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ABSTRACT

In this thesis, our aim is to perform study of theoretical side of uncertain op-
timization problems related to robust weak sharp solutions and robust approximate
solutions in uncertain nonsmooth optimizationproblems. Firstly, we introduce robust
weak sharp solution to an uncertain convex optimization problem. The characteriza-
tions of the sets of all the robust weak sharp solutions are obtained. Moreover, we apply
the results to an uncertain convex mutiobject&e optimization problem and obtain op-
timality conditions for robust weak sharp weak efficient solutions in the multi-objective
optimization problem. Secondly, we investigate the robust optimization problem in-
volving nonsmooth real-valued functions. Some necessary and sufficient optimaiity
conditions for the robust weak sharp solutions of considered problem under a con-
straint qualification are established. Thirdly, we move to the investigation of robust
approximate solutions for an uncertain convex optimization problem. The notion of an
g-quasi highly robust solution for the uncertain convex optimization problem is intro-
duced. The highly robust approximate optimality theorems for g-quasi highly robust
solutions of the considered problem are established by means of a robust optimization

approach: Finally, the highly robust approximate duality theorems in terms of Wolfe



type on e-quasi highly robust solutions of the uncertain convex optimization problem

are obtained. In order to illustrate the obtained results or support this thesis, some

exawmples are presented.
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CHAPTER 1

INTRODUCTION

Constrained optimization problems concern the minimization or maximization
of functions over some set of conditions called constraints, and play a vital role in many
fields of science as diverse as economics, accounting, computer science, engineering and
others to select an optimal solution in many decisions based on computational methods.
It was realized that constraints in the form of inequalities play a predominant role in
modeling real world, and, therefore; it leads to more challenging necessary conditions

for global optimality of an optimization problem in terms of a system of inequalities.

As we know, the majority of many practical constrained optimization problems
often involve input data that are noisy or uncertain due to modeling, estimation errors,
prediction errors as well as measurement errors [1-6]. Therefore, it is imperative to
study the optimization problems with data uncertainty. In addition, in many situations
often we need to make decisions now before we can know the true values or have better
estimations of the parameters, for instance, optimization problems arising in industry
or commerce might involve various costs, financial returns, and future demands that
might be unknown at the time of the decision. If the uncertainties are ignored while
solving the optimization problem, it may lead to solutions which are suboptimal or
even infeasible. Consequently, how to explicate mathematical approaches that are
capable of treating data uncertainty in constrained optimization has become a critical
question in mathematical optimization. As we have seen the problematic situations
where a decision based on a model has to be taken here and now, we need naturally
to the additional requirement that any feasible vectors must satisty all constraints
including each set of constraints corresponding to a possible realization of the uncertain

parameters from the set uncertainty set.

Robust optimization, which is its robust counterpart of an uncertain optimiza-
tion problem, has emerged as a powerful deterministic approach for studying opti-

mization problems with data uncertainty in the sense that it minimizes the objective



function value in the worst case of all scenarios and gets a solution that works well even
in the worst-case scenario, but also is immunized against the data uncertainty. Over
the years, a great deal of attention has been attracted to treat uncertain optimization
problems by using robust optimization methodology. For issues related to optimality

conditions and duality properties, see [7-12] and other references therein.

There have been proposed numerous ways to define robust solutions for un-
certain programming problems. Among the first one in all such notions is that the
so-called strictly robust solution also called minimaa robust solution, which was intro-
duced by Soyster [13]. This concept is to have a solution that is feasible for all possible
scenarios and is obtained composed by minimizing the objective function within the
worst-case scenario. The notion of the strictly robust solution has been studied ex-
tensively from different aspecté (see, e.g., [2,5,14-16]). Another solution concept is
that of a highly robust solution which was introduced to study the various uncertain
multi-objective programming problems; see, e.g., [17-19]. It is worth noting that the
notion of a strictly robust solution coincides therewith of the highly robust solution
if the objective function of single-objective programming problems is uncertainty-free;
see, e.g., [8,11,20,21]. The notion of a highly robust solution is stricter than that of the
strictly robust solution when the objective function is in the face of data uncertainty.
Nevertheless, in many cases, it is enough to study the highly robust solution for an

uncertain single-objective programming problem; see, e.g., [18,19,22].

In the same time, the notion of a weak sharp solution or weak sharp minimizer
in general mathematical programming problems was first introduced in [23]. It is an
extension of a sharp minimizer (or equivalently, strongly unique minimizer) in [24]
to include the possibility of non-unique solution set. It has been acknowledged that
the weak sharp minimizer plays important roles in stability and sensitivity analysis
and convergence analysis of a wide range of numerical algorithms in mathematical

programming; see, e.g., [25-30] and references therein.

In the context of optimization, much attention has been paid to concerning

sufficient and/or necessary conditions for weak sharp solutions and characterizing weak



sharp solution sets (of such weak sharp minimizers) in various types of problems. Par-
ticularly, the study of characterizations of the weak sharp solution sets covers both
single-objective and multi-objective optimization problems; see, e.g., [31-34] and ref-
erences therein and, recently, is extended to mathematical programs with inequality
constraints and semi-infinite programs; see, e.g., [35,36]. As it might be seen, the study
of optimality conditions for weak sharp solutions and/or characterizations of the weak
sharp solution sets has been popular in many optimization problems. How about the

issue of this study, particularly, in uncertain optimization problems?

On the other hand, finding a solution of an optimization problem might not
be always possible and obviously, neither does finding a weak sharp solution of the
problem. Then it leads to the notion of approximate solutions that play a crucial
role in the algorithmic study of optimization problems. Among such approximate
solutions, the notion of an e-quasi solution first introduced by Loridan [37]. Since then
many researchers have studied the approximate solutions in optimization programming
problems and approximate necessary conditions under different sﬁitable constrained
qualifications have been established, see [11,38-42] and also the references therein, for

example.

To the best of our knowledge, there are only a few papers to deal with ap-
proximate optimal solutions of optimization problems with data uncertainty in both
objective and constraint functions, for example, [43,44]. More precisely, by virtue of the
epigraphs of the conjugates of the constraint functions, Sun et. al. [44] obtained some
approximate optimality conditions for the robust quasi approximate optimal solution of -
an uncertain semi-infinite optimization problem. The notion of their obtained approx-
imate solutions is given to approximate the strictly robust solutions to the problems.
However, as far as we are concerned, the notion of approximate solutions to approx-
imate the highly robust solutions for uncertain optimization problems has been not
presented so far. A natural question is: “How about the study of approximate opti-
mality conditions and approzimate duality theorems for an approxvimate solution that

approzimates the highly robust solutions to an uncertain convex optimizaion problem?”.



Motivated and inspired by all above contributions, in this thesis, our aim is
to perform study of theoretical side of uncertain optimization problems related to
optimality conditions and characterizations of the robust weak sharp solution sets for
uncertain nonsmooth convex optimization problems, optimality conditions for robust
weak sharp solutions for uncertain nonnsmooth (not necessarily convex) optimization
problems as well as optimality conditions and duality theorems for e-quasi highly robust

solutions in uncertain nonsmooth convex optimization problems.
In the following, we give a description of how is this thesis organized.

Chapter II. We will include several notions and preliminary results in order

to make this thesis as self-contained as possible.

Chapter ITI. We draw our attention to the investigation of robust weak sharp
solutions in uncertain (convex) nonsmooth optimization problems. In the first part of
thé chapter, we introduce robust weal sharp and robust sharp solution to a convex
programming with the objective and constraint functions involved uncertainty. The
characterizations of the sets of all the robust weak sharp solutions are obtained by
means of subdiferentials of convex functions, DC fuctions, Fermat rule and the robust-
type subdifferential constraint qualification, which was introduced in X.K. Sun, Z.Y.
Peng and X. Le Guo [45]. Moreover, we apply the results to an uncertain convex
mutiobjective optimization problem and obtain optimality conditions for robust weak
sharp weak efficient solutions in the multi-objective optimization problem. In the
second part of the chapter, we irlﬁfestigate the robust optimization problem involving
nonsmooth and nonconvex real-valued functions. By means of the generalized Fermat
rule, the Mordukhovich subdifferential for maximum functions, the fuzzy sum rule for
Fréchet subdifferentials and the sum rule.for Mordukhovich subdifferentials, we firstly
establish a necessary condition for the local robust weak sharp solution of considered
problem under a constraint qualification. These optimality conditions are presented
in terms of multipliers and Mordukhovich subdifferentials of the related functions.
Then, by employing the robust version of the (IKIXT) condition, and some appropriate

generalized convexity conditions, we also obtain some sufficient conditions for the global



robust weak sharp solutions of the problem. In addition, some examples are presented

for illustrating or supporting the results.

Chapter IV. We draw our attention to the investigation of e-quasi-highly
robust solutions of uncertain convex optimization problems. In the first part of the
" chapter, we investigate a convex optimization problem in the face of data uncertainty in
both objective and constraint functions. The notion of an e-quasi highly robust solution
(one sort of approximate solutions) for the convex optimization problem with data
uncertainty is introduced. The highly robust approximate optimality theorems for e-
quasi highly robust solutions of uncertain convex optimization problem are established
by means of a robust optimization approach (worst-case approach). Then, in the second
part of the chapter, the highly robust approximate duality theorems in terms of Wolfe
type on e-quasi highly robust solutions for the uncertain convex optimization problem
are obtained. Moreover, to illustrate the obtained results or support this study, some

examples are presented

Chapter V. We give the conclusion.



CHAPTER 11

PRELIMINARIES

In this chapter, we will review the certain notations, basic definitions, and

preliminary results that are related to our research.

Throughout this thesis, all spaces under consideration are the n-dimensional
Euclidean space R™ All vectors are considered to be column vectors which can be
transposed to be a row vector by the superscript 7. For vectors z := (21, %2, - .. ,Tn)

and y == (Y, ¥2,...,¥n) in R”, the (usual) inner product of x and y is denoted by

(z,y) = S_"_ @y, while the norm of x is given by ||z]| = v/{z,z).

The closed, open, and left closed right open ill’pel‘vals between «, 8 € R with
a < B are denoted by [, 8], (o, B), and [a, B), respectively. The non-negative orthant
of R" is denoted by R and is defined by R := {(z1,%,...,%,) € R* 12, 2 0, 1 =
1,2,...,n}.

For any two sets A, C' C R™ and scalar a € R, sets A+ C and oA : are defined
by A+ C:={a+c€ER":ac A€ C}, and ad := {aa € R" : a € A}, respectively.
Besides, for any nonempty set A C R”, the distance function dy : R* — R and the
indicator function d4 : R® — R 1= R U {#oo} of A are respectively defined by

. . 0; x € A,
da(z) = inf ||z — y|,Vo € R", and d4(z) =
yeS “+00; T §7_f A.

2.1 Basic concepts

Definition 2.1.1. A sequence {z} € R is said to be a convergent sequence if there

exists € R such that for every e > 0,
loy — x| <&, Vk > ke,

for some integer k. (that depends on €).



The scalar @ is said to be the limit of {z}}, and the sequence {zy} is said to converge

to x. Symbolically, it is expressed as xp — z or lim z = x.
k—>+o00

Definition 2.1.2. A sequence {z;} is said to be bounded from above (resp. bounded

from below) if there exists some scalar « such that z; < a, (resp. z > «) for all

k € N. In addition, it is said to be bounded if it is bounded above and bounded below.

Definition 2.1.3. A sequence {z}} is said to be monotonically nonincreasing (resp.

monotonically nondecreasing) if x4 < xy, (vesp. mpy1 > xy) for all k € N.

If 2 — x and {z;} is monotonically nonincreasing (resp. nondecreasing), then we use

the notation z | z. (vesp. x T ).

Let {ax} C R and y, = sup{xy, : k > r} and 2, = inf{x; : k > r}. Observe
that the sequences {y,} and {z,} are nonincreasing and nondecreasing, respectively.
Therefore, {y,} has a limit whenever {;} is bounded above while or {z,} has a limit

whenever {x;} is bounded below.

Definition 2.1.4. Let a sequence {z} € R be given. The limit of {y,} is denoted by
lim sup @z, and is called the upper limit of {z;}. Besides, the limit of {2, } is denoted

k00
by liminf @y, and is called the lower limit of {z}.
k400

Definition 2.1.5. A sequence {z;} of vectors in R™ is said to converge to some z € R"

if the i-th component of z;, converges to the i-th component of x for every ¢ = 1,2,...,n.
We use the notations z;, — x or lim x, = x to indicate convergence for vector
. k—-+o00

sequences as well.

We say that z is a closure point of a subset A of R™ if there exists a sequence
{z} C A such that zx — z. The closure of A, denoted by clA, is the set of all closure

points of A.

Definition 2.1.6. The sequence {z;} C R"™ is bounded if there exists M > 0 such
that ||zx]| < M for every | € N. '



Definition 2.1.7. A subsequence of {z;} € R is a sequence {zg;}, j = 1,2, ., where
each x,; is a member of the original sequence and the order of the elements as in the

original sequence is maintained.

The symbol B(z, ) denotes an open ball of radius r > 0 with center at z, i.e.,
Bz,r) == {y e R*: ly — z|| < r}. We say that  is an interior point of a subset A of
R™ if there exists r > 0 such that B(z,r) € A. The interior of A, denoted by intA, is

the set of all interior points of A.

Definition 2.1.8. A subset A of R" is said to be

(i) closed if A = clA.
(ii) open if its complement, R™\ A, is closed, or equivalently, A = intA.
(iii) bounded if there exists a scalar M such that [jz[| < M for all z € A.

(iv) compact if it is closed and bounded.

Generally, we prefer to deal with functions that are real-valued and are defined
over R*. However, in some situations, prominently arising in the context of opti-
mization, we will encounter operations on real-valued functions that produce extended
real-valued functions, that is, functions that take values in R := RU{*oco}. Asan
example, a function of the form

£(z) = sup fi(a),
iel :
where I is an infinite index set, can take the value oo even if the functions f; are
real-valued. Most rules with infinity are intuitively clear except possibly 0 x (+00) and
00 — 00. Because we will be dealing mainly with minimization problems, we will follow

the convention 0 x (+00) = (+00) x 0 = 0 and co — oo = 0.

Definition 2.1.9. An extended real-valued function f : R" — R is said to be a proper

function if f(x) > —oo for every z € R™ and the domain of f,

dom f:= {x € R": f(z) < +oo},



is nonempty. In addition, the epigraph of the function f is given by

epi f:={(z,a) e R" xR : f(z) < a}.

Now we move on the semicontinuities of a real-valued function, which involve

the limit inferior and limit suprerior of the function,

Definition 2.1.10. A function f : R® — R is said to be lower semicontinuous (lsc) at

T € R™ if for every sequence {zx} C R™ converging to z,

f(z) <liminf f(z;).

l—+o00

Equivalently,

z) < liminf f(z) :=lim inf f(z).
f(2) < liminf f(z) = lim inf f(2)

The function f is Isc over a set A C R™ if f is lsc at every 7 € A.

Similar to the concept of lower semicontinuity and limit infirior, we next define

the upper semicontinuity and the limit supremum of a function.

Definition 2.1.11. A function f : R* — R is said to be upper semicontinuous (usc)

at & € R™ if for every sequence {z;} C R™ converging to Z,

f(Z) > limsup f(x;).

l—+00

Equivalently,

f(z) > limsup f(z) = lim sup f(z).
- 80 yemr(z,8)

The function f is usc over a set A C R™ if f is usc at every T € A.

Definition 2.1.12. A function f : R* — R is said to be continuous at Z if it is lsc:

and usc at Z, that is,

lim f(z) = f(Z).
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The next result, a generalization of the classical theorem-of Weierstrass, sug-

gests a way that whether an optimal solution exists.

Theorem 2.1.13. [46] Let A be a nonempty closed subset of R* and f: R" — R be

Isc over A. Assume that one of the following conditions holds:
(i) A is bounded.
(ii) Some level set {x € R™: f(z) < a} is nonempty and bounded.
(iii) For every sequence {zy} C A such that ||z]| — +oo0, kglil f(zy) = oo.
o]

Then, the set of all minimizers of [ over A, i.e., {z € A: f(z) < fly), Yy € A}, is

nonempty and compact.

Next we go through the notions of differentiability for real-valued functions

and vector-valued functions. We start by recalling the partial derivative.

Definition 2.1.14. Let f : R® — R be a given function, and z € R” be fixed. Consider

the following expression:

lim fla+te:) = (@)

t—0 t

)

where e; is the 4-th unit vector (all components are 0 except for the i-th component

which is 1).

If the above limit exists, it is called the i-th partial derivative of f at the vector x and

it is denoted by 5’%‘}%@_)

Definition 2.1.15. Let f : R* — R be given, and let = be a point where f is finite.
We say that f is (Fréchet) differentiable at x if and only if there exists a vector ¢
(necessarily unique) with the property that

oo 1)~ @) = €y~ )

y—o ly — |

=0.
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The vector &, if it exists, is called the gradient of f at z and is denoted by V f (z).

