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ABSTRACT

In this thesis, we separate into two parts. Firstly, we present some iter-

ative methods for solving pseudomonotone cenilibrium problems and fixed point

problems of quasi-nonexpansive mappings, that is, two shrinking extragradient al-

gorithms and two hybrid extragradient algorithms are proposed for solving the con-

sidered problem. Sceondary, we introduce a new extragradient algorithin for find-

ing a solution to the split equilibrium and fixed point problems for pseudomono-

tone bifunctions and nonexpansive mappings. Additionally, the application of the

split equilibrium and fixed point problems is also discussed. Finally, some numer-

ical experiments and comparisons of the introduced algorithms with well-known

algorithins are considered.
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CHAPTER 1

INTRODUCTION

The equilibrium problem started to obtain interest after the publication
of the paper of Blum and Oecttli [1]. It had been used for studying physics, chem-
istry, engineering, and economiecs in different mathematical models such as me-
chanical structures, chemical processes, the distribution of traffic over computer
and telecommunication networks. In particular, generalized monotone equilib-
rium problems are a very useful tool for constructing mathematical models for
several problems such as Nash-Cournot equilibrium problems and Nash-Cournot
oligopolistic equilibrium problems of electricity markets, see [2, 3]. Additionally,
the equilibritn problems include other important problems, such as optimization
problems, variational inequality problems, minimax problems, Nash equilibrium
problems, saddle point problems, and fixed point problems, see [1, 4, 5, 6], and
the references therein. Therefore, iterative methods for approximating solutions
of equilibrinm problems have been studied by a number of researchers. In the
most appeared researches; the proposed method for solving the equilibrium prob-
lem is the proximal point method, This niethod was first introduced by Martinet
[7] for solving variational inequality problems and it was extended by Moudafi
[8] to monotone equilibrium problems, where a regularized equilibrium problem
needs to solved at each iteration. However, the proximal point method cannot he
applied to generalized monotone equilibrium problems, namely psendomonotone
equilibrium problems. To overcome this drawback, the extragradient method is
introduced for solving pseudomonotone equilibriun problemns instead of the proxi-
mal point method. The extragradient method was first introduced by Korpelevich
[9] for solving saddle point problems and it was extended by Noor [10] to pseu-
domonotone variational inequality problems. After that, Tran et al. [2] proposed

the extragradient method for solving pseudomonotone equilibrium problems. The



weak convergence of the proposed method is shown.

On the other hand, fixed point theory plays an important role in engi-
neering, physics, computer science, economics, and telecommunication. Besides,
the fixed point problem has applications in many problems, such as null point
problem, variational inequality problem, equilibrium problem, and optimization
problem, sce [11, 12, 13, 14], and the references therein. In particular, the fixed
point problems of quasi-nonexpansive and nonexpansive mappings can be applied
to another problem such as the network bandwidth allocation problem that can be
translated into the convex optimization problem over the fixed point sets of quasi-
nonexpansive and nonexpansive mappings, see {15]. Therefore, many researchers
devoted their efforts to approximate fixed points by using iterative methods, A fa-
mous iterative method for finding fixed points of a nonexpansive mapping is Mann
iterative method, see [16]. However, this method has only weak convergence, in
general. In order to obtain a strong convergence result for Mann iterative method,
Nakajo and Takahashi [17] proposed the hybrid method for finding fixed points
of a nonexpansive mapping. Moreover, it was noted that Mann iterative method
may not, in general, be applicable for finding fixed points of a Lipschitz pseudo-
contractive mapping in a Hilbext spacc. To overcome this drawback, Ishikawa [18]
proposed the method, called Ishikawa iterative method, for finding fixed points of
a Lipschitz pseudocontractive mapping. By using the idea of Ishikawa iterative
method, Takahashi et al. [19] proposed the hybrid method, called the shrinking
projection method, which is different from Nakajo and Takahashi’s method in [17]
for finding fixed points of a nonexpansive mapping. The strong convergence of the
proposed method is presented.

Furthermore, the splitting type problem is the problem in which the image
of a solution to one problem under a given bounded linear operator is a solution
to another problem. The outstanding form of this problem is the split feasibility

problem which is finding a point in closed convex sets. Many important problems



arising from real-world problems can be formulated as the split feasibility problems
which had been used for studying signal processing, medical image reconstruction,
intensity-modulated radiation therapy, sensor networks, and data compression, see
[20, 21, 22, 23] and the references therein. Also, many researchers have studied
and infroduced several problems, as generalizations of the split feasibility problems,
such as split variational inequality problems, split ecommon fixed point problems,
and split equilibrium problems. The popular proposed method for solving the split
feasibility problems is the CQ algorithm. This algorithm was first introduced by
Byrne (24] for solving the split feasibility problems in finite dimensional Hilbert
spaces and it was extended by Xu [25] for solving the split feasibility problems
in infinite dimensional Hilbert spaces, Recently, Dinh et al. [26] considered both
the split equilibrium probleins and the split fixed point problems. They proposed
some algorithms and proved convergence theorems for a solution of the considered
problems.

Motivated by the significant of these problems, in this thesis, we are going
to establish strong convergence theorems for a solution fo the problems in real
Hilbert spaces. Firstly, we consider the pseudomonctone equilibrium problems and
fixed point of quasi-nonexpansive mappings problems. Secondary, we consider the
split equilibrium and fixed point problems. Some algorithms will be introduced for
finding the solutions of the considered problems. Finally, some numerical examples
will be considered and the introduced algorithms will be discussed and compared
with well-known algorithms.

In the following, we describe the contents of this thesis.

Chapter I. This Chapter is an introduction to the research problems.

Chapter II. We will present some definitions and properties that will he
used subsequently.

Chapter IIL In this chapter, we study iterative methods for solving the

pseudomonotone equilibrium problems and fixed point of quasi-nonexpansive map-



pings problems. In section 3.1, we consider the equilibrium problems and fixed
point problems. In section 3.2, we present two iterative algorithms for finding a
comunon solution of the pseudomonotone equilibritm problems and fixed point of
quasi-nonexpansive mappings problems by using shrinking projection and extra-
gradient methods. Besides, we show the strong convergence theorems of the intro-
duced algorithins. Some numerical experiinents are presented to demonstrate the
introduced algorithms. In section 3.3, we present two iterative algorithms for find-
ing the closest point to the intersection of the solution set of the pseudomonotone
equilibrium problems and fixed point of quasi-nonexpansive mappings problems by
using hybrid and extragradient methods. The strong convergence theoremns of the
introduced algorithms are proved. Finally, we discuss the performance of intro-
duced algorithms and compare them with well-known algorithms via the numerical

experiments.

Chapter IV. In this chapter, we study the iterative method for solving
the split cquilibrium and fixed point problems. In section 4.1, we consider the
split equilibrinm and fixed point problems. In section 4.2, we present a new it-
erative algorithm for finding a solution to the split equilibrium and fixed point
problems. The strong convergence theorem of the introduced algorithm is shown.
We also provide the applications of the considered problems and some numerical

experiments,

Chapter V. We give the concluding research.



CHAPTER II

PRELIMINARIES

In this chapter, we will provide some definitions, properties and useful
results that will be used in subsequent chapters. From now on, the set of all
natural numbers and the sct of all real numbers will be denoted by N and R,

respectively.

2.1  Hilbert spaces
In this section, we will present some definitions and theorems which are
concerned with Hilbert spaces.

Definition 2.1.1. A vector space or linear space X over R is a set X with the
operation ealled vector addition defined on X x X to X given by (x,y) w2z +y
anc an operation called scalar multiplication defined on R X X to X given by
(o, z) — o satisly the following conditions: forall z,y,2 € X and o, 3 € R,

1) e+y=y+a

2) (z+y)+z=a+(y+2).

{3) there exists an element 0 € X called the zero vector such that x +0 = z, for

all x € X.

(4) for each x € X, there cxists an clement —z € X called the additive inverse

of & such that x + (—2) = 0.
(5) alz+y) =az+ay.
(6) (a+ Bz = ax+ fu.

(7) (af)e = a(fz).



(8) la==z.

The elements of a vector space X are called vectors and the elements of R
are called scalars.

We now consider the notions of norm by the following definition.
Definition 2.1.2, Let X is a real vector space. A norm on X is a function
|- : X —= R with the following conditions: forall z,y € X and « € R,

®) =l =0.

(2) ||lz]l = 0 if and only if = = 0.
@) faz|| = |afllz].

(4) llz+ull < ll=ll -+ llyi

A real vector space with a norm defined on it is called a normed space.

In what follows, we recall some basie definitions swhich are related to normed
space.

Definition 2.1.3. A sequence {a; }ren in & normed space X is said to be bounded

if there exists a positive number A such that o] < M, for all k ¢ N.

Definition 2.1.4. A sequence {z;}rew in a normed space X is said to converges
(strongly) to & € X if limgo, |25 — 2| = 0. In this case, we write im0 23 = =

or xy — x, as k —» 00. The element z is called the limit of the sequence {4 }ren.

Definition 2.1.5. A sequence {2y }ren in a normed space X is said to be Cauchy

if iMoo m — zx]| = 0.

Definition 2.1.6. A normed space X is said to be complete if every Cauchy

sequence in X converges to an element of X.



Next, we consider the concepts of inner product by the following definition.
Definition 2.1.7. Let X is a real vector space. An inner product on X is a
function {-,-} : X x X —» R with the following conditions: for all z,y,2 € X and
o e R,

(1) {z,z) >0, and {z,z) = 0 if and only if = = 0.
(2) {az,y) = afz,y).
(3) (w1} — ()

(4) (v +3h2) = (0, 2) + (0, 2).

A real vector space with an inner product defined on it is called an inner

product space.

The fact below confirms that an inner product naturaily induces the norm.

For an inner product space X, the function ||« ]l - X — R defined by

lz|l = /{z, &), for all w € X,

is a norm on X. Consequently, an inner product space is a normed space. From

now on, the notation (-,-) and || - { will be used in this thesis.

The following theorem shows that inner products satisfy an important in-

equality which is known as Cauchy-Schwarz inequality.

Theorem 2.1.8 (Cauchy-Schwarz inequality). Let X be an inner product space.

Then the following holds:
(e, 9)] < alllgll, for allz,y € X,

Proof. See [27, Lemma 3.2-1]. 0



We are in a position to propose the definition of a Hilbert space as follows.

Definition 2.1.9. A complete inner product space is called a Hilbert space.

We now recall some definitions and interesting properties of weak conver-

gence in a Hilbert space.

Definition 2.1.10. A sequence {@ }ren in a Hilbert space H is said to converges
weakly to © € H if for any y € H, {(z,y) =»{z,y), as k —» co. In this case, we
write z; — x, as & — co. The element # is called a weak limit of the sequence

{@s bren.

Theorem 2.1.11. A strong convergent sequence in a Hilbert space is weak con-
vergent with the same fimit. In particular, a weakly convergent sequence of a finite

dimensional Hilbert space 1s strong convergent with the same limit.

Proof. See [27, Theorem 4.8-4]. O

A Hilbert space has an important property that is presented in the following

theorem.

Theorem 2.1.12. Euwery bounded sequence in a Hilbert space possesses a weakly

convergent subsequence.

Proof. See [28, Lemma 2.37]. ]

We end this section by recalling some basic facts in the functional analysis
which are needed in the sequel. Let H be a Hilbert space and let 2,y € H, we

know that



le+ull> = (=l + vl + 2{z,9), (2.1.1)

le—yl2 = [l + Iyll2 — 26z, 5), (2.1.2)
and

Iz + yll* < 2] + 2@y, 2 +y), (2.1.3)
see [29, 30].

Theorem 2.1.13. Let H be a Hilbert space, let @ and y be elements in H and lel
A€ R. Then

1Az + (0 = Mgl = Mal® + (1 = Mlyl* — A =Ml —wll*.

Proof. See [31, Theorem 6.1.2]. O

2.2  Convexity and continuity

In this section, we provide some definitions and properties which are
related to the convexity and the continuity. From now on, the real Hilbert space

will be denoted by H.

2.2.1 Convex set

We recall the convexity of a set by the following definition.

Definition 2.2.1. A subset C of H is said to be convez if Az + (1 — )y € C, for
all x,y € C and for all A € (0, 1).

The theorem below shows some useful properties for convexity of intersec-

tions.
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Theorem 2.2.2. Let {C;:i € I} be an arbitrary collection of convex sets in H.

Then, their intersection (.., C; 1s also convez.
i iel

Proof. See [28, Example 3.2(iv)]. O

2.2.2 Convex function

We consider some definitions which are concerned with the convexity of

a real-valued function.

Definition 2.2.3, A function f: /7 — R is said to be:

(1) convew if
P+ (1= Ny) £ Afe) + (1= N f(w),
for all @,y € H and for all A € (0,1).
(ii) a—strongly conves, where o > 0 oryshortly, strongly convex if
7 (it (= 0)g) DSy (L~ W) ~ a1~ Nz — i,

for all @,y € H and forall A € (0,1).

