'Y> - Bkt
+

_ D1u2 _ Dzuzm/n +Dlu2 Y. Dzumn/n’

nl K2 K2
12(u)?  3kut/m
T A s (5.44)

Dot = Pyt 1+ P,

12()? kut™ dulu n—23 , [m-—3 9 /n
T 22 k2 + nkZ 3 Dyu” = 3 Dyu

n—3 m—3 .
2T Dy D 2mfn
(557 ) ot e (77 e,

12(u’)2 kut™  Au'u
Cn2g?z g2 + nK2 (3.45)

Let us consider the NLS equation (5.35). We define constant value as

nk n—4
=T o= (5.46)
and the NLS equation becomes
() + [E - P@)ule) = (5.47)
: : : wlw)C .
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Here we encounter NLS equation as the same form as single barotropic case. The con-
tribution of second barotropic fluid is expressed in P{z) as seen in the equation (5.37).
D’ Ambroise [ref} accomplish to find seven exact solutions of NLS for single barotropic

fluid as follows

u(x) = egx® + box + co, up(w) = egeos?(bpx), uz(x) = egtanh(bpz),
ug(2) = ege™™V"0 — bV ug(z) = (eo/x)e* )  ug(x) = —eocosh?(byz),

wr(z) = eg /2.
Now, in this work, we will show the first solution in detail and explain some
cosmological interpretation. The first solution is
uw(z) = & — e + by + ¢o,  (polynomial solution). (5.48)
Taking derivative with respect to x to the equation (5.48) this gives
' (x) =2e0z + by, u'(T) = 2ey. (5.49)

Substituting into (5.47) we obtain

F
(eox? + boz + 9)¢

2eg + E(60$2 + b + C()) = P(."L’)(EQ(Ez + by + Cg)

In this case, setting £ — 0, F' = —d, and C' = 0, we obtain

2e0 — P(x){eoz® + bz +cp) = —dy. (5.50)
This imply
0 —do
12 — -
R (551
K2 e n 2

Therefore the equation (5.40) is reduced to

260 + dg

. 5.52
(30(132 + bo.'l? + cg ( )

Plx) =
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The refation P(x) correspond to equation (5.50). So, under the conditions F == 0, F =
—dy, and C' = 0, the solution (5.48) satisfies the NLS equation eq.(5.47) which in this

case is
1'(z) — Plz)ulz) = —do (5.53)

In this casc we obtain n = 4 which refer to radiation for D, But, there is no radiation for
this solution becausc of D; = 0, so there is only D fluid and curvature k = dy/2. Let
us consider the solution eq.(5.48), there are two conditions for this one namely eg = 0
and e, # 0. Case one eg = 0 the solution (5.48) reduce to u(x) = & = bz + ¢, and the

solution is given

2(t) = Z_z (ol — 1) (5.54,

for by # 0, by definition of scale factor a(t) = u(z)~*", where u(z) = @(t) can be

obtained by taking time derivative to equation (5.54),
#(t) = coettto), (5.55)
Hence, the scale factor is given by

a(t) = ufz)™",

Caz/rzem2bu(t~to)/ﬂ‘ (5.56)

According to equation (5.31), in this case the Hubble parameter can be cxpressed

as a constant denoted by Hy namely,

—2
H = —(
i'(a),
Hy = 2 (5.57)
¢ '
Since n = 4 this gives by = —2H, and scale factor rcads

a(t) = c{;lﬂeH"(‘_tU). (5.58)



78

The expansion of the universe is de Sitter type.

Next, Let us consider to another case by # 0. This give quadratic equation and

solution yields

(%) i[ —Atan(\/?(t—tg)) mbo}, (5.59)

260

where A = b2 — degey < 0. According to definition of scale factor u(z) = @(t) =

a(t)™/? this gives
NN to)] (5.60)

and scale reads

alt) = u(z) M = [m%cosz (ﬁgé(t — to))r/n (5.61)

In this case, we encounter the periodic solution for scale factor. Both scale factor solu-
tions are obtained. However,there is zero energy density for first fluid, Dy = 0. Buf,
the appearance of radiation n = 4 make no sense. The other solutions and cosmological

analysis show in[4]
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