Definition 2.1.16. A differentiable function f : R* — R is said to be smooth if it is
continuously differentiable, i.e., V f is continuous, over R*. On the other hand, if f is

not smooth, it-is said to be nonsmooth.
Definition 2.1.17. For a proper function f: R" — R, we define the one-sided direc-
tional derivative of f at & € dom f in the direction d € R" to be

=y (@ ) — [(T)
f(z;d) = lgﬂ)l ;

provided that 400 and —oo are allowed as limits.

Remark 2.1.18. If f: R” — R is differentiable at Z, f(Z) € R, we have
(@ d) =(Vf(z),d), Vd € R".

Moreover,

Vv (0f(x) 0f(x)  O[(z)
Vf(q’)—( 0331 ’ aCL’z ”%—>

Proof. Suppose that f is differentiable at z. It then follows from the definition that
for any d # 0,

f@ +td) - f(2) = (Vf(@),td)

0=l ]
_ [(@d) - (V@)
Tl '

Therefore, f'(Z,d) exists and is a linear function of d:
(@ d) = (Vf(z),d), Vd € R"

In particular, for i =1,2,...,n,

<Vf(ia d)> €i> - hlll f(i i td) - f('l,) — af(l)

t—0 [/ ) aa;l !

which in turn implies that V f(z) = (agij’), agi?, coes agi?) O
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The following example presents a differentiable but nonsmooth function.
Example 2.1.19. Consider the following real-valued function

f(z) = 0, if v =0;

a?sin(t), otherwise.
T

It is clear that the j'zmctz'bn f is differentiable at @ # 0 and its derivative is
f'(z) = 2z sin(1/z) — cos(1/x), Va # 0.

Since f(0+a)— f(0) = a?sin(2) for any & # 0 and lim, o v sin(1/x) = 0, the function
1 is differentiable at x = 0 and f'(0) = 0. Therefore, [ is differentiable onR. However,

[ is not continuously differentiable because the limit lin%) f'(z) does not exist.
T

Definition 2.1.20. A vector-valued function f : R — RP is called differentiable
(or smooth) if each component fiof [, 7 =1,2...,p, is differentiable (or smooth,

respectivelty).

Definition 2.1.21. The Jacobian of f, denoted V f(z), is the p x n matrix and can

be expressed as -

V@) = (Vi(@), Vis(@), ..., V)T

Let f: R™ — R? and g : R® — R™ be differentiable vector-valued functions,

and let h be their composition, i.e.,
h) == g(f(2)), Yo € R".
Then, the chain rule for differentiation [46] states that

Vh(z) = Vf(z)'Vg(f(z)), Vo e R™ (2.1.1)

A set-valued mapping F' from R™ to R™ associates every « € R™ to a set in R™;

that is, for every & € R™, Fi(z) C R™. Symbolically, it is expressed as D . R”l = R™.

Definition 2.1.22. A set-valued map ® : R® = R™ is said to be upper semicontinuous
(usc) at z € R™ if for any sequences {&,} and {z;} tending to £ and @ respectively,

and if &, € ®(xy,) for each k € N, then £ € &(z).
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2.2 Nonsmooth analysis
Definition 2.2.1. A.set A C R" is said to be

(i) convex if aay + (1 — a)ag € A, Va1, az € A, Ya € [0,1].

(ii) affine if cay + (1 — @)ag € 4, Yaq, az € A, Vo € R.

a) e b)

Figure 1: Example of affine sets

Next we state some basic properties of convex sets.

Proposition 2.2.2. [Operations on convex sets]

(i) The intersection of an arbitrary collection of convex sets is convex.
(ii) For two conver sets A,C CR™, A+ C 1is convex.
(iii) For a convex set A CR™ and a scalar o € R, aA is convex.

(iv) For a convex set A C R™ and scalar oy > 0 and oy 2 0, (a1 +ag)A =g A+apC

which is convex.

Theorem 2.2.3. [47] Let A and C be nonempty convex subsets of R™ with intA # 0.
Then intAN C = O if and only if there exist a vector £ € R\ {0} and a real number

o with
(€,a) <a < (£ c) forallac A and allce C
and

(€,a) < « for all a € intA.
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Definition 2.2.4. The convex hull of a set A C R, is denoted by co A, is the smallest

convex set containing A and can be expressed as

m m
COA:{$€RHZ$:Zaiaia a’ieAa 031'207 2.:172?"'?777’? Zai:l}’

Coa=l i=1

for some m € N.

a2

® .\.
A co A

Figure 2: Illustration of a convex hull

Definition 2.2.5. The affine hull of a set A C R”, is denoted by affA, is the smallest

affine set containing A and can be expressed as

m m ‘
aﬂfA:{mER”::c:Zaiai, €A oeR 1=12,...,m, Zaizl},
i=1

i=1

for some m € N,

a a
! a2 ! 2

A aff A
Figure 3: Illustration of an affine hull

Definition 2.2.6. [48] The relative interior of a convex set A C R™; 1iA, is the interior

of A relative to the affine hull of A, that is,
1A = {x € A:Je > 0st. B(z,e)Naff AC A}

For an n-dimensional convex set A C R”, i.e., the dimension of a subspace which

parallel to aff A, aff A =R" and thus riA = intA.
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/ X | I

/ T1 / | 1

Figure 4: Illustration of a relative interior of a one-dimensional convex set

L2 1)
P A
/ aff ANB((0,0.5),0.5) C A

on a two-dimensional space

Proposition 2.2.7. [48] Consider a nonempty convex set A C R™. Then, the following

assertions hold:

(i) riA s nonempty.
(ii) Let x € riA and y € clA. Then for a € [0,1),
(1 —a)z + ay € 1iA.

Definition 2.2.8. A set A C R” is said to be a cone if for every z € A, ax € A for

every a > (.

Definition 2.2.9. For any set A C R, the cone generated by A is denoted by cone A

and is defined as

coneA = UafA:{a;ER":m:aa,,aéA, a > 0}.

a>0

Hi) [} T9

A= {(1,1),(2,2)} o cone A
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T9 T2

(-1, 1) (1,1)

A= {(-1,1),(1,1)} ! cone A

Figure 5: Illustration of the cone generated by a set

We are interested in the convex scenarios, thereby moving on to the notion of
the convex cone.
Definition 2.2.10. The set A C R" is said to be convex cone if it is a cone and is
convex. |
Definition 2.2.11. For any set A C R”, the convex cone generated by A is denoted

by cone co A and is expressed as

m
ConecoA:{:L‘ER":a::Zaiai, a €A o >0, i=12,...,m, mEN}.

i=1

Figure 6: Illustration of a convex cone generated by a set

In addition, for a collection of convex sets A; CR", ¢ = 1,2,...,m, the convex
cone generated by A;, i = 1,2,...,m, can be shown to be expressed as
. m m . ]
cone co UAZ' = U 5 a; A (2.2.1)
i=1 ;>0 =1

i=1,...,m
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See, [49], for more details.
Theorem 2.2.12. A cone A C R” is convex if and only if A+ AC A,
Definition 2.2.13. Consider a set A C R®. The cone defined as

A ={£eR": (&) <0, Ve e A}

is called the polar cone of A. Note that the polar cone of the set A is a closed convex

cone.

.’1}2‘

a) A:={(1,1),(2,2)}

Figure 7: Polar cones of sets

Proposition 2.2.14. [46] Let ay,as,...,a, be vectors in R™.  Then, the finitely

generated cone
A= cone{ay,ag,...,an}
is closed and its polar cone is the polyhedral cone given by

A ={d e R": {a;,d) <0, i=1,2,...,m}.
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Definition 2.2.15. Consider a set A C R™ The positive polar cone (dual cone) to

the set A is defined by
A" ={(eR": (£,z) >0, Vz € A}

Observe that A* = (—A)° = —A°.

T2

Figure 8: Dual cone of a set

Lemma 2.2.16. [47, Lemma 3.21] Let A be a convex cone in RP.

(i) If A is closed, then A = {x € RP : (£, z) > 0 for all { € A*}.

(ii) IfintA # 0, then‘ intA = {x € R?: {£,2) > 0 for all £ € A"\{0}}.

We present some properties of polar cones.

- Proposition 2.2.17.

(i) Consider two sets A, C C R™ such that A C C. Then C° C A°.

(ii) [The bipolar cone theorem] Consider a nonempty set A € R™.  Then A% =

¢l cone co A.

Definition 2.2.18. Consider a set A C R” and € A. The tangent cone to the set A
at T, T(A, T), is defined by

1
T(AZ) = {dER” s Hak} C A 2 — 7, 6105t E(’Lk—"f) —)dask—>+oo}.



19

»\

\\\ \\\:,UI

- T(A,0) = {(d,0) € R? : d < 0}
<q=..,.,.,...., | e - - >

1

Figure 9: Illustration of the behavior of the vector in a tangent cone

In view of the definition, to construct a tangent cone we consider all the se-
quences {z;} in A the converge to the given point Z € A, and then calculate all the
divections d € R™ that are tangential to the sequences at T. However, if A is a convex

set, then the tangent cone to the set A can be obtained by the following way.

Theorem 2.2.19. Consider a set A C R™ and T € A. Then the following hold:

(i) T(A,z) is closed.

(ii) .IfA‘ is convex, then T(A,Z) = cl cone(A — z) and hence T(A, %) is convez.

L2

Figure 10: Illustration of a tangent cone of a convex set
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Definition 2.2.20. Consider a convex set A C R™ and £ € A. The normal cone to

the set A at &, N(A, z), is given by

N(A,zZ) ={deR": (d,a —T) <0, Vo € A}

Figure 11: Tangent cone and normal cone of a convex set
Proposition 2.2.21. Consider a convex set A C R™. Then,
N(A,z)=(T(A,Z))° and T(A,z) = (N(4,7))°.

Definition 2.2.22. A function f: R" — R is said to be convex if for any z,y € R®

and a € [0,1] we have

F((L = @)z +ay) < (1 - a)f(2) + af ().

Figure 12: Geometric interpretation of convex functions
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In the case of vector valued function, let g : R® — RP be a given function and ACRP
is a convex set. The function g is said to be A-convex if and only if for any z,y € R"

and « € [0, 1],

ga+ (1= N)y) = Ag(w) — (1 = Ng(y) € —A.

On the other hand, the function f is said to be a concave function if and only if —f is
a convex function. Similarly, the function g is said to be an A-concave function if and

only if —f is an A-convex function.

Proposition 2.2.23. Consider a proper function f : R" — R. f is convez if and only

if epi f is a convex set on R" x R.

The following proposition presents operations that preserve the convexity.

Proposition 2.2.24. (i) Consider proper convez functions f; : R* = R and o; > 0,

m
1=1,2,...,m. Then f = 5 a; f; is also a convex function.
i=1

(ii) Consider a family of proper convex functions f; : R* — R, i € Z, where I is an

arbitrary index set. Then f:=sup f; is a convex function.
1€

Definition 2.2.25. [48] Consider a proper convex function f : R" — R and 7 €

dom f. Then ¢ € R™ is said to be the subgradient of the function f at T if

fl@) = f(Z) 2 {§,= = 7), Vo e R™.

The collection of all such vectors is called the subdifferential of f at  and is denoted

by 9f(z).
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Figure 13: Geometric interpretation of subdifferentials

Theorem 2.2.26. [48] Consider a proper convex function f: R" — R and Z € dom f.
Then »

Of(Z) = {£ € R : (€,5 — &) < f(s) — /(z), Yz € R"}.

More generally, for each & > 0, the e-subdifferential of the function f at & € domf, is

defined by

0.f(z) = {€ €R™: (£,x —7) < f(a) — f(&) +&,Ya € R"}.
It is obvious that for € > &', we have 0, f(Z) C 0. f(Z). Specially, if f is a proper lsc
convex function, then for every Z € domf, the e-subdifferential 8, f(Z) is a nonempty
closed convex set and

0f(z) = () 0:1(2).

e>0

If z ¢ domf, then we set 9f(z) = 0.

Proposition 2.2.27. [48, Theorem 25.1] Consider a convez function f : R" — R
differentiable at T with gradient V f(Z). Then, 0f(Z) = {V f(Z)}.

Proposition 2.2.28. [48] Consider a proper convex function f : R" — Rand z €
dom f. Then Of(%) is closed and convez. For & € ridom f, Of(Z) # 0. Furthermore,
if Z € intdom f, 0f(Z) is nonempty and compact. Moreover, if f is continuous at

T € dom f, then 0f(Z) ds compact.
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Theorem 2.2.29. [48, Moreau-Rockafellar Sum Rule] Consider two proper convez
function f,h:R* = R. Supposé that vi dom f Nri dom h # 0. Then
o(f + h)(x) = 0f (z) + Oh()
for every x € dom(f +h).

Remark 2.2.30. [48] For a convex set A, 964(-) = N(4,").

Now, let us recall some basic concepts dealing with a difference convex (DC)

programming problem.

Definition 2.2.31. A function f : R® — R is said to be a DC function is it is the
difference of two convex functions. The minimization (or maximization) problem of
a DC function is called a DC problem, i.e., the DC proplem can be expressed in the

following form:
Minimize f(z) := h(z) — ¢(z) subject to z € R",

where h, ¢ : R® — R are convex.

Note that the function f is DC and it is not expected to be convex.

It shall be found later that some DC problems are considered and their prop-

erties, in particular the following lemma, are employed in Chapter I1L

Lemma 2.2.32. [49] Let f h:R* — R be two proper lsc convex functions. Then

(i) A point T € dom f N domh is a (global) minimizer of the DC problem:
Minimize f(x) — h(z) subject to x € R™
if and only if for any € > 0,0.0(Z) C 0. f(Z).
(i) If & € dom f N domh is a local mindimizer of the DC problem:
Minimize f(x) — h(z) subject to x € R™,

then Oh(z) C 0f(T).
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Next, let us recall some basic concepts dealing with the conjugate function of

a function.

Definition 2.2.33. The Legendre-Fenchel conjugate function of f : R" — Ris f*:
R™ — R defined by
(@) = sup {(",w) = [ (@)}
me T .

for all z € R™.

The function f* is lsc convex irrespective of the nature of f but for f* to be proper,

we need f to be a proper convex function.

We collect the following propoties of conjugate functions which are useful in

later analysis, especially in Chapter IV.

Proposition 2.2.34. [50] Let f : R — R be a proper Isc convez function and
a € domf :={x € R": f(z) < +oo}. Then

epi f* = J{(v, (v, a) + ¢ = f(a)) : v € Def(a)}.

€0

Proposition 2.2.35. [51] Let f, h : R* — R be proper lsc convex functions. 1f domfn
domh # 0, then

epi (f +h)* = cl(epi f" + epi h*).
Moreover, if one of the functions f and h is continuous, then

epi (f + h)* = cl(epi f* + ept h™).

Proposition 2.2.36. [8] Let g; : R* x R? — R,i = 1,...m be continuous func-
tions. Suppose that each V; C R9,5 = 1,...,m, is convez, for all v; € R, g;(-,vs)
is a convezr function, and for each x € R", gi(w,") is concave on Vi. Then the cone

U epi (Z /\Z-gi(',fui)> is convex.

v EVS, i=1
Ai>0
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Proposition 2.2.37. [8] Let g; : R* x R — R,i =1,...m be continuous functions.
Suppose that each V; CRY,5=1,...,m, is compact and convez, for allv; € RY, g(+, v;)
is a convex function, and there exists y € R" such that g;(y,v;) < 0,Yv; € Vi1 =

1,...,m. Then the cone U ept (Z Nigi(+,vi) | is closed.

Vi €V, d==]
Ai20

Proposition 2.2.38. [52] Let f : R — R be a convez function and let g; : R" X RT —
R,i € I be continuous functions such that for each v; € RY,g(:,v;) is convez. Let
V; CRY, 5 € I be compact and let K = {z € R" : gi(z,v;) < 0,Yo; € Vs,i € I} # 0.

Then the following statements are equivalent:

(i) K C{x eR": f(z) >0}

(7’7’) (an) € 6]72 f* +cl| co U ep?’ < )\zgz(>vz)>
v; €V, 1

i20

=

As we also deal with a class of nonconvex functions instead of convex func-
tions for constraint functions, we shall need generalized subdifferential to nonconvex
function. The notation and definitions including the notations generally used in varia-
tional analysis, the Mordukhovich generalized differentiation notions (see more details

in [53,54]) are the main tools for our study dealing with nonconvex functions.

" Definition 2.2.39. Let a point Z € A be given. The set A is said to be closed around
T if there is a neighborhood U of 7 such that AN U is closed. In addition, the set A

is said to be locally closed if it is closed around every T € A.

Definition 2.2.40. Given a set-valued mapping F' : R® =3 R", the sequential Painlevé-

Kuratowski upper/outer limit of F' as @ — 7 is denoted by

Lim sup F(z) := {"L* eR": 3z, B 7, ot — 2* with z), € F(z,), Vn € N} :
A
T

Let A be closed around Z. Recall that the tangent (or contingent) cone of A at

T is denoted by T'(A,Z) and defined by

T(A,Z):={v eR": Fu, = v, 3, L 0s.t. T+l,0, € AVn N},



26

Definition 2.2.41. Let A be closed around Z. The Fréchet (or regular) normal cone
of A at Z, which is a set of all the Fréchet normals, has the form N (A,Z) and is defined

by

N(A,z) = {’L* eR™: limsupgz—’gj—’_-m—> < O} .

o P
Note that the Fréchet (or regular) normal cone N(A, ) is a closed convex subset of
R™ and we set N(A,z) = 0 if T ¢ A.