The following theorem gives some interesting properties of the convex fune-

tions.

Theorem 2.2.4. (see [29]) Let f; : H — R,i € I, be convex functions. Then, the

function f = max;cy fi; 18 conves.
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2.2.3 Continuity

Firstly, we will present the semicontinuity of a function on a Hilbert space.

Definition 2.2.5. A function f: H — R is said to be upper semicontinuous on

Hif{x € H: f(z) > o} is a closed set for all o & R.

Definition 2.2.6. A function f : H - R is said to be lower semicontinuous on

Hif{z e H: f(z) < a} is aclosed sct forall o € R.

In order to obtain some basic concepts of semicontinuity, we denote the

extended real number [—oo, +o0| = R U {—c0, +00}.

Definition 2.2.7. [28] Let D be a subset of [—co, +oo]. A number ¢ € [—o0, 400
is the (necessarily unique) fimum (or the greatest lower bound) of D if it is a
lower bound of D and if, for every lower bound @ of D, we have @ < «a. This

number is denoted by inf(D). The supremuwm (or least upper bound) of D is

sup(D) := —inf{-b:b e D}.

Remark 2.2.8, Note that If D is bounded fromabove in R, we know from the
completeness of R that there exists the supremun sup{D) of D in R. If D is not
bounded from above in R, in this situation, we have sup(D) = +co. Similarly, if
D is not bounded from below in R, we have the infimum inf{(D} = —oc. In this

viewpoint, the set D) always admits an infimum and a supremumn in [—oo, +00].

Definition 2.2.9. [32] Let f : H — R be a function. For a sequence {zg ren € H,

the limit inferior of {f(2s) bren in [—o00, +00| is
liminf f{ay) = sup inf f(z,)
k—co k1 2k
and its limit superior in [—o0, 4-00] is

limsup f(z;) = P;il‘ sup f(x,).

k—o0 Zinzk
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The following theorems show the characterization of lower semicontinuity
in the term of limit inferior and the characterization of upper semicontinuity in

the term of limit superior.
Theorem 2.2.10. Let f: H — R be a function. Then, [ is lower semicontinuous
at x € H if and only if, for every sequence {xx}ren in H,

tr =, ask o0 = fla) < liminf f(g).
k—oo

Proof. See [32, Theorem 1.3.2]. O
Theorem 2.2.11. Let f : H — R be a function. Then, f is upper semicontinuous
at x &€ H if and only if, for every sequence {ay}ren in H,

a2, ask —oo = limsup f(z;) < f(z).
k—yoo

Proof. Sce [32, Problem 1.3(7)]. 1
Definition 2.2.12. A function f : H — R is said to be continuous at x € H if, it
is lower and upper semicontinuous at z.

The following theorem concerning a sufficient condition for continuity of a

convex function.

Theorem 2.2.13. Assume that H is finite dimensional. A convex function f .

H — R 15 continuous.
Proof. See [33, Theorem 5.23]. 0

This section will be closed by recalling the subdifferentiability of a function

in Hilbert space.
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Definition 2.2.14. Let f : H — R be a function. The subdifferential of f at

z € H is defined by

8f(l):{WEHf(y)—f('E) 2 (w,y—x),V'yEH}.

The function f is said to be subdifferentiable at z if df{z) # §. An clement of the

subdifferential 9f(z) is called a subgradient of f at .
In order to guarantee the subdifferentiability of a function, we need both
convexity and continuity as the following theorem.
Theorem 2.2.15. (sce [29]) For any x € H, the subdifferential O f(z) of a con-
tinuous convex funclion f is a nonempty, weakly closed and bounded convex set.
The following theorems provide the characterizations of the minimizers of
a function which are related to the subdifferentiability of a function.
Theorem 2.2.16. [34] Let C' be a convexr subset of H and f: C — R be subdif-
ferentiable on C. Then x™ is a solution to the following convex problem:

min{ f(z) @€ C}

if and only if 0 € 8f(2*) + No{z¥), where No(z®) = {y € H : {y,z —a*) <

0,Vz € C} is the normal cone of C' at z*.

2.3 Operators

This section will present some definitions and necessary knowledge that

will be used subsequently.
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2.3.1 Bounded linear operators

In this part, let 71, and H; be real Hilbert spaces. We recall some basic

definitions in the functional analysis which are the need for this work.

Definition 2.3.1. An operator L : H; — Hy is said to be:

(i) linearif
L{ox 4 By) = aLx 4 ALy, Vz,y ¢ H, and VYo,B € R.
(ii) bounded if there exists a positive real number M such that
VLl e < M@l Yo e Hy,

where || - ||z, and || - ||#, are norms in H; and H,, respectively.

Definition 2.3.2. Let L : Hy — H; be a bounded linear operator. The number

Lz
|Z|| == sup I rLHH""
0ztzeH) ]|:L“H1

is called a norm of L.

The following theorems show some useful properties of a hounded linear

operator.
Theorem 2.3.3. Let L : I — Hy be a bounded linear operator. Then we have

1Ll < [ Zdillallmy, Ve € Hi

Proof. Sce [31, Theorem 4.3.6). O

Theorem 2.3.4. Let L : Hy — Hy be a bounded linear operator. If x € Hy, and

{2k }ren 15 a sequence in Hy with x5, — x, then Lay, — L.

Proof. See [27, Corollary 2.7-10]. 1



Now, we state some interesting operators concerning a bounded linear op-

erator.

Definition 2.3.5. Let L : H; — H, be a bounded linear operator. An operator

L* . Hy — H, is said to be adjoint operator of L if
(L, yyg, = (v, L) g, Vo € Hy, and y & Hy,
where (-, )g, and {-,-) g, are inner products in H; and H,, respectively.
We guarantee the well-definedness of the adjoint operator by the following
theorem.

Theorem 2.3.6. Lel L Hy — H; be a bounded linear operalor. Then there exists
a unique adjoint operator L™« Hy — Hy of L. Furthermore, the adjoint operator

L* 4s bounded linear operalor with norm

L7 = lIZ-
Proof. See [27, Theorem 3.9-2}. |

The following theorem gives a general property of the adjoint operator

which is used frequently.
Theorem 2.3.7. Let L : Hy — Hy be a bounded linear operator. Then we have

1L} = |.LL*|| = I

Proof. Sce {27, Theorem 3.9-4]. O

2.3.2 Nonlinear operators

We consider some definitions and facts which are related to nonlinear

operators.
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Definition 2.3.8. Let €' be a nonempty closed convex subset of /. An operator

T:C — (' is said to be:

(i} quasi-nonexpansive if Fiz(T) is a nonempty set and
172 —pll < lz—pll, Yoelpe Fia(l),
where Fiz(7T') := {x ¢ C': Ta = z} is the set of fixed points of operator T'.
(if) nonexpansive if

T2 = Tyl < |z ~yll, Ve,yedl.

(i) firmly nonezpansive if
T2 — Tyl < (& —y, T — Ty), Ve,yeC.

Remark 2.3.9. A firmly nonexpansive operator is a nonexpansive operator. Be-
sides, a nonexpansive operator with at least one fixed point is a quasi-nonexpansive
operator, but the converse is not true, for instance, see [35]. Finally, it is well-
known that Fuz(l) is closed and convex when 1" is a quasi-nonexpansive, see

[36).

The following definition involving the demiclosedness of an operator in

Hilbert space.

Definition 2.3.10. (see [37]) Let C be a nonempty closed convex subset of H.
An operator 1" : ' —+ H 1is said to be demiclosed at y € H if for any sequence

{zi}ken C C with 2 — z* & C and Tz, — y imply Tz* = y.
The demiclosedness of the nonexpansive operator is presented by the fol-
lowing theorem.

Theorem 2.3.11. [38] Let T : C'— C be a nonexpansive operator with Fix(T) #
B. Then I —T demiclosed at 0.



¥

We now collect some definitions, which are mentioned in the sequel.
Definition 2.3.12. [39, 40] Let C be a nonempty closed convex subset of H. An
operator T : C — (' is said to be:

(1) pseudocontractive if
1Tz = Ty|* < llz = yll* + I(7 ~ T — (L = Thyll*, Va,y€C,
where I denotes the identity operator on €.
(it} Lipschitz continuwous with constant p > 0 if
|72 =Tyl < pllz —yll, Va,y€C.

In particular, if p < 1, then T is said to be p-contraction or, shortly, con-

traction.
(iti) {av, 8,7, d)-symmetric generalized hybrid if there exist v, 5,7, 0 € R such that
allfe =Tyl + Alle —Tyl” +lly = T2l + e — yl*
+  8(|l = Tl +ly= Tyl*) €0, Va,yeC

Remark 2.3.13. Note that if T is an (e, 3,7, §)-symmetric generalized hybrid
satisfies (1) a +28 +v 2 0, (2) a+ 8 > 0, and (3) § > 0, then T is quasi-

nonexpansive and I — T demiclosed at 0, see [41, 42].

The following definitions are some nonlinear operators which are concerned

with this work.

Definition 2.3.14. Let C be a nonempty closed convex subset of H. An operator

T .0 — C is said to be:

(i) monotone on C if

(Te — Ty,z —y) =20, Va,y € C.
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(i) pseudomonotone on C it

(Tz,y—=z)20=> (T'y,x—y) <0, Yo,y cC.

Remark 2.3.15. We ohserve that a monotone operator is a pseudomonotone

operator. However, the converse may not be true.

2.3.3 Projection operators
We recall some definitions of projection operators and calculus concepts
in Hilbert space.

Definition 2.3.16. Let C be a nonempty subset of H. TFor cach x € H, we denote

the metric projection of @ onto C by Fp(z), that is
lz = Fo(2)if < lly — ||, VyeC.

Moreover, if Pe(2) exists and uniquely determined for each @ € H, then the

operator Po 1 H — C'is called the metric projection onto C.

We guarantee the well-definedness of the metric projection by the following

theoren.

Theorem 2.3.17. Let C be a nonempty closed and convez subset of H. Then for

each x € H there exists a unigue metric projection Po(x).

Proof. See [29, Theorem 1.2.3). O

The theorem below gives the characterization of the metric projection.
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Theorem 2.3.18. (see [29, 35]) Let C be a nonempty closed and convex subset of
H. The
(1) z = Po(x) if and only if (z — z,y— 2) <0, Vy € C;

(ii) |1 Po(®) — Po@)I* < lle = 9lI* = | Pee) —w+y — Po)ll?, Vey € C.

The following theorem shows some useful properties of metric projection.

Theorem 2.3.19. Let C be a nonempty closed and convex subset of H. Then

Pc: H — H is a firmly nonerpansive mapping and Fix(Pg) = C.
Proof. See [29, Theorem 2.2.21]. O

The generalization of metric projection is proposed by the following defini-

tion.

Definition 2.3.20. Let f: H — RU{+c0} be a proper convex lower semicontin-

uous function and p > 0. Foreach = € H, the operator prox,, : I -+ H is given
by
< 1 2
prox, () = argmin{pf{y) + sz —yl": y € H}
is called the prowimal operator of f with p.

Remark 2.3.21. We note that if f = 1, where ¢ is the indicator function of a
nenempty closed convex subset C of H, i.e.,
0, if ze(,
tola) =
+c0o, otherwise,
then prox,; = Fz. This means that the proximal operator is a generalization of

metric projection.
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Now, we present fundamental theorems that are related to the proximal

operator.

Theorem 2.3.22, Let f : H — RU{+co} be a proper convex lower semicontinuous
function. Let Jos; be the resolvent of 8f with p > 0, i.e., Juor = (I + pdf) L.

Then, for each x € I,

. 1
Joap(z) = argmin{pf(y) + §i|:1, —yl|*:y € H}.

Proof. See [31, Theorent 7.5.2]. O

Remark 2.3.23. We sec that the proximal operator prox,; = J,ar. Consequently,

proxpf(a:) exists and uniquely determined for each & € H.

Below, we recall the definition of subgradient projection and its properties.

Definition 2.3.24. Let f : H — R be a continuous convex function. Let z, €
df(zx) be a subgradient of f at z, z € H. The subgradient projection Py : H — H
is defined by

Py(x) = [EX

x, otherwise.

if f(z) >0,

The following theorem gives some important properties of subgradient pro-

jection.

Theorem 2.3.25. (see [12, 14/} Let f : R* — R be a convex function. If
there is x € R" such that f(xz) < 0, then the subgradient projection Py is quasi-

nonegpansive with I — Py demiclosed at 0, and Fiz(Pr) = {x € R : f(z) < 0}.

2.4 Auxiliary concepts

We provide some definitions and useful results that will be used in the

sequel.
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Definition 2.4.1. [43, 44, 45] Let C' be a nonempty closed convex subset of H.