Definition 2.2.42. Let A be closed around Z. The notation N(A,Z) stands for the

Mordukhovich (or basic, limiting) normal cone of A at Z. It is defined by

NM(A z) = {"c* € R": Jz, D 7, It — z* with @} € N(A,z,),Vn € N} .

Observe that the Mordukhovich normal cone is obtained by the Fréchet normal cones by
taking the sequential Painlevé-Kuratowski upper/outer limit (see [53] for more details)

- as:

NM(A, Z) = Lim sup N(4, z). .

Specially, in the case that A is a convex sét, then we obtain
N(A,7) = NM(A,7) = T(A,2)° = {* €R" : (&*,x — 3) < 0,Vz € A}.

Definition 2.2.43. Let f : R® — R be an extended real-valued function, & € dom f

and € > 0 be given.

(i) The analytic e-subdifferential of function f at &, which has the form 55 f(z) is

defined by
ggf(i) =< 2* € R": liminf f(@) - I(@) __<$ &~ %) > —¢
i lz ==l

(i) Ife = 0, then the analytic e-subdifferential O.f (Z).of f at T reduces to the general

Fréchet subdifferential of h at Z, which is denoted by of (Z).
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(iii) 0™ f(z) denotes the Mordukhovich subdifferential of f at z. It is defined by
oM f(z) = {:L* e R™: Jz, L z,3ak — 2 with a}, € 5f(mn),Vn € N} ,

where x,, & & means z, — & and f(z,) — f(z).

In the case that z ¢ dom f, we set 5]”(7?) =0Mf(z)=0.

Remark 2.2.44. It is obvious that for any x € R", Of(z) C OMh(z). Specially, if f is

"a convex function, then

Bh(z) = OM f(z) = {% eR": (2,0~ ) < fla) — [(®),Va € R"}. |

Recall that, the distance function dg : R®™ — R and the indicator function

§4:R® — R of A are respectively defined by

0, z€A,

dafe) = intlle =yl Vo € R, and bale) = [ gy

By above notations and definitions, we get
85.4(z) = N(A, z) and 08,(z) = NY (A, 7).
Simultaneously, one has

8da(z) = BN N(A,7) and 0Mda(z) C BN NY (A, 7).

Next, we recall some useful and important propositions and definitions dealing

with nonsmooth (not necessarily convex) functions.

Definition 2.2.45. A function f : R™ — R is said to be locally Lipshitz at € R, if
there exist an open neighborhood U and a constant L such that, for all y and z in U,

one has

[f(y) = f(2)] < Llly — 2.

If the function f is locally Lipshitz at every point x € R™, one says that [ is a locally

Lipshitz function on R™.
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Differentiability ..o,
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éSmoothness
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.,
Local Lipschitzian

onvexity

Figure 14: Relationship among differentiability, smoothness, convexity,

and local Lipschitzian.

Lemma 2.2.46. [53) If f : R* — R s locally Lipschitz at &, with modulus | > 0, then
we always have ||a*|| <1, Ya* € O™ f ().

Theorem 2.2.47. [53,54, The generalized Fermat rule| Let f : R" — R be a proper
Isc function. If f attains a local minimum at T € R™, then 0 € P) f(Z), which implies

0€dMf(z).

Theorem 2.2.48. [53,54, The fuzzy sum rule for the Fréchet subdifferential and the
sum rule for the Mordukhovich subdifferential] Let f,h: R™ — R be proper Isc around
z € domf O domh. If f is Lipschitz continuous around Z, then

1. for every a* € 5(]” + h)(Z) and every e > 0, there exist vy, x5 € B(Z,€) such that

1f(x1) — [(@)] < & |h(xz) — h(@)] < & and * € Df (x1) + Oh(x2) + €B.

2. OM(f + h)(@) C OMf(2) + 0MN(Z).

2.3 Weak sharp solutions

Before recalling notions of weak sharp solutions in optimization problems, let
us collect problems which will be considered in this thesis. First of all, consider the

following optimization problem:

Minimize f(z) subject to g;(x) <0, i=1,...,m, (P)
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where f,g; ' R* = R, i€ I:={1,...,m}, are given functions. The feasible set of (P),
denoted by K, is defined as

K:={zeR": g(z) <0,i€l}.

The optimization problem (P) in the face of constraint data uncertainty can be cap-

tured by the following optimization problem:
Minimize f(z,u) subject to g;(z,v;) <0, i € I (UP)

where f:R* x U — R and g; : R* x V; = R, i € I, are given functions, and v and v;
are the uncertain parameters that are not exactly known, but are only known to reside

in certain uncertainty sets &/ C R? and V; C RY, 1 € I, respectively.

In general, the robust counterpart of the problem (UP) which, by a parametric
reformulation of (UP) (see, [4]), is given by
Minimize sup f(z,u) subject to gi(z,v;) <0, v; € Vi, 1 €1 (RP)
uel
where. the uncertain constraint are enforced for every possible value of the parameters
within their prescribed uncertainty and the global minimizer of the problem (RP) is

known as robust optimal solution of the problem (UP).

Now, we are ready to recall the notions of the weak sharp solutions of the
optimization problem (P). In order to deal with such notions, we recall the following
notion of a sharp minimum, or equivalently, a strongly unique local minimum, which
has far reaching consequences for the convergence analysis of many iterative procedures

[55-59].

Definition 2.3.1. (i) A function f : R* — R has a sharp minimum at T € /£ C R™
if there exists a real number 5 > 0 such that f(z) > f(Z) + nllz — & for all
z € K.

(ii) A point & € K is said to be a sharp solution (or minima, or minimizer) of (P) if

f has a sharp minimum at Z, i.e., there exists 7 > 0 such that

f(z) = f(@) > nllz — 7|,V € K.
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In [30], Burke and Ferris extended the notion of a sharp minimum to include

the possibility of a non unique solution set.

Definition 2.3.2. We say that S C R” is a set of weak sharp minima for the function

f relative to the (feasible) set K C R"™ where S C K if there is an n > 0 such that

F(@) = f(y) 2 nds(a) | (2.3.1)

forall z € K and y € S.

The constant 7 and the set S are called the modulus and domain of sharpness for f
over K, respectively. Clearly, S is a set of global minima for f over K. The notion of

weak sharp minima is easily localized.

Next, let us focus on the notion of the weak sharp solution for the constrained

optimization problem (P) with its feasible set K.

Definition 2.3.3. A point & € K is said to be a local weak sharp solution for (P) if

and only if there exist a neighborhood U of Z and a real number n > 0 such that
F(@) = f(@) = nds(e), Ve € KN T,

where S = {z € K : f(z) = f(&)} = KN f~Y(f(z)). Specially, if U = R, then & is

said to be a global weak sharp solution for (P).

Solutions

Weak sharp solutions

p solutions

Figure 15: Relationship among sets of all solusions, weak sharp solutions,

and sharp solutions.
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In this thesis, we are interested in the studies of weak sharp solutions of nons-
mooth convex/nonconvex optimization problems with data uncertainty. More clearly,
we introduce new concepts of solutions, related the sharpness, for uncertain optimiza-
tion problems in forms of (UP). The studies are conducted by examing the robust

optimization problems in forms of (RP).

With the intention to answer the question - How about the issue of weak
sharp solutions, particularly, in uncertain optimization problems?, we obtain some

main results which are presented in Chapter III.

2.4 Approximate solutions

In this section, we collect the notions of approximate solutions of the optimiza-
tion problems (P) with its feasible set K. The following three kinds of approximate

solutions of the problem (P) were introduced by Loridan [37].

Definition 2.4.1. [37] Let € > 0, a point & € K is said to be:

(i) an e-solution for (P) if f(z) < f(z)+ ¢ for all z € K,
(ii) an e-quasi solution for (P) if f(z) < f(z) + vel|z — || for all z € K,

(iii) a regular e-solution for (P) if it is an e-solution and an e-quasi solution for (P).

The following example indicates approximate solutions of the optimization

problem in form of (P).

Example 2.4.2. Let f: R — R be defined by

and let K = [0,1]. For T =1, we set g, := #,n e N and get that for each © € K,

f(l’)”‘f(i‘)+%20andf(w)—f(g“:)_}.%m_flzo'
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Therefore T is a regular en-solution for (P) for any n € N. Besides for T; = %,i =
1,...,5, by taking €, := n,n € N, we obtain

f(2) = f(Z) +n >0 and f(z) — f(@)+ Vnle — %] > 0,Ve € K.
Hence for each §= 1,...,5, one has % is a regqular 6n~.solutz'0n for (P) for any n € N.

Remark 2.4.3. If 7 is an e-quasi solution for (P), then there exists a ball B(Z,¢)
such that f(z) < f(z) + ¢ for all & € B(Z,/2) N K. In this case, we can say that & is

a locally e-solution for (P).

The following example sheds some light on to the fact stated in Remark 2.4.3.
Example 2.4.4. Let f: R — R be defined by

10¢%; @ >0,
0; x < 0,

and let K = [0,2]. Consider T = 3 €
solution but mot an &-solution for (P). However, the point T is a locally E-solution of

(P) since f(z) — f(&)+& >0 forallz €[0,%) = KN B(Z, VE).

K and € = % We can see that T is an E-quasi

In this thesis, we are interested in the approximate solutions, particularly
approximated quasi solutions, that approximate the solutions of uncertain optimization
problems in forms of (UP). In order to study our interested solutions, we investigate

the problem (UP) by examing the robust optimization problems in forms of (RP).

With the intention to answer the question - How about the study of approzimate
optimality conditions and approzimate duality theorems for an approzimate solution
that approzimates the (highly) robust solutions to an uncertain convex optimizaion

problem?, we obtain some main results which are presented in Chapter IV.



CHAPTER III
OPTIMALITY CONDITIONS AND CHARACTERIZATIONS

FOR ROBUST WEAK SHARP SOLUTIONS

3.1 Uncertain convex optimization problems

In this section, we consider uncertain convex optimization problems involing
convex objective functions and D-convex constraint functions. First of all, we intro-
duce the notion of a robust weak sharp solution to an uncertain convex optimiza'tion
problem. Then, optimality conditions for the robust weak sharp solutions and charac-
terizations of the sets of all the robust weak sharp solutions of the problem are obtained.
Finally, we apply the results to an uncertain convex muti-objective optimization prob-
lem and obtaih optimality conditions for robust weak sharp weakly efficient solutions

in the multi-objective optimization problem.

Let ¢ C R™ be a nonempty closed convex set. Let D C RP be a nonempty

closed convex cone. Consider the following convex optimization problem:
Minimize f(z) subject to z € C,g(z) € =D, (P1)

where f : R® — R is a convex function and g : R* — R™ is a D-convex function.
The feasible set of (Py) is defined by {x € C : g(z) € —D}. The problem (Py) in the
face of data uncertainty both in the objective and constraints can be captured by the

following uncertain optimization problem:
Minimize f(z,u) subject to ¢ € C,g(x,v) € =D, ' (UPy)

where 4 C R? and V C R? are convex and compact uncertainty sets, f: R" X UuU-—-~R
is a given real-valued function such that, for any uncertain parameter u € U, f(-,u)is
convex as well as f(z, ) is concave for any © € R", g R" x V — R™ is a vector-valued
function such that, for any uncertain parameter v € V, g(-,v) is D-convex as well as -

g(z,") is D-concave for any z € R". The uncertain sets can be apprehended in the
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sense that the parameter vectors u and v are not known exactly at the time of the

decision.

For examining the uncertain optimization problem (UP;), one usually associates with

its robust (worst-case) counterpart, which is the following problem:

Minimize sup f(z,u) subject to & € C, g(z,v) € =D,Vv € V. (RP1)
ueU

It is worth observing here that the robust counterpart, which is termed as the ro-
bust optimization problem, finds a worst-case possible solution that can be immunized

opposed the data uncertainty.

The problem (RP;) is said to be feasible if the robust feasible set K is nonempty

where it is denoted by

Ky :={z € C :g(z,v) € —=D,Vv € V}. | (3.1.1)

We recall the following concept of solutions, which was introduced in [2].

Definition 3.1.1. [2] A point Z € K is said to be a robust optimal solution for (UP4)

if it is an optimal solution for (RPy), i.e., for all « € K;,

sup f(z,u) —sup f(z,u) > 0.
ucl ueY

The robust optimal solution set of (UP;) is the set which consists of all robust optimal

solutions of (UP;) and is given by

51 1= { € K1+ sup f(z,u) < sup f(y, u), Vy € m} .

uEU ueld

In [68], using the idea of weak sharp solution, and the robust optimal solution,
we introduced a new concept of solutions for (UP;), which related to the sharpness,

namely the robust weak sharp solution.
Definition 3.1.2. A point Z € K is said to be a (or an optimal) weak sharp solution

for (RP;) if there exist a real number 1 > 0 such that for all x € Kj,

sup f(z,u) —sup f(Z,u) > ndg, (x)
ueld (=



35

where K; 1= {m € Ky :sup f(x,u) = sup f(i,u)} :

uel ueld
Definition 3.1.3. A point T € K is said to be a (or an optimal) robust weak sharp
solution for (UPy) if it is a weak sharp solution for (RP1). The robust weak sharp
solution set of (UP;) is given by

Si = {7”, € Ky : 3> 0s.t. sup f(y,u) —sup f(T,u) > ndg (y), Vy € K1} .
uell ueld

Throughout the chapter, we assume that §1 is nonempty.

Remark 3.1.4. It is worthwhile to be noted that every robust weak sharp solution
for (UP;) is a robust optimal solution. In general, the reverse implication need not to

be valid.

Robust weak sharp solution————| Robust optimal solution

study il} the special cas study in the special case
with uncertainty free with uncertainty free
Weak sharp solution (Optimal) Solution

Figure 16: Relationship between sets of all robust optimal solusions and

robust weak sharp solutions

3.1.1 Optimality conditions and characterizations for robust weak sharp

solutions

We establish some optimality conditions for the robust weak sharp solution
in convex uncertain optimization problems as well as obtain characterizations of the
robust weak sharp solution sets for the considered problems. For any T € R", we use

the following notations:

ueld

Uz) = {ﬂ eU: f(z,0) = supf(a‘;,u)} ,



36

and

veY

V() = {@ eV (@ d) = supg(i’,'u)} .

The following definition, which was introduced in [45], plays a vital role in

determining characterizations of robust weak sharp solution sets.

Definition 3.1.5. [45] The robust type subdifferential constraint qualification (RSCQ)
is said to be satisfied at T € K, if

081, (z) C0be(@) + | 8pg)(,0)(@).
peD* eV
(1g)(@v)=0

Remark 3.1.6. In an excellent Work, [45], Sun et. al. introduced the (RSCQ) and
then obtained some characterizations of the the robust optimal solution set, for an
uncertain convex optimization problem. Although it has been used as a guideline for
dealing with the (UPy), our attention is paid to characterizing the sets containing the
robust weak sharp solutions of such problem. Furthermore, the presence of the term
d(x) has led us to deal with some different tools and methods, for studying this issue,

from those in work of Sun et.al.

Lemma 3.1.7. [69] Let U C R? be a convex compact set, and f: R x RP = R be a
function such that, f(-,u) is a convex function for any u € U, and f(z,-) is a concave
function for any x € R". Then,

0 (sup 7)) @ = U or¢ue)

uetd u€U(T)

The following theorem presents that the robust type subdifferential constraint
qualification (RSCQ) defined in Definition 3.1.5 is fulfilled if and only if optimality

conditions for a robust weak sharp solution of (UP;) are satisfied.

Theorem 3.1.8. Let f: R* x R? — R and g : R® x RY — R™ satisfy the following

properties :
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(i) for anyuw € U and v € V, f(-,u) is convex and continuous as well as g(-,v) s

D-convex on R™;

(i) for any x € R*, f(z,") is concave on U and g(x,) is D-concave on V.
Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at T € Ky;

(b) & € R" is a robust weak sharp solution of (UPy) if and only if there exists a

positive constant 1 such that

N(K;,z)NnB
c | ar¢w@+asc@+ |J  2(ma)v) @ (3.1.2)

ueld (&) peD* wey
(ng)(@,v)=0

Proof. [(a) = (b)] Assume that the (RSCQ) is satisfied at 7 € K. Let T be a robust

weak sharp solution of (UP;). Consequently, there exists 7 > 0 such that

sup f(z,u) —sup f(z,u) > ndg (). (3.1.3)
ueld uel

By (3.1.3), we obtain that for all € K1,

sup f(z, u) + 0, (z) — ndg, (x) > sup f(Z, )
ueld ‘ ucl

= sup (7, u) + 0k, (%) — ndz, (%),

uel

thereby implying that, for all {; € Indg (),

(sup 1,0+ 60, ) ) - (sup 110+ 5, ) (@)

€Y ueld
>ndg, (x) — ndg, (z)

> <§d)$ - ~(E>

Thus, &4 € 0 (Supyey f (-, u) + 0k, ) (Z). Hence,

Dt @) € 0 (sup )+ ) ).

ueld
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Since sup f(-,u) is continuous on R™and dg, is proper Isc convex on R", we have
ueld

O(ndg,)(@) € O(sup f(-,u))(Z) + 9ok, (T).

ucld
It can be noted that ddg () = N(INQ, (x)) NB. Since (RSCQ) is satisfied at T, we
have the following:
N(K1,z) B = d(ndg )(Z)
c | afCw@ +asc@+  |J  0me,v) @),

u€U(T) peD* vey
(1g)(Ev)=0

which implies that (3.1.2) holds.

Conversely, assume that there is a positive number 7 such that (3.1.2) holds.

Since N(Kj, Z) NnB always contains 0, it is a nonempty set and so is ﬂ de(ndz, )(%).

e>0
Thus, for any € > 0, d.(ndg, )(Z) # 0. Let € > 0 be arbitrary and let £ € O0:(ndi)(T).
Then for any = € K,

ndg, (x) — ndg, () 2 ({2 — &) —¢. (3.1.4)
Note that 0 € 0:(ndg, )(Z). It follows that

ndg (z) < miel}Rf" ndg (v) +¢€ < mie%gl ndg, (z) +e.

Above inequality and (3.1.4) imply that
0> (6,0 —T) —e. (3.1.5)
Simultaneously, there exist 4 € U(Z), fi € D*, 0 € V(T)
£ € Of(-,0)(), &5 € 0dc(T), and &y € O ((19)(+, D)) (Z) such that

§r+ &+ 8 =0, (3.1.6)

and for any € R", we have

f(l7ﬂ)_f(i>ﬁ) > <§faa"—:—[’.>>
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(50(%) - (Sg(i) <€5, ), and
(fig) (@, ) = (Ag)(%, ) = (Eagr @ — T).

Adding these above inequalities implies that for each x € K

Since 4 belongs to (&), for each = € K, above inequality becomes

sup f(2,1) = sup (7, u) + (39w, 9) = (39)(@,9) 2 0

ueld

This along with (f19)(2,9) < 0, (2g)(z,0) = 0, and (3.1. 6) imply
sup f(z,u) — sup f(Z,u) >0, (3.1.7)
ucld ueld

for all z € K;. Observe that, combining inequalities (3.1.5) and (3.1.7) leads to

sup f(z,u) —sup f(Z,u) > ({,z — fi) —¢, Vz € K.
ueU ueld

This means & € I, (sup f(,u))(Z), and so O, (ndK )(Z) C 0. (sup f(-,u))(Z). Since the
ueld
inclusion holds for albltlaly e > 0, it follows from the Lemma 2.2.32 that z is a

minimizer of the DC problem: me {sup f(x,u) — ndg (=)} and hence for any x € K
TER™ “yely

sup f(z,u) — sup f(@,w) = (ndg, (x) — ndg, (T z)) > 0.

uel

Therefore, for any z € Kj,

sup f(z,u) —sup f(Z,u) > ndg ().
u€ld uel

This means Z is a robust weak sharp solution of (UPy).

[(0) = (a)] Let & € 90, (T) be given. Then, we have

0= i, (2) — 0, (T) Z (&5, — T)
holds for all z € K;. Let 7 > 0 be given, and then, set f(z,u) == —(&s, z) + fdg (2).

Thus, for any z € K7,

sup (z,u) ~ 7, (3) = —(€5,2)

ueY
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> —(&, @) + id, (7)

= sﬁp f(@,u).
ueld

Thus, 7 is a robust weak sharp solution of (UP;). By hypothesis, there is 7 := 1) such
that (3.1.2) is fulfilled. Since for any u € U,df(-,u)(®) C {—&} + A(ndg,)(Z), we
obtain that for any a* € N(K,Z) N 7B, there exist 4 € U(Z), € V and ft € D* such
that

v € (~&) +8(ndg, ) (@) + 03c(3) + ((g) () (7) and (3g)(F, ) = 0.
As 0 € N(K1,T) N B, we obtain |

& € 00c() + 0 ((g) (-, 9)) (%) and (iig)(Z, ) = 0.

It follows that

geac@m+ | o) v) @),
neD* vey
(1g)(@,v)=0

and so we get the desired inclusion. Therefore, the proof is complete. a

Remark 3.1.9. Tn [62], the necessary conditions for weak sharp minima in cone con-
strained optimization problems, which can be captured by weak sharp minima in cone
constrained robust optimization problems, were established by means of upper Stud-
niarski or Dini directional derivatives. With the result in Theorem 3.1.8, the mentioned
“necessary conditions are established by an alternative method different from the re-

ferred work.

The following result is established easily by means of the basic concepts of
variational analysis.
Corollary 3.1.10. Let f : R* xR? = R and g : R* x RT — R? satisfying the following

properties:

(i) for anyu € U, and v € V, f(-,u) is convex and continuous as well as g(-,v) s

D-convex on R™;
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(it) for anyx € R™, f(,) is concave onU and g(z, ) is D-concave on V), respectively.
The following two below statements are equivalent:

(a) The (RSCQ) is fulfilled at T € Ky;

(b) & € R™ is a robust weak sharp solution of (UP1) if and only if there exists a real
number n > 0 such that for any x* € N(K;,z) N nB, there exist & € U(Z),0 € V
and ji € D* yield

ot € OF( 1) + 966(®) + 0 (fig)(,9)) (@), and (ig)(®9) =0.  (3.1.8)

The result, which deals with a special case that ¢/ and V are singleton sets, can

be obtained easily and be presented as follows:

Corollary 3.1.11. Let f : R* — R is convex and continuous and g : R™ — R™ s

D-convex. The following statements are equivalent:

(i) The (SCQ) is fulfilled at T € I

(i) & € R™ is a weak sharp solution of (P1) if and only there exists a real number

n > 0 such that for any a* € N ([N(l, 7) N B, there exist i € D* such that

o € OF(3) + 90() + 0(g)(3) ond (jig)(z) = 0. (3.1.9)

Next, a characterization of robust weak sharp solution sets in terms of a given

robust weak sharp solution point of our considered problem is also illustrated in this

section.

In order to present the mentioned characterization, we first prove that the
Lagrangian-type function associated with fixed Lagrange multiplier and uncertainty
parameters corresponding to a robust weak sharp solution is constant. on the robust

weak sharp solution solution set under suitable conditions.
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In what follows, let w € U,v € V and j € D*. The Lagrangian-type function

L(, pt, w,v) is given by

L(z, p,u,v) = f(z,u) + (1ng)(z,v), Yo € R™

Now, we denote by

Sy = {’L € K : 3y > 0st. supf(y,u) >sup f(z,u) +ndg (y),Vy € Kl} )
ueld =

the robust weak sharp solution set of (UP;), and then we prove that the Lagrangian-
type function associated with a Lagrange multiplier corresponding to a robust weak

sharp solution is constant on the robust weak sharp solution set.

Theorem 3.1.12. Let 7 € ) be given. Suppose that the (RSCQ) is satisfied at
7. Then, there exist uncertainty parameters ¢ € U,9 € V,‘ and Lagrange multiplier

fi € D*, such that for any « € §1,

(f19)(z,0) =0, 4 € U(x), and L(z, ft,4,D) is a constant on 5.

Proof. Since T € S, with the real number n; > 0 and the (RSCQ) is satisfied at this
point Z, by Theorem 3.1.8 we have that (3.1.2) holds for 5 := 1. Clearly N (K, Z)NnB
contains 0, then it is nonempty and so is any 9.(nd, )(Z) where e > 0. Let £ > 0 and
a* € O.(ndg,)(Z) be arbitrary. Again, we obtain that there exist & € U,9 € V and
fi-€ D* such that (3.1.2) is fulfilled. Let z € S be arbitrary, then we have

f(@,0) - f(@, @) + (bg) (2, 0) — (Ag)(T,0) > (", 5 —F) —¢. (3.1.10)
Since f(-,u) and g(:,v) are convex, for all u € U and v € V respectively,

¥ € O(f (-, u) + Ag(-,v))(Z).
Therefore, we obtain 9. (ndg, )(Z) € 9 (f(-;u) + Ag(-,v)) (%), and so

[z, ) + (fig)(z,0) — nd, (x) > f(&,a) = sup f(Z,u). (3.1.11)

ueld
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Note that, as z € §1, there exists 7o > 0 such that

sup f(y,u) > sup f(z,u) +mdg (y), Vy € S,

uelf ueld

and so
sup f(i‘, w) = sup f(z,u) +ndg, (2) = sup flz,u). (3.1.12)
ueld ueld ueld

From fi € D*, g(z,d) € —D, and (3.1.11), it is not hard to see that
(g)(z,0) = 0. (3.1.13)
Then, by (3.1.11) and the positivity of ndg (x), we see that

sup f(z,u) > f(x,4) > sup f(Z,u) + ndg, (x) > sup f(Z,u), (3.1.14)
ueld ueld ucld

which together with (3.1.12) leads to

sup f(z,u) = f(z,4). (3.1.15)

ueld
It follows that [,v(a;, fi,4,9) = f(T,4), which is constant. Since x € S, was arbitrary,

we finish the proof. U

Theorem 3.1.13. For the problem (UPy), let S, be the robust weak sharp solutions
set of (UPy) and Z belongs to it. Suppose that the (RSCQ) is satisfied at T € S. Then,
there ewist uncertain parameters 4 € U,o € V and Lagrange multiplier fi € D* such
that

S :{:l: € K : 3 > 0,3¢; € 0. f(-,0)(T) N O£ (+; 0) (), Fe > ndg (2),

(67,8~ a) = ndig (2), (u9) ) = 0,5up [ (2,0) = fa,0)}. (3.1.16)

Proof. Let © € S; be given. Then there exists 1 > 0 such that (3.1.2) holds. Hence,
there exist &5 € Of (-, 1) (), & € 00¢(Z) and &y € O ((f19)(+, D)) (Z) such that

0= & + & + Lag since 0 € N (K4, %) N1yB, (3.1.17)



and

Since &5 € 96¢(T) and &,y € O((9) (-, 0))(E),

bo() — 36(@) + (ig)(w, ) — (A9)(&,9) > (&5 + Eagre — T).

By the same fashion in the proof of Theorem 3.1.8, we have

~

(9)(, 9) = (ig) (7, ) = 0,

and

sup f(z,u) = f(z, ).
ueld

Therefqre, it follows from (3.1.19) that
02> (& + &pgy @ — T),
and so by (3.1.17), We obtain
Mz (0) (65,7~ )
Simultaneously, since & € 9f (-, 4)(Z), we have
(68 ~2) > 1) /(2,0
By (3.1.15) in the proof of Theorem 3.1.8, we obtain

(€5, — x) > sup f(&,4) — sup f(z,u) > 0 =ndg ().
ucld ueld
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(3.1.18)

(3.1.19)

(3.1.20)

Hence, we have that ({;,Z — z) = ndg (v). Now, we prove that for {; € O f (-, 0)(z),

there is an € > ndz (v) > 0. In fact, we can show that for any y € R”,

as (¢7,7—a) < 0. Since &; € Af(-,4)(%) and f(z,4) = f(z,4) by (3.1.14) and (3.1.12), -

<§f7y_$> Sf(y,ﬂ)—f(",ﬁ):f(y,ﬂ)*f(’b,’&),
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which means §f € 0f (-, 4)(z).

Conversely, let
T € {’L € Ky : 3> 0,3¢ € 0.f(,2)(&) NS (-, 4) (), Fe > nd, (),

(&5, — &) = ndg, (@), (ug) (@,0) = 0,5up f(2,u) = (3, 8) .

uel
Since T € §1, it is clear that ndz () = 0. By assumption and & € O.f(,4)(z) for

some € > 0, we get

—ndg, (Z) =0
= ({2 — @) —ndg, ()
< f(@0) = [z, ) + e —ndg, (z)
= f(z,4) — f(2,4) — ndg, (z) +ndg, ()
= f(@,4) — f(x,0). (3.1.21)

l

|
>

&~

Therefore, we obtain

sup f(z,u) < sup f(z,u) +ndz (7).

ueY ueld

Since 7 € S; and v € K 1, the conclusion that x € S is satisfied. (W]

In the case that D := R, , which is a closed convex (and pointed) cone in R, the
problem is reduced to be an inequality constrain problem. Suppose that f: R*xU = R
is a function such that f(-,u) is convex for any u € U and f(z,-) is concave fop any
z € R as well as g : R® x V — R is a function such that g(-,v) is convex for any v € V
and g(w,-) is concave for any @ € R™. Here, the problem (UP;) is represented as

Minimize f(z,u) subject to g(z,v) <0,
and its robust counter part is
Minimize sup f(z,u) subject to g(z,v) <0, Vv € V.
ueld

In this case, we can see that robust feasible set K7 is denoted by

Ky :={z e R" : g(z,v) <0,Yv € V}.



46

Corollary 3.1.14. Let f : R* x R? — R and g : R™ x R? — R satisfying the following

properties:
(i) for anyw € U, and v € V, f(-,u) is conver and continuous as well as g(-,v) is
convex on R™;

(ii) for any z € R™, f(z,") and g(z,-) are concave on U and V), respeclively.
The following statements are equivalent:

(a) The (RSCQ) is fulfilled at T € Ky;
(b) & € R" is a robust weak sharp solution of (UP1) if and only if there exists a real

number n > 0 such that for any z* € N(K1,z) N 0B, there exist i € U(Z), 0 € V
and i > 0 yield :

o € Of(,)(3) + De (@) + Afag) (-, 0)(@), and (ig)(7,) = 0.

Corollary 3.1.15. Let # € S; be given. Suppose that the (RSCQ) is satisfied at Z.
Then, there exist uncertain parameters 4 € U, 9 € V, and Lagrange multiplier 4 > 0

such that for any = € §1,
(fig)(z,0) = 0, 4 € U(z), and L(z, f1,1,D) is constant on 5.

Corollary 3.1.16. For the problem (UP;), let §1 be the robust weak sharp solutions
set of (UP;) and Z belongs to it. Suppose that the (RSCQ) is satisfied at T € Sy
Then, there exist uncertain parameters & € U,9 € V and Lagrange multiplier i > 0

such that

S ={o € K1 > 0,30 € 8.f(,0)(3) N ., 0) @), Fe > ndg, (2),

(a,& — @) = ndg, (2), (ug) e, 9) = 0, sup f(z, ) = f(2,8) }. (3.1.22)

uel
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3.1.2 Applications to multi-objective optimization

In this section, in order to apply our general results of the previous section,

we investigate the following multi-objective optimization'problem
Minimize (fi(x), f2(2),..., fi(z)) subject to z € C, g(z) € —D, (MP,)

where where C' C R" is a nonempty convex set,D C R™, f; : R* — R is a convex
function for any j = 1,...,l and g : R® — R™ is a D-convex function. The feasible set

of (MP;) is defined by K := {z € C': g(z) € —D}.

The problem (MP;) in the face of data uncertainty both in the objective and

constraint can be captured by the following multi-objective optimization problem

Minimize (f1{z,u1), fo(z, u2), ..., filz,w))
subject to x € C, g(z,v) € —D, (UMP,)

where f; : R®* x RP — R,j =1,...1, and g : R* x R? — R™, uj,j' =1,...,0, and v
are uncertain parameters, and they belong to the corresponding convex and compact
uncertainty sets 4 € RP?, and ¥V C RY. Suppose that for any u; € U;,5 = 1,...1,
the function f;(-,u;) is convex on R™ and for any ¢ € R®, fj(z,-) is concave on
Uj,j=1,...1. Besides, suppose that for any v € V), the function g(-,v) is D-convex on

R" and for any = € R, g(z, -) is D-concave on V.

Similarly, we obtain some characterizations of the robust weak sharp weakly
efficient solutions of (UMP;) by using investigation of its robust (worst case) counter-
part:

Minimize (sup fi(z,u1),. .., sup fl(:c,ul))

w1 €U w €U

subject to z € C, g(z,v) € =D, Vv € V (RMPy)

where the robust feasible set of (UMP,) is also defined by

Ky :={zeC:g(z,v) € =D, Vv € V}.
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Now, we recall the following concepts of robust weak sharp weakly efficient
solutions in multi-objective optimization, which can be found in the literature; see

e.g., [61] and [34].

Definition 3.1.17. [61] A pbint 7 € K is said to be a robust weakly efficient solution
of for (UMP,) if it is a weakly efficient solution solution for (RMP,) i.e., there does
not exist x € K such that

sup fi(w,uj) < sup fi(Z,u;),Vi=1,...,L

us €U; i€l
Definition 3.1.18. [34] A point feasible element % is said to be a weak sharp efficient
solution for (MP;) if there exists a real number 7 > 0 such that for any z € K :=

{zr eC:g(zx) e =D}

max { fu(z) — fu(Z)} > ndgz(w)}

1<k<l

where K = {z € K : f(z)= f&@)}

Now, we introduce a new concept of solution, which related to the sharpness,

namely the robust weak sharp weakly efficient solutions.