A bifunction f : C' x C — R is said to be:

{i) strongly monotone on (' if there exists a constant -y > 0 such that
fl@y) + fly,2) < —llz —yll?, Veye
(ii) monotone on C' if

fl, ) fly,z) <0, Va,y e C;

(iii) pseudomonotone on C'if

fle,y) = 0= fly,x) <0, Yo,y €

(iv) Lipschitz-type continuous on C' with constants L; > 0 and Ly > 0 if

f(may) + f(!/, 2’) > f(T}‘z) - LIHT 7 IJHQ > J LQHy 4 Z||2, vmaysz e
Remark 2.4.2. (i) From Definition 2.4.1, we note that (i} = (ii) = (iii). How-

ever, the converses may not be true, for instance, see [46].

(ii) We observe that if each bifunction fi,; ¢ = 1,2,..., N, is Lipschitz-type con-

tinuous on C' with constants L} > 0 and L} > 0, then

filwow)+ fily, 2} = filw,z) — Lillz —ol* = Lilly — 2|1°

> filw.z) = Lille — ol = Lafly — 2|,

where Ly = max{L{ :4=1,2,..., N} and Ly = max{L} :i=1,2,..., N}
Consequently, the bifunctions f;, i = 1,2,..., N, are Lipschitz-type contin-

uous on ' with constants Ly > 0 and f5 > 0.
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For a nonempty closed convex subset C of H, the following assumptions on

the bifunction f : C x C' — R will be considered in this thesis:

(A1) [ is weakly continuous on Cx ' in the sense that, if x € C, y € C'and {z;} C
C, {yr} € C are two sequences converge weakly to & and y respectively, then

f(zg, yr) converges to f(z,y);
(A2) f(z,-) is convex and subdifferentiable on C for each fixed x € C;
(A3) [ is psuedomonotone on C and [f(x,2) = 0 for each © €
(A4) f is Lipschitz-type continuous on C' with eonstants Iy > 0 and Ly > 0.

Remark 2.4.3. If the bifunction f satisfies the assumptions (A1) — (A3), it is
well-known that the set EP(f,C) = {z* € C': f{z*,y) > 0,Vy € C'} is closed

and convex, see [1, 2, 3] and the references therein.

The following lemma is very important in order to obtain the main results

in this thesis.

Lemma 2.4.4. [47] Let f + C x €' = R be satisfied (A2) — (A4). Assume that
EP(f,C) is a nonempty set and 0 < pp < min{ﬁ,ﬁ}. Let zg € C, and

construct yg and zy by
. 1 9
yo = arg min{pg f (2o, y) + §||y —zo|*:y € CY,

. 1 ,
zo = arg min{pof (yo, y) + 5lly — @ol:y € C}.

Then,

(1) o [f(TOsy) - f(g;(}ayﬂ)] 2 (yﬂ — o, Yo — y): Vy S Cr.'-

(i) llzo — ¢lI* < {lwo — gll* — (1 — 2p0Ln)llze — olf* — (1 — 2p0Le2) 0 — zoll®,
Vg € EP(f,C).
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Proof. Let q € EP(f,C). By the definition of z; and Theorem 2.2.16, we have

1
0 € d{pof(yo, z0) + §||20 — o’} + Ne(zo).

Then, there exists w € & f (o, 20) and W € Ng(z) such that

0= pyw+ zp — zp + W.
It follows from the subdifferentiability of f that
Flyo,y) — fyo 20} = (w,‘y =2l Yy L.
On the other hand, since @ € N¢(z), we have
(W 20 —y) = 0,Vy € C.
Thus, by using (2.4.1), we get
(20 — oy y — %0) = pofw, 2 — y), ¥y € C.
The relations (2.4.2) and {2.4.3) imply that
(20 — o,y — 20} 2 polf (Yo, 20) = flye, w)], Yy € C.
Moreover, since g € €/, we see that
(20 — 0, q — 20) 2 polf (g0, 20) = fly0, 4))-
It follows from the pseudomonotenic of f that
{20 — @0, ¢ — z0) 2 paf (Yo, 20)-

Thus, by using the Lipshitz-type continuity of f, we have

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(20— w0, q=20) = pol (2o, 20) = f (w0, y0) = Lnllzo ~ yol® ~ Laligo — 201 (2.4.5)

Similarly, by the definition of y and Theorem 2.2.16, we can show that

polf (zo, v} — flo,40)] = {vo — Zo. 0 — ), Yy € C.
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Note that, since zy € C, we have

polf (2o, z0) = [0, 0)] = {y0 — o, Y0 — 20)- (2.4.6)

Next, in view of (2.4.5) and (2.4.6), we consider

o — gl — |20 — 20l® — la — zl* = 2{z0 — %0, — 20}

200 (o, 20) — [0, v0) — Inllwo — woll®

Y

—L2||?Jo ~ Zn||2]

v

230 ~ 20, Yo — 20) — 2pal||za — yoll®

—2p0 Lial|yo0 — 20|
This implies that

20 =gl < [lzo — all* = llz0 — oll” — 2(y0 — %0, %0 — 20)
+2p0Lallzo = woll* + 200 Lallvo — ll?
= 2o = gll* ~ llz0 — woll® — g0 —~#oll* — 2{z0 o, 4o — o)
+2(z0 o, Yo — o)+ 2poLallzo — yoll® + 2p0Lallyo — 2

= lzg ~ qll*~ (1 2p0Lo)|lz0 — %ol = (1 — 200L2) [0 — 20lf*.

This completes the proof. O

In what follows, we give some theorems needed for the convergence analysis.

Theorem 2.4.5. (48] Assume that {a,} is a sequence of nonnegative numbers such

that

arr1 < {1 — ) + de, Vh €N,

where {;} is a sequence in (0,1) and {8, } is a sequence in R such that
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8

(i} lim vy =0, > v =00,
k—co k=1

i

(1) limsup dy < 0.

k300

Then lim ap = 0.
k—o0

Theorem 2.4.6. [49] Let {ar} be a sequence of real numbers such that there exists
a subsequence {k;} of {k} such that ay, < ag.y for alli € N. Then there exists a
nondecreasing sequence{ni,} C N such that m,, = co asn — co and the following

properties are satisfied by all (sufficiently large) numbers n & N:
tn, S Uyl and a, < Dy t1-
In fact, my, = max{j < n:a; < aj1}-

Finally, if we denoted by w,, () the weak limit set of the considered se-
quence {w}, that is, wy(ry) = {& € H : there is a subsequence {u;, } of {}
such that g, — @}, then the following theorem shows some useful properties for

the convergence theorems in this thesis.

Theorem 2.4.7. [50] Let Cbe a nonempty closed conver subset of H. Let {xy} be
a sequence of H and w € H. If||lex —u|] < ||u— Fo(w)|,VEk € N, and wy(z) C C,

then x) — Po(u).



CHAPTER 1I

ITERATIVE METHODS FOR SOLVING EQUILIBRIUM

PROBLEMS AND FIXED POINT PROBLEMS

In this chapter, we consider the equilibrium problems and the fixed points
problems. And, we present some iterative methods for finding the common so-
lution of the pseudomonotone equilibrium problems and fixed points of quasi-
nonexpansive mappings problems in a real Hilbert space. Some numerical exper-
iments and ecomparisons of the introduced methods with well-known algorithms

are shown and discussed.

3.1 Equilibrium problems and fixed point problems

The equilibrium problem and the fixed point problem are very useful tools
for studying physics, chemistry, engineering and economics in different mathe-
matical models, for instance, see [51, 52, 53, 54], and the references therein. The

equilibrium problem is a problem of finding a point ™ & C' such that
flz*y) =2 0,Vy e C, (3.1.1)

where (' is a nonempty closed convex subset of a real Hilbert space H, and f :
C'x C' — R is a bifunction. The solution set of the equilibrium problem (3.1.1) will
be represented by EP{f,C). In order to solve equilibrimm problem (3.1.1), when
f is a monotone bifunction, the approximate solutions are frequently based on
proximal point method. That is, at each iteration, we need to solve a regularized

equilibriuny problem:
1
find zeC suchthat flo,y)+ (g —z,2—a) 20,VycC, (3.12)
™

where {ry} C (0,00). Note that the existence of the solution of the problem

(3.1.2) is guaranteed, see (43, 55]. However, if f satisfies a weaker assumption as
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pseudomonotone, the proximal point method cannot be applied in this situation.
To overcome this drawback, Tran ct al. [2] proposed the following extragradient
method for solving the equilibritun problem when the bifunction f is pseudomono-

tone and Lipschitz-type continuous with positive constants Ly and Lo:

&g € O
v = argmin{pf (e, y) + 3z —yll* v € O}, (3.1.3)
Tpy1 = arg min{ﬁf('yk,y) + %H'E;. = yHZ sy € C‘},

where 0 < p < min{z%l, ﬁ} They proved that the sequence {z;} generated by

(3.1.3) converges weakly to a solution of the equilibrium problem (3.1.1).

On the other hand, for a nonempty closed convex subset C of H, and a
mapping T €' — € the fixed point problem is a problem of finding & point
x € C such that Tx = 2. The set of fixed poiuts of the mapping 7" will be denoted
by Fiz{T). A famous iterative method for finding fixed points of a nonexpansive
mapping T was proposed by Mann [16] as followed:

2 € O,
(3.1.4)

Tp1 = (L —ap)ap + a7y,
where {ai} C (0,1). In [56], the author proved that if 7" has a fixed point and
S oo ar(l — ax) = oo, then the sequence {@y} generated by (3.1.4) converges
weakly to a fixed point of 1", Besides, Park and Jeong [57] presented that if 7" is a
quasi-nonexpansive mapping with 7 — T demiclosed at 0, then the sequence which

is generated by {3.1.4) also converges weakly to some fixed point of T'.

In order to obtain a strong convergence result for Mann iterative method

(3.1.4), Nakajo and Takahashi [17] proposed the following hybrid method for find-
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ing fixed points of a nonexpansive mapping T

s

Tp & Cr,
Yp = oy + {1 — ap )Ty,
Co={ze O llm — el < lla — =}, (3.1.5)

Q= {z e’ {xg—apr—a <0},

\(Bk-kl = Pckncgk(ff«’o),
where {ar} C [0, 1] such that ap < 1--@, for some @ € (0,1]. They proved that

the sequence {@} generated by (3.1.5) converges strongly to Prizry{zo).

Furthermore, Ishikawa (18] proposed the following method for finding fixed

points of a Lipschitz pseudocontractive mapping 7

&g €C,

e = (L= ap)zp + axT ey, (3.1.6)

B = (1 = Be)ze+ BTy,
where 0 < B < ap < 1, im0 = 0, and D07 joqff = oo IF Cis a
convex cotpact subset of 77, then the sequence {z;} generated by (3.1.6) converges
strongly to fixed points of 7. It was noted that Mann iterative method may not,

in general, be applicable for finding fixed points of a Lipschitz pseudocontractive

mapping in a Hilbert space, for instance, see [58].

In 2008, by using Ishikawa iterative method, Takahashi et al. [19] proposed

the following hybrid method, called the shrinking projection method, which is
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different from Nakajo and Takahashi’s method [17]:

,

ug € H, Ch=0C,

21 = Pe, (up),

Yr = QrpTy + (1 — a'k)Ta:k, )

{ (3.1.7)
2z = Pk + (1 — BTy,

Cry = {.’II e ”ZL — :1?” < ”.'Ek — ’L”},

Tr1 = Poyg (%0),

where {a} € [a,af with 0 < o < @& < 1, and {f:} € [0,1 — 3] for some
B € (0,1), They proved that if 7" is a nonexpaunsive mapping, then the sequence

{z,} generated by (3.1.8) converges strongly to Priq(r (o).

In recent years, many algorithms have been proposed for finding a common
element of the solaution set of the equilibrium problems and the solution set of
the fixed point problems, for instance, {13, 156, 47, 9] and the references therein.
In 2016, by using the ideas of extragradient and hybrid methods together with
Ishikawa iterative method, Dinh and ICim [51] proposed the following algorithm
for finding a common clement of the set of fixed points of a symmetric generalized
hybrid mapping T and the solution set of equilibrium problem, when a bifunction

f is pseudomonotone and Lipschitz-type continuous with positive constants Ly, Lo:
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xg € C,

Y = argmin{py f(@e, y) + e —yll* 1y € C},

z, = arg min{px f (31, y) + %H’Lk —yl?:y e C},

tr = oty + (1 — (.\’k)T.’L‘k,

¢ (3.1.8)
w = Byt + (1 — B) Tz,

Ci = {v € Helle = wl S o ~zall),

Qr={x e H:(x—ap, 1 ;) <0},

| e Poyngine(®a),

where {p} < [p, 7] with 0 < p < 5 < min{s;, 57}, {aw} @ [0,1] such that
limyeo @ = 1, and {Be} < [0,1 — ], for some 3 € (0, 1). They proved that the

sequence {z} generated by (3.1.8) converges strongly to Pep(s.c)nrizm) (o).