Definition 3.1.19. A point Z € K is said to be a weak sharp weakly efficient solution
for (RMP;) if and only if there exist a real number 7 > 0 such that there does not
exist y € Ky \ {Z} satisfying

sup fi(y,u;) — sup f3(Z,u;) <ndg (y),Vi=1,...,1(

u; €U u; €EU;

or equiva'lently, for all z € K,

‘max { sup fj(z,u;) — sup fj(i,uj)} > ndg (2)

1<yl u‘jEUj u‘jEZ/{j

where K; 1= {m € K :sup fij(z,u) =sup f;(Z,u),j=1,... ,l} :
ueY ueU

Definition 3.1.20. A point Z € I is said to be a robust weak sharp weakly efficient

solution for (UMP,) if it is a weakly weak sharp weakly efficient solution for (RMP1).
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The following lemma is useful for establishing our later results in this chapter.

Lemma 3.1.21. [43] Let Uy, ...,U; be nonempty convex and compact sets of RP and
for any u; € U;,5 = 1,...,1, the function fi(u;) + R* = R be convex as well as
for any x € R, fi(w,") : U; — R be concave where j = 1,...,1. Then, for any

Aj207j:1_>"'7l7

l l
3( sup Z/\jfj('>uj)> @= U D NG @,

l AFY : -
u€l [ U;(%) j=1 uen{jzl U;(z) I=1

where

1
LY Nifi@dy) = sup Z)\jfj(ff,uj)}
l

! -
j=1,..,1 €[y Us j=1

Now, by using the similar methods used for the single-objective case, we can

characterize the corresponding robust weak sharp weakly efficient solutions of (UMP,).

Theorem 3.1.22. Let f : R*"xR? — R! and g : R x R? — R™ satisfying the following

properties:
(i) for anyu; €U;,j=1,...,1 andv € V, f;(-,u;) s convex and continuous as well
as g(-,v) is D-convex on R™;

(i) for any & € R, f;(z,) 4s concave on U, j ..., 1 and g(z,-) is D-concave on V.
Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at T € Ki;

(b) & € R™ is a robust weak sharp weakly efficient solutions of (UMP,) f and
only if there exists n > 0 such that for any z* € N(I?l,i') N nB, there exist
4; € Uj(T),05 > 0,5 =1,...,1, not all zero, © €V, and fi > 0 such that

0c (o) + 36, (O, )(@) + 00c(®) + 0 (1) () (7)  (3.1.23)

j=1
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(fg)(@, 9) = 0, (3.1.24)

and

o:f(Z, ;) = o sup fi(Z,u5),5=1,...,1 (3.1.25)
u; €U
Proof. [(a) = (b)] Assume that the (RSCQ) is satisfied at Z € R™. Let @ be a robust
weak sharp weakly efficient solutions of (UMP,) i.e., there exists 7 > 0 such that there

does not exist y € K, \ {z} satisfying

sup fi(y,u;) — sup [;(Z,u;) < ndg (y), for all j=1,...,1,
u; €Uy uj €U
or equivalently, for any © € Kj,

max { sup fi(z,u;) — sup fj({f,u]')} > ndg (). (3.1.26)

1Sj§l UjEL{j UjEUj

By (3.1.26), there is s € {1,...,1} such that for all z € Kj,

Sup ol us) + 1 (%) = ndg, (2) = sup F(7, 1)

us EUs usEUs

= sup fo(T, us) + 05, (T) — ndg, (7). (3.1.27)
us€Us

Besides, according to (3.1.27), we follow the teéhniques used in Theorem 3.1.8 and

obtain that for any £ € dndgz (@),

(6,2 =7)
< sup fo(®, us) + 0x, (x) — sup [, us) — 0, (Z). (3.1.28)
us€Us us€Us
Therefore,
O(ndg )(Z) €O <Sup fo(yu) + 51(1) (Z), (3.1.29)
s EUs

Note that the right hand side term of above inclusion is in the subdifferential of the

max function:

1<5<1 1<i<l u; €U

é(x) = max ¢;(x) == max <sup filuy) + 61(1> (z).
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Due to the well-known fact, subdifferential of maximum of functions at x is the convex
hull of the union of subdifferentials of the active functions at x, the inclusion (3.1.29)

becomes
d(ndg, ) (&) C co (U{0¢;(Z) : ¢;(Z) = ¢(2)}),

thereby

Ondg,)(@) € ) 0;065(3),
JjeJ(7) '
where 0; > 0,5 € J(z) with Z o;=1and J(Z) = {k€{l,...,1}: &u(Z) = (2)}.

JjeJ(z)
Further, setting 6; = 0,7 € J(&), and otherwise equals to 0 leads to

MN

f)(ndm)( Z) Q 6;0¢;(Z).

.
Il
A

By the definition of ¢;,4 = 1,...,1, the continuity of sup f;(;, u;),j=1,...,0 and the
u; EU;
lower semicontinuity and convexity of dx,, we have

{ l
Ondg, ) (@ Z < sup f;(- > () + Z &5 (961, (T)) -

u; €U

It follows from Lemma 3.1.21 and the hypothesis such (RSCQ) is satisfied at & € K

that
! l
ddz)@® € | Do a0fiCun)@) + )65 (9(2))
wel T, Uy (z) =1 j=1
v U 060 @)
peD* wey
(1g)(&,v)=0
Because §; > 0,7 = 1,...,1, all nonzero, thereby

l ,
Onde) @) C | D6 08(,u)(®)) + 080(T)
w=(uy)_y, I=1
U'EH; 1 U5 (&)

+ U alwma),v) @)

pneD* vey
(19)(@v)=0



92

As 8di, (x) = Nig

%, (x) NB, we obtain (3.1.23) as desired.

Conversely, assume that there is > 0 such that (3.1.23)-(3.1.25) hold. Then,
for any z* € N(Ki,Z) N 1B, there exist @ = (... %) € H] \U;(Z),0 € V and
fv € D* such that ‘

65 (013 1;) () + 060(@) + 0 ((19) (-, 9)) (&), and

'M~

il
Ja

Tt e
j

(

Since 0 S N (Kl, z)NmB = ﬂ 9 (ndzz, )(Z), for each positive ¢, d:(ndg,)(Z) is nonempty.

9)(z,0) = 0. | (3.1.30)

>

>0
Let € > 0 and € € 9:(ndg,)(Z) be arbitrary, then for any « € K

ndg, () —ndg, (8) 2 (§,2—T) — €. (3.1.31)
Therefore, we obtain
ndz (% (z) < inf ndK (z)+e< mf 77dK (z) +e.

ERH

Above inequality and (3.1.31) imply that

0> (£,2—7) —e. (3.1.32)

. . l )
Further, since 0 € N(R], z)NnB, we have that there exist {f € Z 65 (0f;(-,1;)(Z)) & €

06c(Z), and &y € 0 ((29)(-,0)) (&) such that Y
§r+ &+ &g = 0. (3.1.33)
l .
Since & € > _ & (0f(, <Z 5150, ) (z),&5 € 9dc(F) and &y €
J=1

0 ((g)(-,)) (%), we have

!
Z 6;fi(x, 0;) — ZUJfJ z,0;) > (&, @ — T),
j=1 j=1

dc(x) — 6c(T) > (&5,2 — ), and
(f29)(, ) — (fg)(&, D) = (§pgr® — T).



Then, adding these inequalities yields

Since 1i; belongs to U;(Z), above inequality becomes the following one

l l
gz i sup fi(z,uy) — Z sup fi(Z,u;))

u; €EU;

+(ﬂg)( 0) — (hg)(Z, ).

This together with (fig)(z,9) < 0, (fi9)(z,9) = 0, and (3.1.33), for any = € Ki,

!
Zaj sup fi(z,u;) Z

u; €U

s sup f3(,u;) = (0. (3.1.34)
u,ELIJ

By summing (3.1.34) with (3.1.31), for any « € Kj, we obtain

ZO'] sup fi(z,u;) ZU] sup f(&,u;) > (£, — T) — &,
uj €U;

u;j €U

l

which means £ € 0, <Z a5 sup fi(- u])> (%), and so d.(ndz )(Z) C

21 uj €U

(-, u;) | (%). As € > 0 was arbitrary, for each © € K,
j=1 w; €U
! !
0 < Z(fj sup fi(z,uy) — Z&~ sup f;(Z
j=1 u; €U )

— (ne dg () — 77d1<1(7j))

which is equivalent to the following inequality: for all z € K4

!
Zaj sup fi(z,uy) 77d1(1 ) > Z

sup f;(Z,u;) —ndg (2).
u; €U uJGUJ

It follows that

! !
Z <Sup fi@,uy) — ndg (v > > Z (Sup fi(Zu;) — 7‘)([1?1(:7:)> ,
G=1 u; €U j=1

u; €U;
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for any x € K, which yields for any j =1,...,1,
sup fj(w,u;) — ndg (2) > sup [3(T,u;) — ndg, (T), Vo € Ky.
u; €U; u; €U
Therefore, for any © € K
max < sup fi(z,u;) — sup f3(Z,u;) p > ndg (%).
1<5<d quUj uJ'EUj

This means Z is a robust weak sharp weakly efficient solutions of (UMPy).

[(b) = (a)] Let 7 > 0 be given. Consider f;(z,u;) := —(&s, %) + fidg (z),5=1,...,L
Thus, for any z € Ky,
sup fi(w,u;) —ndg, (x) = —(&, )
quZ/(j
> —(&, &) + 7dg, (T)

et (T

Thus, # is a robust weak sharp weakly efficient solutions of (UMP;). By hypothesis,
there is 77 := 7 such that (3.1.23) is fulfilled. Since for any u; € U, 0f; (-, u;)(Z) C
{—&} + 0(ndg, )(2), one has

l
765 (085 1)(®) € {~&5} + Dndiz (@),

i=1
where 6; > 0,7 = 1,...,1 and all nonzero. Thus, we obtain that for any z* €

N(K,,z) N1B, there exist 1; € U;(z),d € V and fi € D* such that

ot € {—&} + O(ndg, ) (@) + 060(Z) + 0 ((ag)(,9)) (T) and (Ag)(%, ) = 0.
As 0 € N(IN{l,i’) N 7B, we obtain

& € 0d0(T) + 0 ((f1g) (-, 9)) (7) and (ig)(Z, ) = 0.
It follows that

gedc@+ U 9, 0) (@),
neD* ey
(ng)(z,v)=0

and so we get the desired inclusion. Therefore, the proof is complete. (]



55

Remark 3.1.23. (i) In [63] and [64], the authors presented the necessary condition
for the local sharp efficiency for the semi-infinite vector optimization problem
by using the different method with Theorem 3.1.22. In fact, they employed the

exact sum rule for Fréchet subdifferentials to obtained their results.

(ii) In [66], the exact sum rule for Mordukhovich subdifferentials was used as a
vital tool under some regularity and differentiability assumptions for establishing
their results. This means Theorem 3.1.22 use the different medthod from the

mentioned work.

Next, by using the similar methods of section 3, a characterization of robust
weak sharp weakly efficient solution sets in terms of a given robust weak sharp weakly

efficient solution point of the problem is also illustrated in this section.

In order to present the mentioned characterization, we start by deriving con-
stant Lagrangian-type property for robust weak sharp weakly efficient solution sets of
(MP,). In what follows, let w = (uy,..., ) €UrX,... xU,0 = (01,...,00) ER v €

V and g > 0. The Lagrangian-type function £L(-, o, 1, v) is given by
!
Lz, a,p,u,v) = Zajfj(:v, u;) + (ug)(z,v), Vo € R™
j=1

Theorem 3.1.24. Let « € S, be given. Suppose that the (RSCQ) is fulfilled at T.
Then, there exist a positive valued vector 6 = (01,...,01) € RY 65,5 = 1,...,0 all
nonzero, uncertain parameters U = (ul,;..,ul) cU =U x...xU,» eV, and

Lagrange multiplier it > 0 such that for any x € gl,

(fig)(z,9) =0, 4 € U(z), and L(z,5,[1,1,D) is a constant on 1.

Proof. Since T € S, with the real number 71 > 0 and the (RSCQ) is satisfied at
this point Z, by Theorem 3.1.22, (3.1.23) holds for  := ;. Since N(K1,3) NyB is’
nonempty we can let € > 0 be arbitrary and z* € 0(nd, )(Z) be given. Besides, there

exist & € RY, all nonzero, & € U, € V and fi € D* such that (3.1.23) is fulfilled. Let
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x € 51 be arbitrary. By the same fashion using in the proof of Theorem 3.1.8 we have

j=1 j=1 .
+ (fug)(z, 0) ~ (g)(Z, D), (3.1.35)
As fi(,u5),5 = 1,...,1 and g(-,v) are convex, for any u; € U; and v € V, we have
!

z* €8, <Z G;(f(uy) + /\g(-,’u))> (Z). Hence, one has
=1

O:(nd, )(@) C 0O <Z 65 (fi(uy) + Ag(ﬁ))) (@),

=1

thereby

! !
Z 55 fi(w,4y) + (fg)(z,0) — ndg, (z) > Z& fi(&, i)

J:
l

=" 6; sup f(%,uy). (3.1.36)
> uj €U;

Note that, as ¢ € §1, then there exists 75 > 0 such that for all y € K,
sup fi(y,u;) > sup f;(@,u;) +mdg, (y),
u; €EU; u; €U; ’

which implies

!
ZO’ sup fi(y,u;) ZZ <SUP [i(@,u5) +772d1<1( )>

u; €U; u; €l

I
=300 )+ i 0

uJE i
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!
:Z 6; sup fi(z,u;),

“ uj €EU;
for all y € S. Since T € §1,
!
ZUJ sup f;(Z,u5) > Z&i sup fi(@,u;). (3.1.37)
u; €U; j=1 u; €U

From fi > 0, g(z, ) <0, and (3.1.36), it is not hard to see that
(9)(z,9) = 0. (3.1.39)

Moreover, by (3.1.36) and the positivity of nd (z), we see that

Zaz sup fi(z,u ) >Z(f]f] , Uj)

u; €U;
!
>203 sup f;(Z,u;) +ndg, (v)

= uj €l
>ZUJ Slép [i(@, u;). (3.1.39)
uj €U;

This together with (3.1.38) leads to

I
Zaz sup fi(z,u;) Z g fi(x, 0;). (3.1.40)

u; €U;

Thus, L(-, 6, i, G, 0) is constant on S; as follows:

i
‘C( o ,[ QAL ':Z&ifi(w’lLi)+(ﬂg)($’@)
j=1
—Z% sup fi(x, u;) + (fig)(2,0)
uj €U;

l

_‘ZUJ sup f;(Z,u;) + (fg)(x, )

j=1 u; €U
= E 6; sup f;(Z,uy).
ug €U;

This completes the proof. t
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Theorem 3.1.25. For the problem (UMP), let S, be the robust weak sharp weakly
efficient solution set of (UMP;) and T € Sy. Suppose that the (RSCQ) is fulfilled at
T € 51. Then, there exist 6; > 0,5 =1,...,1 all non zero, 4 := (Ug,..., ) €U =
Uy X ..., xU, o€V and it > 0 such that

!
Si=RzeK;:dn>0,Jae€ m @(Z 31 (s uj> (9),

ye{z,z}
Je > ndg, (2), (a,% — @) = ndg, (=), (ug)(z,9) = 0,
supu; € U filz,uy) = fiz,4;),5 =1,...,1}.

Proof. Let z € S; be given. Then there exists 7 > 0 such that (3.1.23) holds. Thus,
there exist 4 € U, f) €V and 2 > 0 such that (3.1.23) is fulfilled. Hence, we have that

there exist & € ZO’J (0f;(-111;)(x)) , & € 03¢ (T) and Eug € O ((f1g)(+,)) (Z) such that

=1
0=2¢& + &+ &pg, since 0 € N(IQ, z) N nB, (3.1.41)
and
(g)(z,0) = 0. (3.1.42)

Since & € 90¢(Z) and £y € O((f29)(:, 0))(Z),

50(w) — 6(@) + (9) (@, ) — (19)(7,9) > (€ +Egr @ —B). (3143)
By the same fashion in the proof of Theorem 3.1.22, we have

(hg)(z,0) = (Ag)(Z, ) = 0,

and

;sup fi(z,uy) = Z‘fﬂff x, Uj).

u_l,EZ/{J =1

s,
-
:

Therefore, it follows from (3.1.43) that

ndg () =02 (b+ ¢,z — ),
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and so by (3.1.41), we obtain

ndg (z) =2 (&, % — ).
l

!
Simultaneously, since {; € ZU] (Of; (-, u5)( (Z 5 U ) > T), we have

J=1

l

!
(€2 —a) > Z 65 f;(2 Z 5 [(@,4j).
7=1

By (3.1.34) in the proof of Theorem 3.1.22, we obtain

!
(5,8 — ) > Z&j sup f;(Z,0;) ZUJ sup fi(z,u;) => 0=mndg ().