In 2016, Hieu et al. [53] considered the following problem:

find a point z* € ' such that Tja* =277 =1,..., M,
(3.1.9)

and  fila*,y) > 0,Vy e Cri=1,..., N,
where ' is a nonempty closed convex subset of a real Hilbert space H, T : C' — C,
j=1,..., M, are mappings, and f; : ¢ x ¢ = R, i = 1,..., N, are bifunctions
satisfying fi(z, ) = 0, for each z € €. From now on, the solution set of problem

(3.1.9) will be denoted by S. That is:

§ = (ML, Fia(T}) N (O, EP(f,C)).

By using the ideas of extragradient and hybrid methods together with Mann
iterative method and parallel splitting-up techniques, see 60, 61], Hieu et al. [53]
proposed the following algorithm for finding the solutions of problem (3.1.9}, when

mappings are nonexpansive, and bifunctions are pseudomonotone and Lipschitz-
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type continuous with positive constants Ly and Lo:
4

g € C,

vi = argmin{pfi{zr,¥) + sllex —yll* :y € CLi=1,2,.. ., N,

2 = argmin{pfi(yl, y) + 3lles —ylP vy € CHi=1,2,..., N,

Zp = argmax{||z} — @l 1 i=1,2,..., N},

wl, = g + (1 — o) 3%, = 1,2, ..., M, (3.1.10)
Ty = arg max{|jul — afl 1§ =1,2,..., M},

Cr = fhe O —ml < o —

Qu={xeC: {x—uxy— ) <0},

1 = Pong (o),
\

where 0 < p< min{z}=, 52}, and {ax} < (0,1) such that limsup; ., ax < 1.

—o0

They proved that the sequence {z;} generated by (3.1.10) converges strongly to

Ps{zg). In this thesis, the algorithm (3.1.10) will be called PHMEM.

3.2 Shrinking extragradient methods for pseudomonotone equilibrium
problems and fixed points of quasi-nonexpansive mappings prob-

lems

In this section, motivated by the literatures in Section 3.1, we will con-
tinue develop methods for finding the solutions of problem (3.1.9). That is, we
will introduce two shrinking extragradient algorithms for finding the solutions of
problem (3.1.9), when each mapping 73, j = 1,2,..., M, is quasi-nonexpansive
with I — T} demiclosed at 0, and each bifunction f;, ¢ = 1,2,..., N, satisfies the
assumptions (Al) — {A4). We know that, by Remark 2.4.2 {ii), the bifunctions
fi,i=1,2,..., N, are Lipschitz-type continuous on ' with constants L, > 0 and
Ly > 0. Besides, the performance of the introduced algorithms will be compared

to the performance of the PIIMEM algorithm and discussed via the numerical
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experiments.

3.2.1 Cyeclic Shrinking Extragradient Method (CSEM)

In this part, we will consider the strong convergence theorem of CSEM
Algorithm. From now on, for each N ¢ N and & € NU {0}, a modulo function at

k with respect to N will be denoted by [k]w, that is,

[k] 5 = k{mod N) +1.

Now, the CSEM Algorithm is proposed as follows:

CSEM Algorithm. Pick 2y € €' =: (), choose parameters {p;} with
0 < inf g < sup pr < min{ 5}:, -2%;}, {or} C [0,1] such that limg 0 0 = 1, and

{6} < [0, 1) with 0 <inf Sy < sup fr < 1.

Step L. Solve the strongly convex program
. 1 2

Y = argmin{pg fi v (25, ¥) + §||y —m||”:y e C}.
Step 2. Solve the strongly convex program
. 1 2

2 = argmin{p Sy (90, ¥) + 5 lly —anll® v € O

Step 3. Compute

e = agitp + (1 — o) T, T,

g = Brte + (1 — Be)Digar 26

Step 4. Construct closed convex subsets of C

Crg1 = {2 € Cp i ||z — wf] < ||z — @}
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Step 5. The next approximation .1 is defined as the projection of xg

onto Cryq, ie.,

s = Fo,, (o).

Step 6. Put & := £+ 1 and go to Step 1.

Before going to prove the strong convergence of CSEM Algorithm, we need

the following lemma.
Lemma 3.2.1. Suppose that the solution set S is nonempty. Then, the sequence

{ax} which is generated by CSEM Algorithm is well-defined.

Proof. To prove the Lemma, it suffices to show that Cf isa 'nonempty closed and
convex subset of H, for each k € NU {0}. Firstly, we will show the non-cinptiness

by showing that S € Cy, for each k € NU {0}. Obviously, S C Cs.
Now, let ¢ € S. Then, by Lemma 2.4.4 (i), we have
Ik — P < o =l = €1 = 2Lt 2 (= 2pu L)k — 4P
for each k € NU {0}, This implies that
26 — qll < llze —qll, (3.2.1)

for each & € NU {0}. On the other hand, since ¢ € Fiz(Tj), it follows from the
quasi-nonexpansivity of each T; (j € {1,2,...,M}) and the definitions of &y, uy

that

ltx —all < allze — gl + (1 — )| Tpgs e — gl

< apller — gl + (1 = allze — gl

l

o — all, (32.2)
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and

74N

Arllte — all + (1 = Bl T2 — 4l

Billts — gl -+ (1 = Be)ll2e — 4l

[

7AN

for each & € NU {0}. The relations (3.2.1) and (3.2.2) imply that

luw —gll < Brller —gll + (1 = Bi)ilzr — gl

= |ler~4|; (3.2.3)

for each k € NU {0}. Now, suppose that § C Cj Thus, by using (3.2.3), we scc
that S C Ciy1. So, by induction, we have S € Cy, for each k € NU {0}. Since §

is a nonempty set, we obtain that Cj. is a nonempty set, for each £ € NU {0}.

Next, we show that (7 is a closed and convex subset, for each k € NU {0}.
Note that we already have that Yy is a closed and convex subset. Now, suppose
that C is a closed and convex subset, we will show that €y, is likewise. To do

this, let us consider a set By = {z € H : ||z~ wi|| £ |lo— 2|} We see that
1
B, = {’L e Hi oy —we, ) < §(||%k||2 - ||le]2)} .

This means that By is a halfspace and Ci.y = Cy N By, Thus, Cris is a closed
and convex subset. Thus, by induction, we can conclude that Ci is a closed and
convex subset, for each &k € NU{0}. Consequently, we can guarantee that {z;} is

well-defined. O

Now, we are ready to prove the strong convergence theorem of the sequence

{21} which is generated by the CSEM Algorithm.

Theorem 3.2.2. Suppose that the solution set S is nonempty. Then, the sequence

{z} which is generated by CSEM Algorithm converges strongly to Ps{zo).



Proof. Let g € §. By the definition of x4y, we observe that x4 € Crq C G,

for each k € NU {0}. Since z = Pg (zp) and zp4 € Cf, we have
2k — 2ol < llwr1 — zoll,

for each £ € NU {0}. This means that {|lzx — 20|} is a nondecreasing sequence.

Similarly, for each ¢ € § C Cyy1, we obtain that
s~ woll < lla — ol
for each k € NU {0}. By the above inequalities, we get
|k — woll < llg = o, (3.2.4)

for each k'€ NU{0}. So {|zx - x|} is a bounded sequence. Conscquently, we can
conclude that {||zx —aa||} is a convergent sequence. Moreover, we see that {w} is
bounded. Thus, in view of (3.2.2) and (3.2.3), we get that {¢} and {ux} are also
bounded. Suppose k, j € NU {0} such that k > j. It follows that z; € C C C;.
Then, by Theorem 2.3.18 (ii), we have

1Pe; (2x) = Pey(wolll® < flaa — well® = 1Py (@) ~ e + 2 — Pey (o) |1
Consequently,
i — 25ll* < llzo s 2l fles— o,
Thus, by using the existence of limy o, ||zx — Zol|, we get
li xp — x| = 0.
famflee gl =0

That is {1} is a Cauchy sequence in C. Since C' is closed, there exists p € C' such

that

lim @ = p. (3.2.5)
koo

By the definition of Cyyq and 24,1 € Ch, we see that

lzem — wl < fleen — 2,
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for each & € NU {0}. Tt follows that

AN

l[x — | et = gl + [[2par — 2l

A

S lleer — zll + e — 2l

2 ass — il (3.2.6)

for each k € NU {0}. Since zx — p and @41 — p, as kK — oo, we obtain that
lim ||zg41 — @zl = 0.
k—oo

This together with {3.2.6) imply that
i || — 2l = 0. (3.2.7)
k—oo

Since limyg. e oo = 1, it follows that

lim [te— e = lm [agze + (1 — ar)Tigs, on — 2]
k—oo koo
=l (1= ag)lzn — Ty vl
k-y00

= 0, (3.2.8)
Consider,

ke —all* = 1Bt — gy +{1 = B} (T2 — DI
= Bullte — all* + (1 — B Tiwgar 2t — all* — Bl — Be)litk — Tiagy |

Billts — all® + (1 — Bl T2 — all”,

A

for each k € N U {0}. By using {3.2.2) and the quasi-nonexpansivity of each T}
{(7e{1,2,...,M}), we obtain

ke — all* < Belize — qll* + @ = B)llze — all?,

for each k € N U {0}. Then, by Lemma 2.4.4 {ii}, we have
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Billwr = ¢lf® + (1 = Bu)llax — qlI* — (0 — 2peLn) e — will?
(1 = 2peLo) Ly — 2|’
e — ali® — (1= Be)[(1 — 2oL ek — well®

+(1 = 2pi L)y — 1%,

s — all®

A

for each & € NU {0}. It follows that

(1 =B =2 L)l — yull* + (L= 2peL) g — 2e]1?] (3.2.9)

< Jow—wll(llz — gll + [lea —all),

for each & € NU {0}, Thus, by using (3.2.7) and the choices of {8}, {pe}, we

have
lim ||&g = yel] =0, (3.2.10)
k—oo

and
dim lye <zl =0, (3.2.11)

These imply that
lim |2 — 2] = 0. (3.2.12)
k—oo

Then, by linyg e 21 = p, we also have
lim y, = p, (3.2.13)
k—oo

and

li =P 3.2.14
= (3:214)
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Next, we claim that p € S. From the definition of ug, we see that

(1= BT ze — 2l = |l — 2z — Brte — 2|

e — zill + Belite — 2|

IA

N

< llue = 2all + Bellts — well + (14 Be)llzx — 2l
for each k € NU {0}. Then, by using (3.2.7), (3.2.8) and (3.2.12), we have

Jim | Tjy 2 — 2l = 0. (3.2.15)
Furthermore, for each fixed 7 € {1,2,..., M}, we observe that

[(7 = 1) +kM]ar =,

for each k € NU {0}. Thus, it follows from (3.2.15) that

0 = Jim [T Ay seanlar 2G-1)rar = ZG-n e
i\ kllfgo ||sz(j—-l)-+-kM - Z(j"'1)~l-kM”a (32-16)

for each 7 € {1,2,...,M}. Since 2z, — p, as k -+ oo, then for each j €
{1,2,..., M}, we get 2z 1y 1ene — p, as k — 00, Combining with (3.2.16), by

the demiclosedness at 0 of 7 — 7}, implies that
Tip=p,
for each 7 = 1,2,..., M.
Similarly, for each fixed ¢ € {1,2,..., N}, we note that
[(i—1)+kN|y =1,

for each & € NU {0}. Since zp —» p and y > p, as & — oo, then for each
i € {1,2,...,N}, we have z_yuw — p and y_n4eny — p, a5 k = oo, By

Lemma 2.4.4 (i), for each i € {1,2,..., N}, we obtain
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Pl 1)1k i )+ N e (T 0y kN s U) — Si— 1))y (1) ks Yii1) k)]

2 (Y- 1)ehV — Zim) kN Y(i—0)+kN — ), Yy € C.
It follows that, for each i € {1,2,..., N}, we have

St~ N (F =1k s 3 = i1y k¥ (T 1) kN Y1) )

1 ,
> ————|Y-vikny = T W va—neen — yll, Vy € C.
Pl=1D)+EN

By using (3.2.10) and weak continuity of each f; (i € {1,2,...,N}), we get that
fi(p:y) 2 O,Vy = C,
for each ¢ = 1,2,..., N, Then, we had shown that p € 5.

Finally, we will show that p = Ps{zg). In fact, since Ps(zg) € S, it follows

from (3.2.4) that
l|zx — 2ol < || Polzo) —aoll,

for each k € N U {0}. Then, by using the continuity of norm and limg_, 2 = p,

we see that
lp — @oll = lim |l&x — 2ol < || Ps{@o) — ol
k=00

Thus, by the definition of Ps(zg) and p € 5, we obtain that p = Pg(xg). This

completes the proof. O
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3.2.2 Parallel Shrinking Extragradient Method (PSEM)

In this part, we start by introducing the PSEM Algorithin as follows:

PSEM Algorithm. Pick z, ¢ C =: Cj, choosc parameters {p}} with
0 < infpl, < suppl < min{ﬁz,ﬁ;},i =1,2,...,N, {or} C [0,1] such that

Hing oo o = 1, and {8} € [0,1) with 0 < inf ) < sup Fi < 1.

Step 1. Solve NV strongly convex programs
) P /s i 1 2 : T
y; = argmin{ gy filze, ¥) + §||y —z||frye Chi=1,2,...,N.
Step 2. Solve N strongly convex programs

¢ : ] 1
z, = arvg min{ pL. fi (yp, y) + 5”!! —ap|*:yeCli=1,2,...,N.

Step 3. Find the farthest element from w among 2,4 =1,2,..., N, ie.,

7 = g max{||zi — x| i =1,2,.. . NT.

Step 4. Compute
1‘1 = Ty + (1 — Ctk)ﬂl‘k,j =1,2,...,. M,
wl, = Buth + (1= Bu)TiZe, 7 = 1,2, ..., M.
Step 5. Find the {farthest element from z; among u{,, j=12...,M,ie,

@y, = argmax{|lu] — 2l 1 5 = 1,2,..., M}

Step 6. Construct closed convex subsets of C'

Crom={zcCu:llz—m| < e ).
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Step 7. The next approximation gy is defined as the projection of xg

onto Cyyy, le.,

Tyt = Foy,, (o).

Step 8. Put k:=k + 1 and go to Step 1.

Now, we are in a position to present the strong convergence theorem of the

sequence {z;} which is generated by the PSEM Algorithm.

Theorem 3.2.3. Suppose that the solution set S is nonempty. Then, the sequence

{z} which is generated by PSEM Algorithm converges strongly to Ps{xg).

Proof. Let ¢ € S. By the definition of Z)., we suppose that 4, ¢ {1,2,..., N} such
that z;;,"' =z = argmax{||zf — x|/ i =1,2,..., N}. Then, by Lenmna 2.4.4 (ii),

we have
1Ze = al® < [l -~ qll® — (1 200 Lofler — viEllF — (0 = 20 Lo) 1w — 2l

for cach k € WU {0}. This implics that
IZx — all < e — qll; (3.2.17)

for each & € NU {0}. On the other hand, by the definition of #] and the quasi-

nonexpansivity of each T (j € {1,2,..., M}), we have

VAN

14, — all agllzx — gll + (1 — cs)l| T3z — gl
< agllae — gl + (1 = ax) e — gl

= |lex —qll, (3.2.18)

for each & € NU {0}. Additionally, by the definition of %, we suppose that

Jr € {1,2,..., M} such that u{,’" = U = argmax{”u.{, —zill:5=1,2,...,M}. It
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follows from the quasi-nonexpansivity of each T; (7 € {1,2,..., M}) that

e —all < Belltl = all + (1 = B T2 — dll

Brllti = all + (1 = Bullzx — all

V4N

for each k € N U {0}. The relations (3.2.17) and (3.2.18) imply that

I gl < Buller—all 1L Bl

= Jio—dl, (3.2.19)

for each & € NU {0}. Following the proof of Lemma 3.2.1 and Theorem 3.2.2, we
can show that C} is a closed convex subset of H and § C Cy, for each & € NU {0}.

Moreover, we can check that the sequence {z.} is a convergent sequence, say
lim zx = p, (3.2.20)
k—oo
for some p & C.
By the definition of Cy.q and 2y, 1 € Cf, we see that
ks = Tl < lea — 2],
for each k € N U {0}. It follows that

1% — 2l < I — 2paall + {wran — |

< agar — el + e — |

2||.’L‘k_|_1 — .’?3;;”, (3.2.21)

for each k € NU {0}, Since a3 — p and xzpy; — p, as k — 0o, we obtain that
lim ||z — 2]l = 0.
k—oo

This together with (3.2.21} implies that

lim |l — ]| = 0.
Jim iz — |
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Then, by the definition of Ty, we have

. Pl —
A}}B}onu;‘ il =0, (3.2.22)

for each j =1,2,...

, M. Since limy o ap — 1, it follows that

im ||t —apl = lim [Jegag + (1 — a) T, — @
Jim [l — ol = lim flageg + (1 - a)Tjee — @

foreach j = 1,2,...

we see that

g, all® =

= Jim (I — ap}||lze — Tyl
k—o0

=0, (3.2.23)

.M. Beside, by the definition of u“}l yforeach 7 =1,2,..., M,

1B(t — @) + (1 ~ BTz — )|
Bellth —all* + (L~ Al TyZe — qlf® = Be(l = Bt — Ti%?

Bellth ~ ali® + (1 = B)l|T5z — all?,

for each & € NU {0}, Thus, by using (3.2.18) and the quasi-nonexpansivity of

each T; (§ € {1,2,..

., M}), we have

g, — all* < Billex = gl + (1 — B)l|zx —dl%,

for k € NU {0}. So,

i —qll* <

by Lemma 2.4.4 (ii), for each j = 1,2,..., M, we get that

Billwr — qll* + (1 = Be)lllex — gll® — (1 = 203 La) e — 3311
—(1 = 29 L)l — 2]
llex = gl = (1 = B)[(L = 203 L) e — gt |

=20 La)llie =7l

for each k € NU {0}. It follows that, for each j = 1,2,..., M, we have
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(1= B)l(1 — 208 L) || — |12 + (1 — 208 La)llw — Zlf?]

A

s — gl = e — qll®

= llex — wll(llex — all + llug — all), (3.2.24)

for each k € NU {0}. Thus, by using (3.2.22) and the choices of {8}, {pi}, we

soe that

lim |2~y =0, (3.2.25)
k—o0

and
lim [y ~ 2] = 0 (3.2.26)
k—o0

These imply that
lim ||z = Z|| = 0. (3.2.27)
k—oo

Then, by the definition of Z;, we have

lim ||z — 28] = 2.2
Jim g — 2| =0, (3.2.28)
for each i+ = 1,2,..., N. Moreover, by Lemmma 2.4.4 (ii}, for each i = 1,2,..., N,

we get that
2k = all* < llew = all® ~ (1~ 20 L)flx — will* — (1~ 20 La) 19k — 2l
for each k € NU{0}. It follows that, for each i = 1,2,..., N, we have

(1 - 20 Ln)llew — il + (1 = 20 La)llyic — 5l* < Mlaw —all* — [l — all®

= e = zll (i — all + 12 — all),

for each k € NU {0}, Combining with (3.2.28) implies that

Jim |z — il =0, (3.2.29)



and
klim i — 23| = 0, {3.2.30)
T 00

for each i = 1,2,..., N. Thus, by using (3.2.27), (3.2.29) and lmy_, zx = p, we

have
lim z; = p, {3.2.31)
k—o0

and
klim Y = P {3.2.32)
—ro0

foreachi=1,2,..., V.

Next, we claim that p € S. From the definition of u}, for cach j =

1,2,..., M, we see that

(I, — Zx — Belt] — Z)]|

< e, — Zill + Bellt — Zl

(1= BT zn =2

H

AN

< =l + Bellth =enll 4+ (1 4 Ba)llr — 2kl

for each & € NU{0}. Thus, in view of (3.2.22), (3.2.23), and (3.2.27), we get that
kli_l}n \TiZx — Zk|| = 0, (3.2.33)

for each y =1,2,..., M. Combining with (3.2.31), by the demiclosedness at 0 of

I =17}, implies that
Tip=p,
foreach 7=1,2,..., M.

On the other hand, by Lemma 2.4.4 (i), for each i = 1,2,..., N, we see

that

pilfian, v) — filme,yi)] = Wk — 25,0k — ), Yy € C.



46

It follows that, for each i = 1,2,..., N, we get
i 1 i ]
e, y) = filen, vi) > —F”yi — 2lillyy — ¥l Yy € C.
.I;

By using (3.2.20), (3.2.29), (3.2.32) and weak continuity of each f; (i € {1,2,...,N}},

we have
flp,y) 2 0,¥y € C,

for each i = 1,2,...,N. Thus, we can conclude that p € S. The rest of the
proof is similar to the arguments in the proof of Theorem 3.2.2, and it leads to

the conclusion that the sequence {z;} converges strongly to Pg(zo). t

Remark 3.2.4. We note that for the PSEM Algorithm we solve yi, 21, i =
1,2,..., N, by using N bifunctions and compute tj._, 'ui, j=1,2,..., M, by using
M mappings. The farthest elements from @3 among all z; and 'u{, are chosen for
the next step calculation. However, we solve only i, 2, by using a bifunction and
compute only &y, uz, by using a mapping for the CSEM Algorithm. After that, we
construet closed convex subset Chyy, and the approximation x4 is the projection
of wy onte Ciys for both algorithms. We claim that the numbers of iterations of
the PSEM Algorithm should be less than the CSEM Algorithm. However, the
computational times of the CSEM Algorithm should be less than the PSEM Algo-
rithin for sufficiently larpe N, M. On the other hand, for the PHMEM Algorithmn
they solved yi, zi, ¢ = 1,2,... N, by using N bifunctions, and computed ],
Ji=12,...,M, by using M mappings. The farthest elements from 2, among all
2L and ui are chosen similar to the PSEM Algorithm. However, they constructed
two closed convex subsets Cj, Qx, and the approximation z,, is the projection

of &g onto Cy N @y, which is difficult to compute.

3.2.3 A Numerical Experiment

In this part, we will compare the two introduced algorithms, CSEM and

PSEM, with the PHMEM Algorithm, which was presented in [53]. The following
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setting is taken from Hieu et al. [53]. Let H = R be a Hilbert space with the
standard inner product {z,y) = zy and the norm ||z| = |«|, for each z,y € H. To
be considered here are the nonexpansive self-mappings 73, 7 = 1,2,..., M, and
the bifunctions f;, 1 = 1,2,..., N, which are given on C = [0, 1] by

I sind =t (x
Ty = LS (x)

x) = , i=12,...,M,
i) 2j — 1 J 4

and
fi(fbay)IBz(w)(y'—’l’)b ’l-':]-azs-"al\ra

where B;(2) = 0if 0 <@ < &, and Bi(x) = e S tsin(z — &) —1if & <2 < 1
Moreover, 0 < & < & << ... < &y < 1. Then, the bifunctions f;, i =1,2,..., N,
satisfy conditions (A1} — (A4), see [53]. Indeed, the bifunctions f;, i =1,2,..., N,
are Lipschitz-type continuous with constants L, = L, = 2. Note that the solution

set S is nonempty because 0 € 5.

The following numerical experiment is considered with these parameters:

o= %, £l = 1[\1}1-\1 for the CSEM Algorithm; pf = %, XY

t=1,2,...,N

for the PSEM Algorithm, when N = 1000 and A = 2000. The following six cases

of the parameters o and Sy are considered:

1 1
Case 1. Ok:l—m,ﬂkzm
Case 2. a-k=1~L,ﬁA—0.5+—1———
k42 k43
Case 3. ak:l—L,ﬁk:O.QQ——l—m.
k42 k+2
Case d. ap, =1, fr = ! .
k+2
Case 5. oy = 1, BA.:D.5+L.
k43
Case 6. ap =1, 3, =0.99 — L
L+2

The experiment was written in Matlab R2015b and performed on a PC

desktop with Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz 3.40GHz and RAM
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4,00 GB. The function fmincon in Matlab Optimization Toclbox was used to
solve vectors yy, 2, for the CSEM Algorithm; i, 2, i =1,2,..., N, for the PSEM
Algorithm. The set Cyy; was computed by using the function solve in Matlal
Symbolic Math Toolbox. One can see that the set Cy 1 is the interval [a, 8], where
a,b € [0,1], @ <b. Consequently, the metric projection of a point zy onto the sct

Cro1 was computed by using this form
Pey.,, (zo) = max{min{ze, b} a};

see [29]. The CSEM and PSEM algorithms were tested along with the PHMEM
Algorithm by using the stopping criteria |21 — 25| < 107% and the results below
were presented as averages calculated from four stavting points: zq at 0.01, 0.25,

0.75 and 1.

Table 1 Numerical results for six different cases of parameters o and

58

Average times (sec) Average iterations

Cases CSEM PSEM PHMEM JSEM PSEM PHMEM

1 4905197 165.099794  173.347257 1425  13.75 14.25

2 7.326065  287.918141  345.025914 25.25  24.25 28.25
3 20.371064  834.001035 2004.693844 01.26  74.25 177
4 5.079676  173.091716  173.347257 14.75  14.25 14.25
5 8.016109  342.870819  345.025914 2875 28.25 28.25
6 42.035240 1986.147273 2004.693844 200 177 177

Table 1 shows that the parameter 3, = k i 5 yields faster computational

times and fewer computational iterations than other cases. Compare cases 1-3

with each other and cases 4-6 with each other. Meanwhile, the parameter o = 1,
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in which the Ishikawa iteration reduces to the Mann iteration, yields slower com-
putational times and more computational iterations than the other case. Compare
cases 1 with 4, 2 with 5, and 3 with 6. Moreover, the computational times of the
CSEM algorithm are faster than other algorithms, while the computational itera-
tions of the PSEM algorithm are fewer than or equal to other algorithms. Finally,
we see that both computational times and iterations of the CSEM and PSEM

algorithms are hetter than or equal to those of the PHMEM Algorithm.