=1 u; €U;

(3.1.44)

Hence, we have that (£;,% — ) = ndg (). Next, we shall prove that there is & >

ndg, (x) = 0 such that

£ €0, (Zajjj ;) > (2).

j=1

! .
In fact, we can show that & € 0 (Z &jfj(-,ﬁj)> (x). For any y € R",

i=1

(ry—a)=(Epy—T)+ (&, —2) < &y — @)

(ff,'L —z) < 0. Since a € 9 <Za]fj uj)> (&) and fi(z,0;) = f;(Z,45),] =

7=1

=1 g=1
l l

= Z& f(y>uj) Z6jfj(7jaﬁ])>
j=1 j=1

!
which means &5 € 0 (Z u])> ).
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Conversely, let

xe{rceKl cdn > 0,3, € ﬂ Oe < 55150, G )) (z), Fe > ndg, (2),

ye{z,z}

.
HM~
:

(€, — 3 = ndg, (@), (ug) (e, ) = O, sup fy(w,15) = S, @) |

uj €Uy

Since Z € Sy, 7d #,(Z) = 0 and so the assumption dealing with &; lead to

—ndg, (&) =0
= (£, T —z) — ndg, ()

l l
< 6ifi(@ ) — Y 655w, ds) = ndg, (o) +e
=1 =1
l l \
= 6 f5(@ 05) — Y 65 fi(w, 45) — ndg, (@) + ndg, ()
j=1 =1 ‘
[ l
= 6;fi(®, ;) - > 6ifi(a,dy), (3.1.45)
j=1 j=1

for any 6; > 0,7 = 1,...,1, all nonzero. Therefore, we obtain

!
ZJ% sup fi(w,u;) < ZUJ sup f;(Z,u; ) +7](1K (7)

=1 U €l; =1 u; €U;
~ ZU] sup f;(Z, uj).
— u; €U
Since T € §1 and z € K7, the conclusion that z € §1 is satisfied. O

3.2 Uncertain nonconvex optimization problems

In this section, we investigate an uncertain nonsmooth optimization problem
involving nonsmooth real-valued functions. Firstly, we introduce the notion of a ro-
bust weak sharp solution to the considereed problem. Then, some necessary optimality
condition for the robust weak sharp solutions of the problem under a constraint qual-

ification are established. Finally, by mean of the robust version of (KKT) conditions,
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which are introduced here, sufficient optimality conditions for robust weak sharp solu-
tions of the considered uncertain optimization problem are obtained. Moreover, some

examples are presented for illustating the results.

Let £ be a nonempty locally closed subset of R". For p,q € N, let 4/ C RP
and V; C R%4 € I be nonempty compact sets. We consider the following uncertain

optimization problem:
Minimize f(x, ) subject to gi(z,v;) <0, i € I,z € {1, (UPy)

where f: R* x U — R and g; : R* x V; = R, i € [ are given real-valued functions,
z is the vector of decision variable, w and v;,7 € I are uncertain parameters belonging
to the specified compact uncertainty sets U and Vi,i € 1, respectively. In fact, the
uncertainty sets can be apprehended in the sense that the parameter vectors u and
all v; are not known exactly at the time of the decision. For examining the uncertain
optimization problem (UP;), one usually associates with it, namely robust counterpart,
is the following problem:

Minimize sugf(w,u) subject to gi(z,v;) <0, Vu; € Vi, i € Lo € (L. (RP5)

ue

The robust feasible set K5 is denoted by

Ky ={z€Q: gi(z,v) <0,Vy; € Vg, i €I} )

The following concept of robust solutions can be found in the literature; see

e.g., [69].

Definition 3.2.1. A point 7 € Ko is said to be a local robust solution for (UPy) if it

is a local solution for (RP,) i.e., if there exists a neighborhood U of Z such that

sup f(x,u) —sup f(Z,u) >0, Ve € Kb NU.
ucl ueld

In addition, if U = R”, then & € K, is said to be a global robust solution for (UPs).

In [68], a new concept of a solution, which is related to the weak sharpness,

namely the (local/global) robust weak sharp solution was introduced.
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Definition 3.2.2. A point T € K is said to be a local robust weak sharp solution for
(UP,) if it is a local weak sharp solution for (RP2) i.e., there exist a neighborhood U

of T and a real number 7 > 0 such that

sup f(z,u) — sup f(Z,u) > ndg, (), Vo € K30 U, (3.2.1)

ueU - ueU

where K := {m € Ky : sup f(z,u) = sup f(fTJ,u)} . Specially, if U = R", then Z € K,
ueld ueld
is said to be a global robust weak sharp solution for (UPy).

It is simple to see that every (local) robust weak sharp solution must be also a
(local) robust solution. In contrast, the converse implication need not to be true.
Example 3.2.3. Let f :RxU >R and g: R xV — R be defined by

f(z,u) =2*+u and g(z,v) = min{z,0} + v,

where © € Ryu € V= [—1,0] and v € V = [-1,0], and let Q2 := [-1,1]. We can see
that the robust feasible set is Ky = [~1,1]. Consider & := 0 € K, then observe that =
is a globle robust solution of (UP3). To show that @ is not a local robust weak sharp

solution of (UPy), we assume on the contrary. Then there exist n,e > 0
sup(a? +u) — supu — ndg, (z) > 0, Vo € K3 N (-, £).
ucl ucld

It can be seen that Ky = {0} and then above inequality deduces to

a? > ||, Vo € Ko N (=€, €),

which is clearly impossible.

3.2.1 Necessary optimality conditions for robust weak sharp solutions

In this section, we focus our attention on establishing some necessary optimal-

ity conditions for local (global) robust weak sharp solutions in uncertain optimization
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problems in terms of the advanced tools of variational analysis and generalized differ-

entiation. Given arbitrary & € (), we set

ueld

U) = {u* celU: f(z,u*) = supf(:E,u)},
Vi(T) = {U: eV gi(z,v]) = 11}Eauggi(i,vi)} ,

I(z) = {i € I : gi)(T,v;) =0, Vu; € V;}.

In what follows, throughout this section, we assume g; : R* x V; — R is a
function such that for each fixed v; € V;, 4 € I, g;(+,v;) is locally Lipschitz continuous

and assume function f : R® x U — R satisfies the following conditions:

(C1) For a fixed € €, there exists r; > 0 such that the function f (z,): U = R
is usc for all € B (z,7z) and f(,u) is Lipschitz continuous in z, uniformly for

u € U; i.e., for some real number [ > 0, for all z,y € Q and u € U, one has

I7(e,0) ~ f )l < s =yl

(C2) The valued of multifunction O™ f(-,u) : R™ — 28" is closed at (Z,u) for each

u € U(T).

In order to obtain the necessary and sufficient optimality condition for local
robust weak sharp solutions of (UP3), we now state a constraint qualification for the

uncertain optimization problem with the feasible set Ky defined.

Definition 3.2.4. Given arbitrary & € (2, the constraint qualification (CQ) is said
to be satisfied at z if there do not exist g; > 0 and v; € Vi, i € Z(&) such that

Zz‘eI(J‘:) pi 7 0 and Ogn € ZiEI(i) i gi(-,vi) (@) + NM(Q,2).

Remark 3.2.5. We can see that the (CQ) defined in Definition 3.2.4 reduces to the
constraint qualification defined in [70, Definition 3.2] when ©Q = R™. As well as, it
is not hard to verify that this (CQ) reduces to the extended Mangasarian-Fromovitz

constraint qualification (see [71]) .in the smooth setting when 2 = R™.
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" The following necessary optimality condition for local robust weak sharp solu-

tions of (UPy) is obtained under the (CQ).

Theorem 3.2.6. Let & € I, and the constraint qualification (CQ), defined in Defini-
tion 8.2.4, be satisfied at Z. If T is a local robust weak sharp solution for (UPy), then

there exists a real number n > 0 such that

nBﬂN(KQ,a_:)Q co U OMf(-,u)(Z) + U <iuiaMgi(',w)(it)>+NM(Q,i),

ueU (%) wEeM; (@) \i=1
(3.2.2)

where My(Z) = {ps > 0 ¢ 19:(%,v;) = 0,v; € Vy} for alli € I.

Proof. Suppose that Z is a local robust sharp solution for (UPg). Then, there exist

real numbers 7,7y > 0 such that

sup f(z,u) — sup f(z,u) > ndg (), Yo € Ko N B(T, 7). - (3.2.3)

ueU ueld

Let z* € BN N(Ky,z) be given. It follows from ddr,(Z) = BN N(Ky,T) that «* €
adKZ( }). By the definition of 8dK2( ), for any & > 0, there exists r, € (0, 3r1) such that

(@*, @ — 7) < dg (z) +el|lz — | (3.2.4)

for all z € B(CTJ,TQ).. It is obvious that B(&,r3) € B(Z,71), so from (3.2.3) and (3.2.4),

we obtain
sup f(z,u) — sup f(7,u) + nellv — || = 9", 2 — 7) (3.2.5)
ueld weU :

for all z € Ky N B(Z&,ry). Consider the following function ¢ : R™ — R defined by
p(e) = —n(a”, w — T) + ¢(x) +nelle — Z|| + I (), Yo €RT

where ¢(z) = sup f(z,u) — sup J(z,u) for all z € R™. Observe that for each z €
K> N B(Z,rs), go( ) > 0, Whlle (p(’L) = (. This means the function ¢ attains its local

minimum point at Z. Further, we can get by the properties of f(-,u), |- —Z|| and dx, )
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that the function ¢ is Isc around Z. Therefore, it follows from Theorem 2.2.47 that
Ogn € 5<p(%) Moreover, from Theorem 2.2.48 (i), for each y € 5@@) and each £ > 0,

there exist a5, a5, 2§ € B(Z,¢€), Such that

[pai)| <&, mellay —2| <& dx,(a3) <e
and

y € 0p(a5) + ned||as — || + B, (z5) + €B.

Since Og» € do(T), na* € 5¢($§) +_7765]}:c§ — ||+ 95, (25) + €B. Observe that a§ € Ky
and 551<2($§) L N (Ky,25). It follows from the definition of ¢ that it is Lipschitz
continuous around & with a constant [. So, due to [53, Proposition 1.85], for all suffi-
ciently small £ > 0, one has §¢(m§) C [B. Similarly, we also get (| - —z|)(z5) C B.
According to these inclusions, the compactness of B, and «f,z5,25 € B (Z,e) yields

T aat T, w5 ﬂ z, x§ 4, T, as € | 0. It follows that

nz* € Mp(z) + N (Ks, 7). (3.2.6)

As f satisfies (C1) and (C2), by the same fashion of proof in Theorem 3.3 of [21], we

obtain

Mp(E) S co | | Mf(u)@) ] (3.2.7)

uel(Z)

On the other hand, II := {z € R™: g;(z,v;) < 0,v; € V;,4 € Z}. Hence, Kp = Qnll

As Ogn € N(£,7), the following inclusion always holds:

U > wdMgi(,u) (@) | € U ZuiaMgi(-,vi)(i;) + NM(Q, 7).
)

W EM;(E) \i€Z(%) wEM;(®) \ieI(x
Since the (CQ) is satisfied at %, there do not exist y; > 0 and v; € V;, i € Z(Z) such that
Yiczm i # 0 and Opn € 2 ieT(a) 1:0M g; (-, v:) () + N(§, 7). Applying [53, Corollary

4.36}, we have

Nz e |J | D moMa e @) | (3.2.8)

€M (&) \i€Z(z)
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It follows from [53, Corollary 3.37] that
NYM(K,, ) = NM(QNTILz) C NM(Q,7) + NY(I1, 7). (3.2.9)

Setting p; = 0 for every i € Z \ Z(Z), by (3.2.8) and (3.2.9), we airive the following

inclusion:
NM(Kyz) € | <Z /Liang-,(~,vi)(:i)> + NM(Q, 7). (3.2.10)
: pi€M;(z) \i€Z

Asz* € BNN (K, T) was arbitrary, we verify (3.2.2) by combining (3.2.6), (3.2.7) and
(3.2.10). O

The following example shows that the (CQ) being satisfied around T € Ky is

essential for Theorem 3.2.6.
Example 3.2.7. Let f :RxU — R and g : R x V — R be defined by

—U; z =0,

f(’L, 'U,) = 9 .
x4 —u; otherwise,

and

glw,v) =0 — 27,

where v € Ryu € U = [0,1] and v € V := [~1,0]. Take Q := [~1,1] and consider the
problem (UPy). It is not hard to see that [ satisfies (C1) and (C2), and the robust
feasible set is Ky = [0,1]. Consider T :=0 € K with its neighborhood U = (——%, %) By
choosing a positive real number n =1 > 0, we can verify thal T is a local robust weak
sharp solution of the p?"oblem (UPy). Simultaneously, we get from direct calculating

that
oM £(- u)(Z) = {0}, Vu € U, dg(,v)(T) = {0}, Vv €V,

NM(Q,z) = {0}, and NM(K,,7) = —R,.

It follows that the (CQ) is not satisfied at T. Furthermore; we get

1Bgz N N (K, Z) = [-1,0]
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while

o | U 0"rCw@ |+ U w0l 0)(@) + N(©,7) = {0}

uEU(Z) pEM (%)

This shows that (3.2.2) does not hold for every n,6 > 0. Hence, the assumption that
(CQ) being satisfied is essential.

Observe that the functions f(-,u) and g(-,v) is not convex. Indeed, choose x; =

2,2 =0, and \ = z € [0,1], the convewities of these two functions are not satisfied.

Therefore, [68, Theorem 8.2] is not applicable for this ezample.

3.2.2 Sufficient optimality conditions for robust weak sharp solutions

In this section, we focus on sufficient optimality conditions for robust weak

sharp solutions of problem (UPj).

Now, we state a type of the robust version of Karush-Kuhn-Tucker (KKT)

conditions as the following definition.

Definition 3.2.8. A point # € K, is said to be satisfied the robust version of the

(KKT) condition if there exist A > 0 and p € R such that X+ 377", p; = 1,

0€Aco U OMf(,u)(@) | + Zm co U OMgi(-,v:)(Z) | , end
wcld(z) i=1 v;€Vi(T)
pi sup gi(Z,v;) = 0,4 € Z.
vi€V;

The following example illustrates that only satisfying the robust version of

(KKT) condition is not sufficient for a point to be a (local) robust weak sharp solution

of problem (UPy).

Example 3.2.9. Let f :RxU - R and g: R xV — R be defined by

flz,u) = —2® —u, and g(z,v) = vmax{z,0},
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where v € R,u € U :=[0,1] and v € V := [~1,0]. By taking Q2 = R and consider the
problem (UPy) and the robust feasible set is Ko = R. Consider T := 0 € Ko, then we

have
OM f(-,u)(z) = {0}, Yu € U, 0 g(-,v)(z) = {0},Yv € V.

The robust version of the (KKT) condition is satisfied at & since there exist A = j =

%> 0, such that A+ p =1,

0:%(0)+l(0) exco| |J oMf(Cw)@) | +pco U aMg(v‘aU)(i‘)

. =) VEV(E)

and psup,ey 9(Z,v) = p(0) = 0. However, this % is not a (local) robust weak sharp

solution of our considered problem since there is no n >0 satisfy

sup f(z,u) —sup f(Z,u) = —a® > ndg (z), Vo € R.
ueld ueld

In order to formulate the sufficient optimality conditions, we need to introduce
concepts of generalized convexity at a given point for a family of real-valued functions.

We set g := (g1,...,gm) for convenience in the sequel.

Definition 3.2.10. (f,g) is said to be generalized convex at ¥ € R™ if for any = €
R”, 25 € M f(-,u)(Z),u € U(7), and &, € Dgi(-,v;)(Z), v € Vi(T),1 € I, there exists
w € R™ such that

f(’L,U) - f('f>u) > <z:;>w>’ g{,(l';’Uz‘) 7 4 gi(f)vi) > (:E;i,’LU).

Remark 3.2.11. If f(-,u),u € U and g;(-,v),v € V;,i € I are convex, then (f,g) is

generalized convex at any Z € R™ with w := z — T for each x € R™.

The following example demonstrates, the class of generalized convex functions

at a given point is properly wider than the one of convex functions.

Example 3.2.12. Let f :RxU - R and g: R x V — R be defined by

flz,u) =2z +u,
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and

VT x>0,
g(il/', U) = ]
T —wv, otherwise

where v € Rou € U :=[0,1] CR, andv € V = [-1,1] C R. Consider T := 0eR
Observe that Of (-, u)(T) = {2} for allu € U,0Mg(-,v)(T) = {v, 1} for allv e V. We
see that (f, g) is generalized conver at T =10 € R as follows:

Case I If x> 0, then there exists w := & € R such that
flz,u) — f(a?,‘u) = 2z = (2,2) and g(z,v) — g(T,v) =ve = (v,z).
Case II: If x < 0, then there exists w =z +v € R such that
f(m,u)‘— f(Z,u) =2z > (2,2 —v), and g(z,v) — g(Z,v) =T —v = (1,2 —v).

Howewver, g(-,0) is not a convex function as follows: let x1 = 1,23 = —1 € R, and

choose A\ = & € [0,1], we have

gay+(1—N)z2,0) = g(0,0) =0 > %(0)+%(—1+0) = Ag(w1,0)+ (1 —A)g (w2, 0).

By means of the robust version of the (KKT) condition and the generalized
convexity, we established the following sufficient optimality conditions for robust weak

sharp solutions for the problem (UP3) .

Theorem 3.2.13. Let & € K, and the robust version of the (KKT) condition be
satisfied at Z. If (f, g) is generalized convex at T, then T is a robust weak sharp solution

for the problem (UPy).