Remark 3.2.5. Let us consider the case of parameters a;, = 1 and 8¢ = 0, in
which the Ishikawa iteration will be reduced to the Picard itcration. We notice
that the convergence of the PHMEM Algorithm cannot be guaranteed in this
setting. The computational results of the CSEM and PSEM algorithims are shown

as follows.

Table 2 Numerical results for parameters ap =1 and Fg = 0

Average times (sec) Average iterations

CSEM PSEM CSEM PSEM

4.657696  137.200812 12.50 11.50

From Table 2, we see that both computational tintes and iterations are
better than all those cases presented in Table 1. However, it should be warned
that the Picard iteration method may not always converge to a fixed point of a

nonexpansive mapping in general. For example, see [62].
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3.3 Hybrid extragradient methods for pseudomonotone equilibrium
problems and fixed points of guasi~-nonexpansive mappings prob-

lems

In this section, motivated by the literatures in Section 3.1, we will still
focus to the methods for finding the solutions of problem (3.1.9). That is, we
introduce two hybrid extragradient algorithms for finding the closest point to the
solution set of problem (3.1.9), when cach mapping 7; : C — C, j =1,2,..., M,
is quasi-nonexpansive with 7 — 7 demiclosed at 0, and each bifunction f;, i =
1,2,..., N, satisfies the assumptions {Al) - (Ad}. Again, by Remark 2.4.2 (ii),
we know that the bifunctions f;, 7 = 1,2,..., N, are Lipschitz-type continuous
on C' with constants L, > 0 and Ly > 0. Besides, we discuss the performance
of introduced algorithms and compare it with some appeared algorithms via the

nunerical experiments.

3.3.1 Cyclic Hybrid Extragradient Method (CHEM)

In this part, we begin by recalling that for each ¥V € N and k € N U {0},

a modulo function at & with respect to N is denoted by [k|y, that is,

[k]y = k(mod N) + 1.

Now, we consider the CHEM Algorithm as follows:

CHEM Algorithm. Choose parameters {p} with 0 < inf pp < sup gy <
min{ﬁ_l, 5}72}, {er} € [0,1] such that limy ,oap = 1, and {A} C [0,1) with

0 <infB, <supf, < 1. Pick x5 € C.

Step 1. Solve the strongly convex program

, 1
ye = arg min{py iz, (e, y) + §||y — ]|y e CL
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Step 2. Sclve the strongly convex program

) 1
Zp — arg 111111{Pkf[k]~(ykay) + 5“9 - $k||2 ry € Ch

Step 3. Compute
by = oy + (1 = o) Tiagar s
ug, = Btk + (1 = Br) Tigar 2

Step 4. Construct two closed convex subsets of ¢/
Cr=Az € C: [z —wl £ [z — =},

N 55w T e\ - 2 |20}

Step 5. The next approximation xy. is defined as the projection of xg

onto Cy, N Qy, i.e.,

Try1 = Ponaudo):

Step 6. Put & :=k+ 1 and go to Step 1.

Betfore going to prove the strong convergence of the CHEM Algorithm, we

guarantee the well-definedness of the constructed sequence by the following lemma.

Lemma 3.3.1. Suppose that the solution set 5 is nonempty. Then, the sequence

{xr} which is generated by CHEM Algorithm is well-defined.

Proof. To get the conclusion, it suffices to show that Cy N is a nonempty closed
convex subset of H, for each k € NU {0}. First, we will assert the non-emptiness

by showing that §  Cy N @y, for each £k € N U {0}.
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Let & € NU{0} be fixed and let ¢ € S. Then, by Lemma 2.4.4 (ii}, we have

2k — al* < flaw — gl = (1= 2pp L) 1z — el — (1 — 2pLa) || — 2>

This implies that

lzx —all < llzx —ql|. (3.3.1)

Since for each j € {1,2,...,M}, we also have ¢ € Fiz(1}), it follows from the

uasi-nonexpansivity of each T that

ltx —gll” =
<

and

A

Il

1A

agplier =afl -+ (1 — ) | Tipgy, x =gl
arlle ~ gl + (1 — ar}llze — ¢l

e = all, (3.3.2)

Brllty —all + (1 — Be) | Ty, 2 = 4l

Brllts —all 4+ (1 = Bi) || ze = ali.

Thus, in view of {3.3.1) and (3.3.2), we get

lue — gl <

Billze =gl + (1 = Be)llew = ¢l

ok — gll (3.3.3)

Using this relation, in view of the definition of C}, we see that ¢ € Cj. Since

ke NU {0} is arbitrary, we can conclude that S C Cj, for cach k € N U {0}.

Next, we will show that § C @, for each £ € NU {0}, by induction. Let

g € S. It is obvious S C Qy = C. Now, suppose that § C . Observe that, since

Tt = Poung, (o), by Theorem 2.3.18 (i), we have

(*'-UO = L1, mk+l> < O,Vﬂf € GF; N QF\“



It follows that
(.'EU — Tk, q — $k+]) S O,Vq = S.

This implies that ¢ € (}44.q, and 50 .S C gy, Thus, by induction, we conclude
that S C Q, for each k£ € NU{0}. Then, since S is a nonempty set, it follows that
Cx N Q. is a nonempty closed convex subset, for each & € N U {0}. Consequently,

we can guarantee that {x,} is well-defined. O

Now, we are ready to prove the strong convergence theorem of the scquence
{xx} which is generated by the CHEM Algorithm.
Theorem 3.3.2. If the solution set S is nonempty, then the sequence {xy} which

is generated by CHEM Algorithm converges strongly to Ps(xg).

Proof. Let ¢ € 8 be picked. By the definition of Q) and Theorem 2.3.18 (i), we

observe that @ = Fo, (), for each k'€ NU {0}. Thus, since S C Q, we have
|z = @oll < [la ~ 2oll, (3.3.4)

for each k € NU {0}. This implies that the sequence {x:} is bounded. Thus, by
the relations (3.3.1), (3.3.2), and (3.3.3), we have {z.}, {t+}, and {4} are also
bounded.

Next, consider,

| Zrs1 — ~’Uo||2 + ||lz0 — 95&”2 + 2{Zpq — To, To — Tg)

ks — @l
= 2r — zol* + llzo — zell® + 2{zpsr — Th, B0 — T} — 2}20 — i

= [lzrer — @ol® — [lwo — 2all® + 2w - 2k, 20 — @), (3.3.5)
for each £ € N U {0}. Note that, since @ = Py, (z0) and 2111 € Qr, we have

($k+1 — Tp, o — Tp) <0,
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for each & € NU {0}. Thus, from {3.3.5), we have

e = @l < lenn — 2oll® — llao — all?, (3.3.6)
for each k € NU {0}. This implies that

l2x = 2oll < |21 — 2l

for each & € NU {0}. This means that {||z; — x|} is a nondecreasing sequence.
Consequently, by using this one together with the boundness property of {lla; —
2o||}, we can conclude that {||zx — 26|} 15 a convergent sequence. Thus, in view

of (3.3.6), we also have

lim ||zreq =2 = 0. {(3.3.7)
k=00

By the definition of ¢ and 2., € C)., we see that
l#ra el < fowsy—2ally

for each & € NU{0}. 1t follows that

e — welf <k — @l 4 @i = 2]

< @k — 2l +H llee — |

[l

201 — 2],
for each k € NU {0}. Thus, by applying (3.3.7} to the above inequality, we got

lim {jup — 2¢f} = 0. (3.3.8)
k—oo

Next, for each 7 € {1,2,..., M}, by (3.3.2) and the quasi-nonexpansivity

of T}, we see that
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lur —all® = 118u(ts — @) + (L = B) (Tisype 20 — )|
Brllte — all® + (1 = Bl Tigae 2 — all — Bl — Be) |tk — Tirg o 2l
Brllte — all* + (1 = Bl Tiwge 26 — all,

Bellwx — all” + (1 = Bo)llzx — all?,

I

IA

for each £ € NU {0}. So, by applying Lomma 2.4.4 (ii) to the vector z, we have

e = all* < Bl = gl 40 = Bl =l = 0= 2L ) o — el
—(1 = 2p L) lye — 2]

< ek — gl = (1 = BT = 206 L) ok — well® + (1 = 206 La)||ww = 2|7,

for each & € NU {0}. This means

(L= Bl = 2pi Lo) ||l = vl + (1 = 2piLa) e — 2|]

= Jlor =l (lox = qll + [lue — all),

for each £ € NU{0}. Then, by (3.3.8) and the properties of the control sequences
{Be}, {pr}, we obtain

Lh_l)go e —yell =0, {(3.3.9)
and
Jim g — 2| = 0. (3.3.10)

These imply that
kliPl |zx — 2| = 0. (3.3.11)
Using this one together with (3.3.7), we have

lm [z — 2] = 0. (3.3.12)
k—oo



Now, for each fixed j € {1,2,..., M}, we consider
N2kt = 2ell = oy — zerg-nll + lzreg-1 — zeeg-2ll 4+ -+ Iz — 2,
for each & € NU {0}. Thus, by using (3.3.12), we have
lm ||2e4; — 2]l =0, (3.3.13)
k—oo
for each fixed 7 € {1,2,..., M},
From the definition of w;, we see that

(1= Bl Tz = el = |lun — 26 =Bt —2e)||

e — 2zl + Bellte — 2]

VAN

IA

N — il 4 Belltr — 2l + (14 B)llee — 2]

g — 24l + Orllonze + (0 = o )iy, Tn — @kl
H1+ B)lloe — 2|l
= g — 2l 4 Bl = eadllwn — Ty 21

1+ Bu)ller = zlls

for each k € NU{0}. Then, by using the assumption on {ay} together with (3.3.8),
and {3.3.11), we get,

lim || T, 2 — 2] = 0. {3.3.14)
k—rco

Next, since {3} is a bounded sequence, we can find a subscquence {a,, }

of {wx} and p € H such that wy,, — p, as m — 0o. We now show that p € 5.

First, we show that p € ﬂ}ilF'irc(Tj). We know that, by using (3.3.11), the
subsequence {z, } of {z} also weakly converges to p. This together with (3.3.13),

for each j € {1,2,..., M}, we have z,,4; — p, as m — 0.

Now, let j € {1,2,..., M} be fixed. For m = 0, we see that there is

Ale {1,2,..., M} such that [kg+ Adlar = 7. Put rf = ko4 A}, Again, for m > 1,
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there is Ad € {1,2,..., M} such that [k,+ A7 ]ar = j. Putri, = min A7, where

m—11

Al = {k+ &l bt Al> ) and I > m—1}. Then, for cach j € {1,2,..., M},

we can choose a subsequence {r},} such that [ ]ay = j, and 2,; — p, as m — oo

This together with (3.3.14) implies that

0 = 7?1]_._13;0 ||T[]‘{TI];\I Zrljn

_ z?,g‘““ = nlzi—]};o ”T}Zﬁa — Z],;'”!E, (3.3.15)

for each j € {1,2,...,M}. Combining with z, i P asm - o0, by the demi-

closedness at 0 of 7 =T}, implies that
Tip=ps
foreach 3= 1,2, .., M.

Next, we show that p € N, EP(f;,C). Similarly, by using (3.3.7), for

each fixed i € {1,2,... N}, we get that limy . ||zx s — @] = 0. It follows from

xp, — P, as m — oo, that for each ¢ € {1,2,..., N}, we have zp, . — p, as
m — oo. Then, foreach i € {1,2,..., N}, we can choose a subsequence {7} such
that [r}]x = ¢, and @,: = p, as n — co. This together with (3.3.9) implics that
for each i € {1,2,..., N}, we obtain ¥,; — p, as n — co. By Lemma 2.4.4 (i), for

each i € {1,2,..., N}, we have

PriSian (i ) = Jpida (@ 001 2 (g, — 2wy — 90V € €

This implies that, for each i € {1,2,..., N}, we have

1 °r
Sostn (@i ¥) = g (e y) = =y, — 2o llligns, — wll, Yy € C
ra

By using (3.3.9) and the weak continuity of each f; (i € {1,2,..., N}), we obtain
that

filp,y) = 0,Vy € C,

for each i =1,2,...,N. Then, we had shown that p € S, and so w,(z;) C S.
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Finally, we show that the sequence {z;} converges strongly to Ps(xzo).
In fact, since 2, = Fg, (@), it follows from Ps(ze) € S C Q, that
llzx — @oll < || Ps(wo) — wall,
for each £ € NU{0}. Then, by Theorem 2.4.7, we can conclude that the scquence

{zx} converges strongly to Pg(zg). This completes the proof. | 0

3.3.2 Parallel Hybrid Extragradient Method (PHEM)

In this part, we will show the strong convergence theorem of the PHEM

Algorithm. And, we will consider the interesting result in the case M = N = 1.
Firstly, we propose the PHEN Algorithm as follows:

PHEM Algorithm. Choosc parameters {p} with 0 < inf pi < suppl <
miu{%, 5—%;},'5 =1,2,..., N, {ap} C'[0,1] such that limg, ar = 1, and {8} C
{0,1) with 0 <inf 3, <supf; < 1. Pick 25 € C.

Step 1. Selve NV strongly convex programs

, . 1
y;. - al‘glnin{pi‘fi(mkvy) - “2““9’ o kaZ RS C}al = 1)2: e ‘,AT‘

Step 2. Solve NN strongly convex programs

, o 1 .
2 = argmin{p} f; (v}, v) + §|Iy —xlPyeChi=12,...,N.

Step 3. Find the farthest element from «y among z}, i =1,2,..., N, i.e,

% = argmax{||zk — @] :1=1,2,...,N}.
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Step 4. Compute

= agpan+ (1 — o) Ty, § = 1,2,..., M,

W, = Btk + {1 — B) L% = 1,2,..., M.

Step 5. Find the farthest element from x; among ':L{., g=1,2,..., M, 1le,

), = argmax{|lul —~z]| 15 =1,2,...,M}.

Step 6. Construct two closed convex subsets of C
CIE (e Coll T < I = e},

Qk:{:?IEC‘:<.’IJO—3,'k,(L‘_‘q;k)SO}'

Step 7. The next approximation zp.; is defined as the projection of xg

onto Cy NGy, Tie,

Tt = Foungg (o).

Step 8. Put £ :=k+1 and go to Step 1.

Now, we are in a position to prove the strong convergence theorem of the

sequence {zx} which is generated by the PHEM Algorithm.
Theorem 3.3.3. Suppose that the solution set S is nonempty. Then, the sequence

{z} which is generated by PHEM Algorithm converges strongly to Ps(zg).

Proof. Let q € S. By the definition of Zg, we suppose that i, € {1,2,..., N} such

that z}¥ = 7, — argmax{||zi — 2|/ : 4 =1,2,...,N}. Then, by Lemma 2.4.4 (ii),
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we have

12— all® < llew —all® = (1 =20 Lo)llze = i I° — (1~ 23 Lol — 2l
for each & ¢ NU {0}. This implies that

1Ze — gll < llzx — all, (3.3.16)

for each k € NU {0}. Since for each j € {1,2,..., M}, we also have ¢ € Fiz(T}),

it follows from the quasi-nonexpansivity of each T that

15, — all < ol —all + (1 — o) | Tz —ql

<ol = gl + (1= ap)llze =4l

lizx — all, (3.3.17)

for each & '€ N U {0}. Besides, by the definition of @, we suppose that j, €
{1,2,..., M} such that «* = w = argmax{|ef — wxll 2 4 = 1,2,...,M}. It

follows from the quasi-nonexpansivity of each 75, 7 € {1,2,..., A/}, that

7 —all < Belltl = all 4+ (1= BTz = al
< Bllti =gl + (1 = Bz~ dll
for each k € NU {0}. Thus, in view of (3.3.16), and (3.3.17), we get

lw —qll < Bellze — gl + A — Bz — gl

= lex —all, (3.3.18)

for cach # € NU {0}. Following the proof of Lemma 3.3.1 and Theorem 3.3.2, we
can show that S C Cp N @y, for each k € NU {0}. Moreover, we can check that

the sequence {z;} is bounded, and

Alim lze — @xfl = 0. (3.3.19)
10O
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By the definition of (. and x4y € Cy, we see that
Trar — Ul < o = 2],

for each k € NU {0}. It follows that

T — el < ([ — Tl + fre — 2l

N

< ek — ]| + ek — ]

2l@rer — el (3.3.20)

It

for each k& € NU {0}. Thus, applying (3.3.19) to the above inequality, we get
lim Hﬁk = 'L,g” = 0.
k—eo
From the definition of ¥, we have
i (ud = 24 = 3.3.21
Tl = 05 =0, (3:3.21)
foreach § =1,2,..., M.

Next, for each j =1,2,..., M, by (3.3.17) and the guasi-nonexpansivity of

T, we see that

186 @)+ (1 Be)(Tyz — a)l?
Billt, — all* + (1~ BTz — all* = Bl — Bu)lltg, — Tzl
Billth — all” + (1~ B Tz — all®

< Aillwy — (1”2 + {1 = B)llze — (1”2:

g, = all?

A

for each & € NU {0}. So, by applying Lemma 2.4.4 (ii} to the vector Z, we have

||u{. —al* < Billze —all® + (1= B)lllek — alf* = (1 — 2p{ Ly) ||y — y;;-k”2
—(1 = 20 L) |lyit — 7

= Jlax —al® — (1 AL~ 2o Lol — 9 1P + (1 20 L)l — Zell®),
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for each & € NU {0}. This means

(1= B)l(1 = 208 L) e — 5 I + (1 = 208 Lol — %]

< Mok = il e = all + (12, = gl

for each & € NU{0}. Then, by (3.3.21) and the properties of the control sequences

{B:}, {#L}, we obtain

lim ||lzx — v || =0, (3.3.22)
k—oo

and
lim/ |k = Zg)| = 0. (3.3.23)
k—oo

These imply that
lim &, — z|| = 0. (3.3.24)
k—o0

Then, by the definition of z),, we have
lim Jlog — 4| = 0, (3.3.25)
k—oo

for cach ¢+ = 1,2,..., N. Moreover, by Lemma 2.4.4 (ii), for cach i = 1,2,..., N,

we get that
Iz = all® < llaw — all® = (1 = 20 L) |2k — il — (1 — 204 L2) i — =ilI?,
for each k& € NU {0}. It follows that, for each ¢ = 1,2,..., N, we have

(1= 2p Lol — will® + (= 205 L)l — 21 < o — all® — 125 — qll®

o = 2zl (=i = all + 12 — all),

for each k € NU {0}. This together with (3.3.25)} implies that

klll}go s — will = O, (3.3.26)
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and
lim ||yl — 2| =0, (3.3.27)
koo

for each 4 = 1,2,..., N. TFrom the definition of ui;, foreach j = 1,2,..., M, we

see that
(- BTz~ 2l = ok -7~ A =)
< = Ze | Bellt =zl
< = @l + Belltl = el + 1+ Bk — |

], — wif] + Billarzr + (1 — ) Tiae — ]

(A Billzs — 7]

= |l — @l + Bl — e)llew — Tizwll + (1 + Be)llex — Zel,

for each k'€ NU {0}. Then, by using the assumption on {ag} together with

(3.3.21) and (3.3.24), we get
lim || 152, — Z}j = 0, (3.3.28)
k—oo

for each 5 =1,2, ..., M,

Next, since {2} is a bounded sequence, we can find a subsequence {xy .}

of {z} and p € H such that z;,, = p, as m — o0. We now show that p € 5.

We know that, by using (3.3.24), the subsequence {Z;, } of {Z.} also weakly
converges to p. This together with (3.3.28), by the demiclosedness at 0 of T — T3,

implies that
Tip=np,
foreach = 1,2,..., M.

On the other hand, by using {3.3.26), for each i € {1,2,..., N}, we get

that ;. — p, as m — oo. Thus, by Lemma 2.4.4 (i), for each i € {1,2,..., N},
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we have

it @hs ) = im0, )] 2 (W, — s Ui — ), Yy € C.

This implies that, for each i = 1,2,... N, we get
i 1 i i 1
fi(ﬂ;km)y) - fi(mkm? ykm) 2 ﬁvg—'llykm - ‘Tkm ” “ykm - y“iVy € C'
R '

It follows from (3.3.26) and the weak continuity of each f; (i € {1,2,..., N}) that
fz(p:y) 2 O1VU < 611
for each ¢+ =1,2, ..., N. Then, we had shown that p € §, and so w,,(z;) C S.

The rest of the proof is similar to the arguments in the proof of Theorem
3.3.2, and it leads to the conclusion that the sequence {z;} converges strongly to

PS(.'IJU). (]

Remark 3.3.4. We observe that if oy, = 1, for each & € NU {0}, then the PHEM
Algorithm reduces to the PHMEM Algorithm, which was presented'in [53]. We
point out that, by Remark 2.3.9, we know that the class of quasi-nonexpansive
mapping is larger than the class of nonexpansive mapping. The PHEM Algorithm
can solve guasi-nonexpansive mappings meanwhile the PHMEM Algorithm may

not be applied in this situation.

The next result is an improvement version of the Algorithm (3.1.8) in
the reference [51]. Notice that, in this section, we consider the class of quasi-
nonexpansive mapping while in {51] the authors considered the class of symmetric

generalized hybrid mapping.

Corollary 3.3.5. Let T be a quasi-nonexpansive self-mapping on C with I — T
demiclosed at 0 and let [ be a bifunction satisfies the assumptions {A1) — {A4),
Suppose that the solution set S = EP(f,C)N Fix(T) is nonempty. Pick vy € C,

choose parameters {pr} with 0 < infpp < suppp < min{ﬁ, 5%;}, {ox} C [0,1]
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such thatlimy oo = 1, {Be} € [0,1) with 0 < Inf B, < supfie < 1, and the

sequences {z1}, {un}, {z}, {t:}, {ux} are defined by

{

e — agmind e (@) + Hiy — el -y € O,

= argmin{pef (o) + Ly — 2l -y € O},

ty = cgxr + (1 — o) T2y,

g = Bty + {1 — Bo) Tz, (3.3.29)
G = {v € Clg=ull £z — el

Qr = {& € C i {wg — zp, & —wp) < 0},

Zr1 = Fonau (o).

\,

Then, the sequence {z} converges strongly to Ps(xg).

From now on, the algorithm (3.3.29) will be called Hybrid Extragradient
Method (HEM).

3.3.3 Numerical experinients

In this part, we consider some examples and numerical results to support
the main theorems. Additionally, we will compare the two introduced algorithms,
CHEM and PHEM, with the PHMEM Algorithm, which was presented in [53].
In the case M = N = 1, we will compare the HEM Algorithm (5.2.1) with the
algorithm that was presented in [52]. The numerical experiments are written in
Matlabh R2015b and performed on a Desktop with AMD Dual Core R3-2200U CPU
@ 2.50GHz and RAM 4.00 GB.

Example 3.3.6 Cousider a real Hilbert space H = RB®, and ' = H, The
bifunctions f;, « = 1,2,..., N, which are given by the form of Nash-Cournot

equilibrium model [2], are defined by

filz,y) = (P + Quy,y — ), Ve,y e R", i =1,2,..., N,
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where P € R, and @; € R™™" are symmetric positive semidefinite matrices
such that % — @Q; arc also positive semidefinite matrices. We know that the

bifunctions f;, i =1,2,..., N, satisfy conditions (A1) — (A4}, see [2]. Notice that

the bifunctions f;, i = 1,2,..., N, are Lipschitz-type continuous with constants
Li = Ly = ¢||P — Q|- Choose [ = Ly = max{L} : i = 1,2,...,N}. Then,

the bifunctions f;, i = 1,2,..., N, are Lipschitz-type continuous with constants
Ly and L. On the other hand, for the boxes D;, j = 1,2,..., M, which are given

by
Dy={z€R":~d; <zp<d;¥I=12,..;n}, y=1,2,..., M,

where d; are the positive real numbers, we will consider the nonexpansive mappings

Ti, 7 =1,2,..., M, which are defined by

T}:PDﬂ jzlazs:'ﬁ{[

The namerical experiment is considered under the following setting: for
each ¢ = 1,2, ..., 4V, the matrices F;, and Q); are randonly chosen from the interval
[—5, 5] such that they satisfy the above required properties. Besides, for each
Jj=1,2,..., M, the rcal numbers d; are randomly chosen from the interval (0, 3).
We will concern with these parameters: p. = %9, for the CHEM Algorithin, and
o= Qf—lg, 1=1,2,..., N, for the PHEM Algorithm, when n = 10, N = 10, and

M = 20. The following five cases of the parameters aj, and f; are considered:

1 1
Case 1. ap =1 —

ase Lk mhE3) T hre

| 1

Case 2. oy — L

aseZoap =1y gy A= 004 3
Case 3. ap. =1, fp = !