Proof. Since the robust version of the (KKT) condition is satisfied at , there exist
A > 0,0, > 0,28, € 0f(un, ) (@), u, € U@, M =Lk=1,... kk €N
and g € R, > 0,27, € Agi(-, v, )(T),vi; € Vq(i),zz;l py; =Lj=1..,7,0i € N,
such that Ay + Y 10 p; = 1 and

) k1 m ji
0=\ <Z Alkzi*k) + > ( ,,Lijm;‘j> , - (3.2.11)
k=1 i=1 j=1
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i sup gi(%) = 0,i € 1. (3.2.12)

v €V
Assume on the contrary that Z is not a robust weak sharp solution for the problem

(UP,). Then, there exists & € Kj such that for all 9 >0

sup f(Z,u) — sup f(Z,u) < ndg, (). (3.2.13)
uel ueld

Tt follows from the generalized convexity of (f, g) and (3.2.11) that there exists w € R"

such that

k1
0=X) <Z Alk(zi‘k,w > + Z,ul (Z Hz] w))

k=1 j=1

(Z )\11\ 'L ulk f(%7 Ulk)]>
+ Z:“i (Z M l9:(%, Uij) S Gk Uij)]) . (3.2.14)

Therefore,

k1 m Fi
N (}: Alkf@,ulk)) Sy (z /g<>>
N\ k=1 i=1 j=1

k1
Z A f(&, Uu))
=1

+ i#i <i pi; 6i(Z, vij)> (3.2.15)

S i=1

Since v, € Vi(&), (T, vi;) = SuPyey, gi(®,v,),Vi € I, for all j = 1,...,j;. From
(3.2.12), we have 11;g;(%,v;;) = 0 for i € I and j = 1,... , ;. Furthermore, for each
i € Ko, pigi(8,vi;) < 0forie Iand j=1,...,7. Hence, by (3.2.15) we have

k1 m
=\ (Z )\1,\ T, Uy, ) +Z,LL1 (ZM?QY T 7}1] )

k1 m
Z/\l’\ T Ul,\ > +Z/57 <Z /’Jz]gz T Uz] )
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k1
A1 <Z /\lkf<‘%a ulk)) '
k=1

This together with uy, € U(Z) imply

Z)‘lk supf z,u) < Z)‘lk T,uy,) < Z’\lk sup f(Z,u),

uEU

which yields sup,ey [ (T, 1) — supuey f(E,u) < ndg, (%) for all n > 0. Thus, for any
n > 0,sup,ey f(Z,u) — sup f(&, u) > ndg (). This contradicts (3.2.13) and hence T is

a robust weak sharp soluflon of (UPs). . O

Remark 3.2.14. In Theorem 3.2.13, the sufficient optimality conditions for robust
weak sharp solutions are established while the assumptions of the convexity of ob-
jective and constraint functions and the convexity of parameter uncertain sets are
dropped. However, these assumptions are employed to obtain several results on opt-
mality conditions of robust optimal solutions and/or characterizations of robust opti-
mal solution sets of uncertain optimization problems obtained in recent literature (see,

e.g., [12,45,65,67-69)).

The next example assert the importance of the generalized convexity of (f,9)

imposed in Theorem 3.2.13.

Example 3.2.15. Let f : R xU — R and g: R x V = R be defined by
flz,u) = 2 +u and g(z,v) =1 — (v +a*),

where v € R,u € U = [—1,0],v € V := [1,2] and let Q := [-2,2]. It can be seen that
conditions (C1) and (C2) are satisfied and the robust feasible set is Ky = R. By taking
T =0 € Ky, we see that

M (- u) (@) = {0}, Yu e U and OMg(-,v)(z) = {0}, Vv € V.

By the same way in Example 3.2.9, we have that the robust version of the (KKT)
condition is satisfied at T. In fact, for any real numbers X, p > 0 with A+ pn = 1, we

have

0= 2(0)+2(0) € ) o {0 u)(R) : w € UL} +u co {Mg(,)(@) 1 € V(E))
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and

wsup g(Z,v) = u(0) = 0.
vey

However, the generalized convexity of (f,g) is not satisfied at T. Indeed, there exists

z= —% € K, such that for each w € R,

and

o, <v+(~%)4> < 0= (0, w).

Notice that % is not a (local) robust weak sharp solution of (UPy) as there is non > 0
satisfy

sup f(z,u) — sup f(Z,u) = &° > ndg (z), Vo € R.

ueU ucld

Therefore, the conclusion of the Theorem 3.2.13 may fail if the generalized convexity

has been dropped.

It is not hard to see that the functionsf(-,u) and g(-,v) are not convex. In fact,
the convexities of them are not satisfied when x1 = -—%, x9 =0, and A = % Therefore,

this problem cannot be solved by [68, Theorem 3. 2].



CHAPTER 1V
OPTIMALITY CONDITIONS AND DUALITY THEOREMS

FOR ROBUST APPROXIMATE SOLUTIONS

In this chapter, we recall concepts of robust solutions of a convex optimization
problem with data uncertainty as well as introduce a new concept of approximate
solution for the highly robust solutions of the problem. Firstly, we begin by recalling

the following deterministic convex program:
Minimize f(z) subject to g;(z) <0,i=1,...,m ‘ (P3)

where f,g; : R* - R,i € I := {1,...,m} are convex functions. The following parame-
terized convex program is an analogue of the deterministic convex program (Pg) if the

objective as well as the constraints are uncertain:
Minimize f(z,u) subject to gi(x,v;) < 0,4 € 1. (UP3)

Here u is an uncertain parameter belonging to a compact convex uncertainty set ¢4 C
RP, for each u € U, f(-,u) : R* — R is a convex function, and for each i € I, v; belongs
to a compact convex set V; C RY, g;(-,v;) is convex. By enforcing the constraints for all
possible uncertainty within V;,4 € I, the problem (UPj3) becomes an uncertain convex

semi-infinite program:
Minimize f(z,u) subject to g;(z,v;) < 0,Vv; € V;, ¢ € 1. (RP3)

In other words, we study the uncertain convex programming problem (UPj3) by exam-

ining its robust (worst-case) counterpart. Let
K3 :={z e R": gi(z,v;) <0,Yv; € V;,i € I},

then it is termed as the robust feasible set of (UP3). To avoid triviality in (RP3), we

always assume that Kz # 0.

In the literature, there are multiple ways of defining robust solutions for (UP3).

In the following, we recall two concepts of the robust solutions of the uncertain program
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(UP3). The first notion commonly referred to as strictly robust solution or robust
minimax solution, can be found in [1,13]. This concept has been studied extensively

by many authors, see, e.g., [2,19,60,69].

Definition 4.0.16. A feasible point Z € K3 is said to be a strictly robust solution for
(UPy) if for each @ € K,
sup f(z,u) > sup f(Z,u).
ucld ueY
The second one called highly robust solution can be found in Bitran [17].

This concept was also investigated for different uncertain multi-objective optimization

problems, see, e.g., [18,19].

Definition 4.0.17. A feasible point & € K3 is said to be a highly robust solution for
(UP3) if for each u € U and z € K3,

fla,u) = f(7,w).

The following notion is a concept of approximate solution that approximates

the strictly robust solutions. It was investigated in a few papers, see, e.g. [44].

Definition 4.0.18. Let ¢ > 0 be given. A feasible point Z € Kj is said to be an
e-quasi strictly robust solution (or a robust quasi e optimal solution) for (UPj) if for
each z € Kj,

sup f(z,u) + Vel|lx — Z|| = sup f(7,u).

ueld ueld
Clearly, if € = 0, then an e-quasi strictly robust solution for (UP3) reduces to be a

strictly robust solution for (UPj).

Now, we introduce a new concept of solution to approximate the highly robust

solutions for (UP3).

Definition 4.0.19. Let ¢ > 0 be given. A feasible point Z € Kj is said to be an

e-quasi highly robust solution (or a highly robust quasi e-optimal solution) for (UP3)
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if for each u € U and z € K3, .

f(’L,’U,) + \/E“’L o i” 2 f(i'au)'
Clearly, if € = 0, then an e-quasi highly robust solution for (UPjs) reduces to be a

highly robust solution for (UP3).

Remark 4.0.20. (i) It is evident from Definition 4.0.16 and Definition 4.0.17 that
a highly robust solution for (UP3) is a strictly robust solution for (UP3), but the
converse does not hold. This means the highly robust solution is more immune

to data uncertainty than the strictly robust solution.

(ii) Also, it is evident from Definition 4.0.18 and Definition 4.0.19 that an e-highly
robust solution for (UP3) is an e-strictly robust solution for (UP3), but the
converse does not hold. Hence, the e-quasi highly robust solution is more immune

to data uncertainty than the e-quasi strictly robust solution.

e-quasi highly robust solnf—————| e-quasi strictly robust soln

e=20 e=0

strictly robust soln

highly robust soln

Figure 17: Relationship among strictly robust solutions, highly robust so-

lutions, and approximate solutions which approximate them

The highly robust solution is more immune to data uncertainty than the Strictlyl
robust solution and the e-quasi highly robust solution can reduce to be the highly robust
solution. Therefore, the e-quasi highly robust solution, which is more immune to data
uncertainty than the e-quasi strictly robust solution, is different from the strictly robust

solution. The following example sheds some light onto this fact.

Example 4.0.21. Consider an uncertain convex program with an uncertain objective

and uncertainty-free constraints:

Minimize ux + |z + 1| subject to z €R, (4.0.16)
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where u € [—1,1). Following the robust optimization approach of [1], the robust coun-

terpart of (4.0.16) reads

Minimize sup wz+min|z+1| subject to 1z €R,
u'e{“l_:l]

which is equivalent to min{|z| + |z + 1| : @ € R}. Then it is easy to check that the set

of strictly robust solutions for (4.0.16), denoted by S5, is
S5 = [-1,0],
while the set of solutions for (4.0.16), denoted by S, is

(o0, =1]; w :’1,
S = {_1}; U € ("'Ll)a

[—1,00); u=—1,

So, the set of highly robust solutions for (4.0.16), denoted by S*E, is

SR = {-1}.
Consider & := —3 € (—oco,—1] with € :== 4 > 0. We can see that for any @ € R and
Cu e [-1,1],

uz + |z + 1]+ VE||lz — 2| > uz + |z — 1]

Thus, T = —3 is an é—quasz'.hz'ghly robust solution of (4.0.16).

Notice that & ¢ [—1,0] = S5E, so, the e-quasi highly robust solution for (4.0.16)
is different from strictly robust solutions of (4.0.16), making it valuable to study the

e-quast highly robust solutions.

4.1 e-quasi highly robust solutions for robust convex optimiza-

tion problems

In this section, we consider (UP3), which is an uncertain convex optimization

problem with data uncertainty in both objective and constraint functions. Our aim is
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to investigate robust approximate solutions for the uncertain convex problem (UP3).
First of all, the notion of an e-quasi highly robust solution for the uncertain convex
optimization problem is introduced. Then, the highly robust approximate optimality
theorems for e-quasi highly robust solutions of the considered problem are established

by means of a robust optimization approach.

The following constraint qualification, which was introduced in [8], plays a key role

in obtaining results in this section.

Definition 4.1.1. [8] Let g; : R* x R — R4 = 1,...m be functions such that for all
v; € R? g;(-,v;) is convex. Then the robust characteristic cone constraint qualification

(RCCCQ) is satisfied if the cone U epi <Z /\igi(-,vi)> is closed and convex.

v; €V, =1

220
Lemma 4.1.2. Let T € K and let f : R* xRP — R,g; : R* xR? — R,7 € I be
continuous functions such that for each v € RP, f(-,u) is conver on R™ and for each

v; € RY,g;(,v;) is convex on R™ and let A = U epi Z&%‘(W“z’)) . Suppose
v €V}, i=1 ‘
A >0

that the constraint qualification (RCCCQ), defined in Definition 4.1.1, holds. Then -

the following statements are equivalent:

(i) T is an e-quasi highly robust solution for (UP3);

(it) there exist i >0 and 9; € Vi i € I such that for any x € R® and u € U,

F(@ ) < flau) + ) hgile, ) + Vellr — 2.
i=1
Proof. [(i) = (ii)] Assume that Z is an e-quasi highly robust solution for (UP3). So for
any © € Ky, f(z,u) +/e|lx—Z| > f(z,u) for all u € Y. Hence we obtain the inclusion
K3 C{z € R*: h(z,u) > 0} where h(z,u) = f(z,u) + Vellz — Z|| — f(Z,u) for u e U.
Due to the Lemma 2.2.38,

(0,0) € epi h*(-,u) +cl (co A), where v € U.
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Since A is closed and convex,
(0,0) € epi h*(-,u) + A, where u € Y.

Hence, there exist \; > 0,7; € V; such that

m

(0,0) € epi h*(-,u) + epi <Z /_\,-g,i(-,z_)i)> , where u € . v S (4.1.1)

i=1
Let us prove that for any v € U,

epi B*(-,10) = epi f*(,u) + /B + [f(:r;,u) + ]]:L"||,+oo>. (@12)

From Proposition 2.2.35, we have

epi h*(u) = epi [/(,w) + Vel - 2l = fEw)]
— epi () + epi [VE[ 3l - /@ )] | (4.1.3)

where u € RP. Observe that for any v € U,

e[ fEw el I < Ve
Vel =l - 1@w)] () n ol |2
By dealing with (4.1.3), we obtain

epi h*(-,u) = epi f*(-,u) + VEB X [f(:"ﬁ,u) o> \/E||j||,+oo),

where u € Y. Hence, it follows from (4.1.1) that for v € U,

(0,0) € epi f*(-,u) + VeB % {f(:?,u) + \/E||"T:||,+oo) + epi (Z S\igi(-,ﬁi)> :

i=1
This yields

m

(07 _f(fau) - \/E‘li“) € epi f*(vu) =+ epi <Z XzQz()@)) + \/EB X R+a

i=1
where u € U. Therefore, for each u € U, there exist v* € R*, o > 0,v] € R™, 8; >

0,7 € I,w* € B and n € Ry such that

(0, —f(@,u) = Vellzll) € (u, f*(u",u) +a) + <Z iV, g7 (v, Bi) + ﬁz-)
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+ (Vew™,n).

Hence, we obtain

0=u"+ Z \vf 4 Vew*, and
v i=1

(@,u) = Velz| = fuu) + o+ Y Nlg @], 5) + ;) +n, uelU.
i=1
Thus, for any 2 € R™, u € U,

m

F(@u) = —fr W u) — o= > Nlgr(v], ;) + B;) — n — Vel

<= [0t ) = 16w)] ~ 3 o)~ Vel
_ xw;Jrﬁw*,mwf(m,u)_{\m:l/\zgz(v 5) - Vel
_<§;>\j> + (VEw', ) + f(z,u) - i ~ Vel
§<:XZ o) + Vellullle 5+ 2 + f(z, )

i/\ £(01, ) — VElal _
s<§;x: o) + Vel —all + f(eyu) - fj

<(3 Rt e + Vel — i+ f(e, )

- [(Chaee) - ZWW}
=f(w,u) + Ve||r — 7| + Z&gz(fv, 7;)-

Thus, the statement (ii) is satisfied.
[(i1) = (i)] Suppose that there exist A;, > 0,v; € V;,i € I such that for any z € R" and
uEU,

fla,u) + Vellz — || + Z Nigi(, B) > f(Z,u).

i=1
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So, for any feasible point z € K3 and u € U,

m

[(@,u) < flz,u) + Velle — 7| + ZXigq:(:bt, ¥;)

< fl@u) + Vel — 7.

Therefore, Z is an e-quasi highly robust solution of (UP3). U

Lemma 4.1.3. Let all assumptions of Lemma 4.1.3 be satisfied. Then, the following

statements are equivalent:

(i) T is an e-quasi highly robust solution for (UPj);

(i) for any u €U,

(0,—f(@u) = Ve|zl) € epi f*(u)+ | epi <Zj‘igi('>5i)>

v;€V;,Ai 20

+ VeB x R,.

Proof. Cleaxly, (i) = (ii) is true by the proof of Lemma 4.1.2. Let us show (ii) = (i)

now. Suppose that for any u € U,

(0, = (@) = VEI]) € epi £*(u) A+ VEBX Ry,
Then, for any u € U, we oBtain

(0,0) € epi f*(,u) + A+ 2B X {f(aé,u) - \/Ellain,+oo).

From the proof of Theorem 4.1.2, we knew that for any u € U, epi f*(-,u) + VeB x
{f(i‘,u) + |z, +oo> = epi (f(-,u) + el —z| - f(i,u)) . So, for any u € U, one
has
(0,0) € epi (f(w) + VEI| - ~all - f(z,w)) +A
= epi (f(,w) + Vel - =all = [(@,1)) +cl(co A).
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Using the Lemma 2.2.38, for any u € U, we arrive

K C{wer: (f(,u0)+ Vel 3] - f@w) (@) = 0}.
Thus, for any v € U and = € K3,

F,u) + Vel — 7l - £(7u) > 0.

Hence, for any z € K3 and u € U,

1(@0) < (@ u) + Vele = 7],
which means 7 is an e-quasi highly robust solution of (UPj). . O

Theorem 4.1.4 (Highly robust approximate optimality theorem). Let Z € K3 and let |
f:R*xR? - R, g : R" x R” — R, i € I be continuous functions such that for each
u € R, f(-,u) is convezr on R™ and for each v; € RY, g;(:,v;) is convex on R". Suppose
that the constraint qualification (RCCCQ), defined in Definition 4.1.1, holds. Then

the following statements are equivalent:

(i) T is an e-quasi highly robust solution for (UP3);

(ii) for any u € U
(0, —f(z,u) — Vellz) € epi f*(,u)+ | epi (ZM%(»%))
i=1

v €V,
Ai>0

+eB xR,

(iii) there exist T; € V; and \; > 0,1 € I such that for any v € U,

0€0f(,u) (@) + D Oigi,v))(@) + VEB and Y Nigi(z, 7)) = 0.
‘ i=1 i=1

Proof. By Lemma 4.1.2 and Lemma 4.1.3, the statement [(i) < (ii)] is proved.
[(ii) = (iil)] Suppose that the statement (ii) holds, i.e., for any u € U,

(07 _f(a_:7u) - \/E”i“)
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€ epi f(-,u)+ U epi (Z/M%('ﬂi)) +VeB x Ry
‘ =1 '

v; €V, 20
Therefore, for any u € U there exist \; > 0,9; € V;,i € I such that’
(0, —f(&,u) — Velz|l) € epi f7(:,u) + epi <Z /_\ig'i('a'l_)i)> +VeB x Ry.
i=1
By the continuity of g;(,v;),i € I and Proposition 2.2.35, equivalently, for any u € U
there exist \; > 0,7; € V;,1 € I such that

(0, —f(@,u) — Ve|z|) € epi f*(-,u) + Zepl (/\zgY( vz))’k + \[518 x Ry.

By Proposition 2.2.34, equivalently, for any w € U/ there exist \; > 0,9; € Vi€ I and
g;>0,9=0,1,...,m such that |

(0,—f(@,u) = ve|z)
€ U { wo, (Wo, T) + €0 — f(Z,u)) : wy € agof(‘,u)(i‘)}

Eo>0

s Z U { ’LUZ, ’LUz, —l— E; — /—\191(%,1—)1)) LW € 361/_\1%(,172)(%)}

=1 €;220

+eB x R,
Hence, for any u € U, there exist \; > 0,7; € Vi, w; € 0, \igi(+,0:)(Z),1 € I,wy €
Oeo f(,u)(Z),w* € B,n € Ry and g; > 0,7 =0,1,...,m such that

(0, —f(&,u) = Velzl)

- (U)(), <1U0>£> + &g — f(i‘>u)) + Z(uju <1Uz7 > +&— ngi(:f7 77z))
i=1

+ (Vew*,n).

It follows that, for any u € U, there exist \; > 0,7; € Vi,w; € O,Nigi(, 6)(T),1 €
I, wg € Op f(-,u)(T),w* € B,n € Ry and &; > 0,7 =0,1,...,m such that

0= Z w; + Vew* and
i=0
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m

. m —
—Ve|lz — f(z,u) Z ((wi, T) + &) — f(Z,u) — Z Aigi(Z, V) + 1.
=0,

i=1

Equivalently, for any u € U, there exist \; > 0,7; € Vi, w; € 9, Aigi(,0;)(Z),4 € I, wg €
Oeo (-, u)(Z),w* € B,n € Ry and ¢; > 0,5 =0,1,...,m such that

0> Z&gi(i:,m)
= Vellz| + Z ((w;, T) + &) +7
= ||| —+—Zsi — (Vew*,z) +n

>\/_|I'LH+Zez Vel|w* izl =+

=0
> ZEi > 0.
=0

Hence, the statement (iii) holds.
[(iii) = (ii)] Suppose that the statement (iii) holds. Then for any u € U, there exist
i > 0,7 € Vi, w; € 0(Nigi)(,0:)(Z),4 € T,wg € Of (-,u)(T) and w* € B such that

m m
0=wy+ Z \iw; + Vew* and Z \igi(®,T;) = 0.
i=1 i=1

This, together with the definition of the subdifferential of f(:, ) , yields that for any
x € Kz,uel,

f(:c,u) - f(i>u) > (wO’aj —E>

m
— E \w; — Vew*, z — fl>

i=1

m
= — <z Nw;, & — ”I> — (Vew*,x — T)
m

> —z/\igz ) + 3 N, ) = Vel a1

I
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> el - 7.

Therefore, for any 2 € Kz, u € U,
f(@,u) < fz,0) + Velz — 7],

which means Z is an e-quasi highly robust solution of (UP3). Thus, by Lemma 4.1.3, .
the statement (ii) holds. | O
Corollary 4.1.5. Let T € K3 and let f : R* x R? - R, g; : R” xR 5 Riel be
continuous functions such that for each u € RP, f(-,u) is conver on R™ and for each
v; € R, g;(,v5) is conwvex on R™. Suppose that for each T € R", g;(z,-) is concave on
Vi,i € I and there exists y € R™ such that gi(y,v;) < 0,Yv; € V;,0 € I. Then the

following statements are equivalent:

(i) T is an e-quasi highly robust solution for (UP3);

(i1) for any v € U,

(07—".}“(*7_:)“) - \/E“'E”) € epi f*() ) U (:‘]JZ <Z/\?gz » Vi )

v €V,
Ai>0

+ /B x R,.
(iii) there exist ¥; € V; and \; > 0,4 € I such that for anyu € U,

0edf(, +Z@ :0:(,v))(@) + VeEB and Zx\zg7 z,7;) = 0.

Proof. 1t follows from Proposition (2.2.37) and Proposition (2.2.36) that the constraint
qualification (RCCCQ), defined in Definition 4.1.1, holds. Then, all conditions of

Theorem 4.1.4 are satisfied and so we finish this proof. O

4.2 Duality theorems for e-quasi highly robust solutions

In this section, we formulate a Wolfe type dual problem (UD) for the pri-

mal uncertain convex optimization problem (UP3). Then we propose a highly robust
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approximate weak duality theorem and a highly robust approximate strong duality
between the primal problem and its Wolfe type dual problem. In addition, an example

is given for supporting and illustrating the results.

Now we formulate a Wolfe dual problem (UD) for (UP3) as follows:

Maximize f(y,u) -+ Z Xigi (Y, vi)

i=1
subject to 0 € Af (-, u)(y) + Za (\igi) () (y) + VEB,
i=1
ueld, i >0,u; € Vi€l e>0. (UD)

Let Kp = {(py0,0) € B x V X BT : 0 € 05(,u)(0) + S0 () ()(0) +
VEB A > 0,0, € Vi € 1 }, then it is termed as the robust feasible set of the dual
problem (UD).

Definition 4.2.1. Let € > 0 be given, then (7, A\, ?) is said to be an e-quasi highly
robust solution of the dual problem (UD) if for any robust feasible solution (y,v,\) €
Kpand u € U,

f(g +Z&gz g, i) >f Y, u +Z)‘zgz y,v) — Velg —yl.-

i=1
Let us move on the highly robust approximate weak duality theorem and the
highly robust approximate strong duality theorem for highly robust solutions. The

following theorem proposes a highly robust approximate weak duality between the

primal problem and its Wolfe type dual problem.

Theorem 4.2.2 (Highly robust approximate weak duality theorem). Let € > 0 be
given. For any (z,u) € K3 x U and any (y,v,\) € Kp,

m

fl@,u) > fly,u +Z/\191 (y,v:) — Velz —y.

Proof. Let (z,u) € K3 x U and (y,v,\) € Kp, be arbitrary. Then, there exist wo €
Of(,u)(y), wi € 8(Nigi(-,v:)) (), € T and w* € B such that wo+Y 1oy wi+/ew* = 0.
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Hence, we obtain

fla,w) = fly,u) Z)‘zg7 Y, Vi)

m

> wa'L_y Z)\sz y;vz

m

= < - Zwi — Vew*,x — y> - Z/\igi(yavi)
i=1 i=1 '

= --< Zwi,m — y> — <\/5"LU*,(L‘ " y) N Z)\igi(yavi)
i=1 T

m

> = Ngi(z,vi) + Z Nigi(y,vs) — (VEw', & —y) = Y \igily, vi)
i=1

i=1 g=1

&/ Z/\igi(:c,vi) — Vel =yl
> —velz =yl

Thus, one has f(z,u) > f(y,w) + Yo, Nigi(y, v:i) — Vellz — yl| as desired. O

The following highly robust approximate strong duality theorem holds under

the constraint qualification (RCCCQ).

Theorem 4.2.3 (Highly robust approximate strong duality theorem). Let f : R™ X
RP — R,g : R* x RY — R,i € I be continuous functions such that for each u €
RP, f(-,u) is convex on R™ and for each v; € RY, gi(-,v;) is convex on R". Suppose that
the constraint qualification (RCCCQ), defined in Definition 4.1.1, holds. If T € Ks is
an e-quasi highly robust solution of the primal problem (UP3), then there ewist AeR?
and v € RY such that (%,7,\) is an e-quasi highly robust solution of the dual problem

(UD).

Proof. Let & € K3 be an e-quasi highly robust solution of (UP3). Hence, by Theorem
4.1.4, for any u € U, there exist 7; € V;, \; > 0,4 € I such that

0e€df(,u)(T)+ ZO (Nigi(,v)) (@) + VeB and Zﬂjgi‘(i‘,@i) =0
. i=1
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This means (7,9, \) is a feasible solution of (UD), i.e., (Z,9,A) € Kp. By Theorem
4.2.2, for any u € U and (y,v,\) € Kp, we have

f(q' u > f(y) + Z )\zgz ya'Uz \/E”'L - y“

It follows that for any u € U and (y,v, A) € Kp,
f(@u) + ij Nigi(T, B) — [f(?% u) + f_: Aigi(Y, Ui)]
i=1 i=1
> —Vellz—yll + }m: Xigi(Z, ;)
i=1
= —Vellz =yl

It yields, for any u € U and (y,v,A) € Kp,

f(@u) + Zj‘igi(jaﬁi) = fy,u) + Z)\z'gz'(y,vz:) — Vellz — yl.

d==1 i=1

Therefore, (Z,7, \) is an e-quasi highly robust solution of (UD) as desired. d

The following example illustrates Theorem 4.2.2 and Theorem 4.2.3.

Example 4.2.4. Let f :R>xU — R and g : R? x V — R be defined by
f(’B,U) = ur; + (Lg and g($,U) o ,B% - Uy,

where U := [—~1,1] and V := R. Consider the following convez optimization problem

with uncertainty:
Minimize f(x,u) subject to g(z,v) <0, veE V. (4.2.1)
Observe that the robust feasible set of (4.2.1) is the set

= {(z1,79) € 1% —wvx; <0,v eV}

{(11, Tg) € R® 12y = 0,25 € R},
while the set of all e-quasi highly solution of (4.2.1) s

SHE = {(331,932) € K31 uzy + 25 < uyr + 45 + Vel (i, 42) — (@1, 22|,
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(y1,92) € Ka,u € u}
- {(:L’l,rcg) € Ky : u(0) + 22 < u(0) + 12
+VENO0,1) ~ (0,2l 1o € Rou e U
SV <)

:{($1,$2)€R2:$1:0, 5 St2S
We can prove that the (RCCCQ) holds for (4.2.1). To show the cone

U epi (g(0))

vEV,A>0

is closed and convez, let v € V and \ > 0 be given. Then, we have

al . 0; A =0,
Mg )" (@) =3 (2" + W) o
4x '
So, it can be seen that
1. . ) @)
U epi (Ag(+,v))" = ({O} X R+) U U {(’L Q) o> \ 18
vEVA20 vEV,A>0
= R X R+,
Neat, we formulate a dual problem for (4.2.1) as follows:
Mazimize f(yb Y2, u) + )‘g(yla Y2, ’l))
subjet to 0 € Of (-, u)(y1,v2) + 0 (Ag(:, ) (Y1, %2) + VeB,
uweEUN>0,veV,e>0. (4.2.2)

Then the set

I(D 3:{((91,'92))”,/\) ‘Y1 € R’ (070) € af('vu)(yby?) + a(/\q(,’U)) (y1,y2)

4 VEBue[-1,1,A>0,veER,e > o}

is the robust feasible set of (4.2.2). We can calculate the robust feasible set Kp as

follows:

5 ={ (g1, 2),0,1) : (0,0) € OF(,u) (g, ) + 9 (A9 () (1, 32)
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+VeB,u e [-1,1],A > 0,v € Rye > o}
:{((ylayQ))U:)\) € R,U+ 2/\y1 — v+ \/Ewl = 0’

ygz—g,wf—kwg <l,uc€ [—1,1],)\20,UGR,620}.

Observe that for any u € U, (z1,x2) € K3 and (y1, Yo, v,\) € Kp,

f($1a$2au) - [f(ylay2.) U’) + )‘g(ylay%'u) - \/g“(%haﬂ) - (ylay2)“}
= a5 — [Uyl + 45+ E — vy — \/E\/yf + (zg — y2)2]

=z — 95 — Mi + (M —uyr + \/E\/;% + (22 — y2)?

& &
= @y — —wh + Ny; + Vewiy + VE\/ yi + (z2 + V)2

4 2
4 9
= (:l,‘g i ”?1[]2)2 + )\yf -+ \/g |:wly1 — ’LUQ(IEQ -+ gqu)jl
+ Ve yi + (22 + \/75102)2
€ €
> e {w1y1 — wa(wg + %’wg)} + /e y% + (z20 + %wz)‘?

\Y/

€
—ﬁm\/yi" + (zg + ng)Q + ey yE + (ze + ng)z
0 .

>
Hence, for any v € U, (zy,23) € K3z and (y1,y2,v,\) € Kp,

f(:cl,asz,u) > f(@/hymu) 71 /\g(yl,yg,v) - \/Ell(%l,w) 7 (Z/h?h)”a

and so the conclusion of Theorem 4.2.2(The highly Tobdst approzimate weak duality
theorem) holds. Let (Z1,%;) € K be an e-quasi highly robust solution for (UPg). So,
1 = 0 and —% < Iy < %—E By taking A= Ve and U = % + wy, we can see that
((Z1,%2),9, ) € Kp. Indeed, A > 0,3 € R and
u+25\:}31 —5\17+\/Ewl = q — ﬁ(-}-—-%—zt)l) + ew; = 0.
€
Besides, for any v € U and (y1,y2,v,\) € Kp,

[ (&1, Ta,u) + Ag(Z1, To, D) — [f(yb Y2, u) + Ag(y1, Yo, U)]
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= _\/EII($1>$2) — (y1, y2) || + S\Q(Thf%@)
= —Vell(z1,22) = (1, )l

Therefore, (T1,T2) is an e-quasi highly robust solution of (4.2.2), and then the conclu-

sion of Theorem 4.2.3 (The highly robust approzimate strong duality theorem) holds.



CHAPTER V

CONCLUSION

In this chapter, we conclude again that what we get from the results.

5.1 Robust weak sharp solutions in uncertain convex opti-

mization problems

In the section, we considered uncertain convex optimization problems involing convex
objective functions and D-convex constraint functions. First of all, we introduced the
notion of a robust wéak sharp solution to an uncertain convex optimization problem.
Then, optimality conditions for the robust weak sharp solutions and characterizations
of the sets of all the robust weak sharp solutions of the problem were obtained. Finally,
we applied the results to an uncertain convex muti-objective optimization problem and
obtain optimality conditions for robust weak sharp weakly efficient solutions in the

multi-objective optimization problem.

5.2 Robust weak sharp solutions in uncertain nonconvex op-

timization problems

In the section, we investigated an uncertain nonsmooth optimization problem involving
nonsmooth real-valued functions. Firstly, we introduced the notion of a robust weak
sharp solution to the considereed problem. Then, some necessary optimality condition
for the robust weak sharp solutions of the problem under a constraint qualification were
established. Finally, by mean of the robust version of (KKT) conditions, which were
introduced here, sufficient optimality conditions for robust weak sharp solutions of the
considered uncertain optimization problem were obtained. Moreover, some examples

were presented for illustating the results.
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5.3 Optimality conditions for e-quasi-highly robust solutions

in uncertain convex optimization problems

In the section, we considered an uncertain convex optimization problem with data
uncertainty in both objective and constraint functions. The robust approximate so-
lutions for the uncertain convex problem were investigated. First of all, the notion
of an e-quasi highly robust solution for the uncertain convex optimization problem
was introduced. Then, the highly robust approximate optimality theorems for e-quasi
highly robust solutions of the considered problem were established by means of a robust

optimization approach.

5.4 Duality theorems for e-quasi-highly robust solutions in un-

certain convex optimization problems

In the section, we investigated the duality theorems for approximate robust solution
in uncertain convex optimization problems. Firstly, we formulated a Wolfe type dual
problem for the primal uncertain convex optimization problem, which was studied in
previous. Secondly, we proposed a highly robust approximate weak duality theorem
between the primal and its Wolfe type dual problem. Finally, a highly robust approx-
imate strong duality between those problems were presented as well. In addition, an

example was given for supporting and illustraing the results.
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