SRS AT

Clase 4 1, B =054

ase 4, oy — - = U, e —

k y Hk k+3

Case 5. ap =1, B =0.
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The function guadprog in Matlab Optimization Toolbox was used to solve
vectors yp, zr, for the CHEM Algorithm; i, 21, ¢ = 1,2,..., N, for the PHEM
Algorithm. Note that the solution set S is nonempty because of 0 € 5. The
PHMEM Algorithm was tested by using the starting point zg as (1,1,...,1)¥ €
k", and the stopping criteria ||zey1 — x| < 107* for approximating solution
z* € 5. After that, the CHEM and PHEM algorithms were tested along with the
PHMEM Algorithm by using the starting point zg as {1,1,...,1)" € R", and the
stopping criteria {{z;, —a*|| < 107*. Notice that the metric projection of a point

2o onto the set Oy M Q. was computed by using the explicit formula as in [63)].

Table 3 The numerical results for five different cases parameters oy

and /3,

CPU times (sec) Number of iterations

Cases CHEM  PHEM PHMEM CHEM PHEM PHMEM

1 147.8594 218.0156 216.6094 132565 5824 6154
2 471.0000 777.5313 818.4531 43265 21811 21577
3 108.0156  216.6094 216.6094 13631 6154 6154
4 343.0000 818.4531 818.4531 42921 21677 21677
5 108.7500  217.9375 - 13481 5925 -

Table 3 shows that the number of iterations of the PHEM Algorithm in
case 1 is better than other all considered cases. Meanwhile, the CPU times of the
CHEM Algorithm in case 3 is better than other all considered cases. We would
like to remind that we solve g, 24, i = 1,2,..., N, by using N bhifunctions and
compute t{\, fu.{_, i=1,2,..., M, by using M mappings for the PHEM Algorithm.
On the other hand, we solve only ¥, 2z, by using a bifunction and compute only
tr, Uy, by using a mapping for the CHEM Algorithm. This should be a reason for

the results that the number of iterations of the PHEM Algorithin is better than
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the CHEM Algorithm, while the CPU times of the CHEM Algorithm is better

than the PHEM Algorithm in all considered cases.

Example 3.3.7 In the case M = N = 1, we will compare the HEM
Algorithm (5.2.1) with the following algorithm (3.3.30), which was presented by
Hieu [52], when T is a quasi-nonexpansive mapping and f is a pscudomonotone
and Lipschitz-type continuous bifunction with positive constants Ly, La:

p
zg € H,

yie = argmin{ppf(ze, ¥) + 3llzr = yl* y € €},
(3.3.30)

z = arg min{pef{ye, ¥) + 3 loex — 9y -y € C},

| Vh41 = (1= ar — Br)ze + BT,

where {pr} C {p, 7] with 0 < p < p < min{z-, 5o}, {an} C [0,1] such that
linyg oo ap = 0, 507 o = +o0, and {Bi} C [ﬁ,ﬁ] < {0,1), for some 3 > B> 0.
Hieu [52] proved that the sequence {w} generated by (3.3.30) converges strongly
to an clement in the solution set S = EP(f,C) N Fiz(T). In this thesis, the
algorithin (3.3.30) will be called NH Algorithm.

Consider a real Hilbert space H = R", and C = H. Recall that the

quadratic function i : R® — R is defined by

1 .,
hz) = 53:1 Oz + b,

where b ¢ R", () € R™*" is a symmetric positive semidefinite matrix. Here, we will
focus on the case (£, — QQ1)b = 0, when 1, is the identity matrix, and Q% € R™*"

is a pseudoinverse matrix of §. We consider the bifunction f, which is defined by
flz,y) = h{y) — h(z), Vz,y € R".

It is clear that

f(:L’,y) + fly. @) =0, Yo,y € R™
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Thus, the bifunction f is monotone, and so is pseudomonotone. Moreover, it is

easy to see that
)+ Fy 2) = flay2) > =l = yll? =y = 2], Yo, 2 € B
Then, the bifunction f is Lipschitz-type continuous with constants L) = L, = 1.

On the other hand, for a convex function g : R" — R such that there is

v € R satisfied g(z) < 0, we consider a mapping 7" : R" -+ R", which is defined

by
T = P,

Then, by Theorent 2.3.25, we know that 7" is a quasi-nenexpansive mapping with

I — T demiclosed at 0, and Fiz(T) = {z € R" : g(z} < 0}.

The numerical experiment is considered under the following setting: ¢ €
R™*™ g an orthogonal matrix and its entries are randomly chosen from the interval
{0,5). The matrix Q2 = (g;;) € R"™" is defined by q;j = a,ifi =37 =1; ¢; =0,
otherwise, where the real number a is randomly chosen from the interval {(4,5).
The positive semidefinite matrix @ is constructed by @ = Q,Q:Q7. Besides, we
consider g(z} = max{0, {¢,z) + d}, where the real number d is randomly chosen
from the interval {—2, —3), and the vector ¢ € R" is randomly chosen {romn the

interval (0,2). Note that the solution set S is nonewpty because of — @%b € S.

i

, ; — . . R RSN 1 -
We will concern with these parameters: py = ¢, @y = 1— 33, and fr = 0.5+ ¢ =t

when n = 10. The function quadprog in Matlab Optimization Toolbox was used
to solve vectors ., and z;. Again, the metric projection of a point x4 onto the
set Ci N Qr was computed by using the explicit formula as in [63]. The HEM
Algorithm is compared with the NH Algorithin by using the starting point zq¢ as
(0,0,...,0)T € R, and the stopping eriteria ||z, — @x|| < 1075, The following

results were presented as averages calculated from 10 tested problems.
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Table 4 The numerical results for N =1 and M =1

Average CPU Times (scc) Average Iterations

HEEM NH HEM NH

0.2953 2.1360 91.8 805.3

Table 4 shows that the HEM Algorithm yields better both the CPU times
and the number of iterations than the NH Algorithm. We notice that, in this
experiment, the starting point zp = 0 € R® means that the solution Pg(0) has
the minimum norm over the set S. Furthermore, we observe that, if the starting
point zy € S, the HEM Algorithm will be stopped at the iteration 2, but the NH

Algorithm may not.



CHAPTER 1V

ITERATIVE METHOD FOR SOLVING SPLIT

EQUILIBRIUM AND FIXED POINT PROBLEMS

In this chapter, we consider the split equilibrium and fixed poin.t problems.
Some iterative methods for finding a solution to the split equilibrium and fixed
point problems are introduced in real Hilbert spaces. We also apply the obtained
main result for the problem of finding a solution to the split variational inequal-
ity and fixed point problems. Some numerical examples are considered and the

introduced methods are discussed and compared with the well-known algorithm.

4.1  Split equilibrium and fixed point problems

The split feasibility problem was proposed by Censer and Eilfving [23] as
followed:

Find =z € such that La® € @, (4.1.1)

where C and (2 are two nonempty closed convex stibsets of the real Hilbert spaces
Hy and H,, respectively, and L : f{; — Hjy is a bounded linear operator. In
finite dimensional Hilbert spaces Hy = R" and [, = R™, Byrne [24] proposed the

following CQ method for solving the split feasibility problen:
zp = Polzy + 61T (P — I)Lxy),Vk €N, {4.1.2)

where § € {0,2/||L§?), and L is a real m x n matrix. Byrne proved that the
sequence {x} genenated by (4.1.2) converges strongly to a solution of the split
feasibility problem (4.1.1). Later, Xu {25] considered the split feasibility problem
in the setting of infinite dimensional Hilbert spaces. In this case, the CQ method

hecomes

i1 = Polay + 6L*(Py — [)Lay),Vk € N, (4.1.3)
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where ¢ € (0,2/||L}j*), and L* is the adjoint operator of L. Xu proved that the
sequence {z;} genenated by (4.1.3) converges weakly to a solution of the split

feasibility problem (4.1.1).

Moudafi [64] (see also He [65]) introduced the split equilibrium problem, as
a gencralization of the split feasibility problem, as follows:

Find z* € C such that f(z% y) > 0,Vy € C, (1.1.4)
4.1.4

and ' = La* e solves glu*,v) 20,V e Q,
where C'| (Q are two nonempty closed convex subsets of the real Hilbert spaces H;
and Hs, respectively, f: C x C — R and ¢ : @ x @ — R are bifunctions, and
L Hy -» Hy is a bounded linear operator. By using the extragradient method,
Kim and Dinh [66] proposed the following algorithm for finding a solution of the
split equilibriuin problem when the bifunctions f and g are psewdomonotone and
Lipschitz-type continuous with positive constants ¢; and ¢q:
Ty & C’,
e = argmin{ e f (zi,y) + 2lly =z Ly € CY,
2% — argmin{Aef (v, )+ v —axll? s y € C, i

g, = arg min{pueg(Lze,w) +llu— Lag|*: v € Q},

vp = argmin{ g g{ue, w) + 3|u — Lz]*: v € Q},

\$k+1 = Pc(zk + 5L*(’Uk - sz)),

where {Ac}, {n} < [p,7] with 0 < p <7 < min{g-, 5-}, and L* is the adjoint,
operator of L. They proved that the sequence {z;} genenated by (4.1.5) converges
weakly to a solution of the split equilibrium problem {4.1.4}. In this thesis, the

algorithm (4.1.5) will be called PEA Algorithm.
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In 2016, Dinh et al. [67] considered the split equilibrium and fixed point

problems as follows:

‘Find a* ¢ ¢ such that Ta*=2* f(z*y) > 0,VyeC, ( )
4.1.6

and u*=Lz*€Q solves Su'=u*, glu*v)>0,Yve@.
where ¢ and @ are two nonempty closed convex subsets of the real Hilbert spaces
H, and H,, respectively, f: U x C = Rand ¢ @ @ x ¢ — R are bifunctions,
T:C — Cand S: Q — ¢ aremappings, and L : Ay — H; is a bounded lincar
operator. From now on, the solution set of the split equilibrium and fixed point

problems (4.1.6) will be denoted by . That is:

Q= {pe EP(f,C)NFiz(T): Ly € EP(y,Q) N Fizx(S)}.

By using both proximal point and extragradient methods together with
Mann iterative method, Dinh et al. propesed the following algorithm for finding
a solution of the split equilibrium and fixed point problems (4.1.6), when S and T°
are nonexpansive mappings, ¢ is a monotone bifunetion, f is a pseudomonotone
and Lipschitz-type continuous bifunction with positive constants ¢; and ¢ :
T < C,
v = argmin{ A flwg, p) + 3lex —pli* y € CF,
2 = arg min{ M f (yi, ) + 3llex —yl* :y € O,

(4.1.7)

tk = (1 - Q‘)Z,{; + Q’Szk,

Up — T&Ltk,

kmk+1 = Pc(t;‘. + 6L*(T'1Lk - Lfk)),

where {\} C (AN with 0 < A <X < min{g, 5}, {re} C (0, +00) such that

lign infry > 0, o € (0,1), & € (0,1/||L||*), L* is the adjoint operator of L, and
b 00

T3 Lty = {u € Q : glu,v) + i(v —u,u— Lty) > 0,Yv € Q}. They proved that

the sequence {x;} genenated by (4.1.7) converges weakly to a solution of the split

equilibrium and fixed point problems (4.1.6).
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4.2 A new extragradient method for split equilibrium and fixed point

problems

In this section, motivated by the literatures in Section 4.1, we introduce
a new extragradient algorithm for finding a solution of the split equilibrium and
fixed point problems (4.1.6), when f and g are pseudomonotone and Lipschitz-type

continuous bifuanctions, and 5 and T are nonexpansive mappings.

4.2.1 Strong convergence theorem

Let Hy and A be two real Hilbert spaces and ¢ and ¢ be nonempty
closed convex subsets of Hy and H,, respectively. Suppose that f: C x C — R
and ¢g: @ x @ — R are bifunctions which satisfy (A1) — {A4) with some positive
constants {¢1, e} and {dy, da}, respectively. Let T: C' — C and S: @ — Q be
nonexpansive mappings, i: ¢ — C' be a p-contraction mapping, and L: H; — Hy
be a bounded linear operator with its adjoint L*. 'We introdnce the following

algorithm for solving the split equilibrinm and fixed point problems (4.1.6).

Algorithm 4.2.1. Choose x; € Hy. The control parameters Ay, [t, ¢, B, O

satisfy the following conditions

1 1 1
0< A< A < ,\<m1n{ } O<,u<,u;\<,u<1mn{2— *},

2c (] 202
Bke (0,1}, 0< llnlillfﬁ,g < lmsupfr <1, 0<8< 6 <o < 5
kr00 ||L||

1
ay € (0, ——) hm o =0, Za; =
k=1
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Let {zy} be a sequence generated by

w = argmin { prg(Po(Lax), w) + lu — Po(Law)l?: v € Q},
v, = arg min {peg(ug, v) + llu — Po(La)||®: v € Q},

yr = Po (@, + 8 L* (Sve — Lzy))

t = argmin { e f (e, ) + Sy — vl y € CF,

2, = argmin {\ef (b, ¥) + 3lly — mll*: y € cy,

ey = aph{zy) + (L—ap)(Brze+ (1 — B )T z).

N\

Theorem 4.2.2. Suppose that the solution set (1 is nonempty. Then, the sequence

{2} which is generated by Algorithm 4.2.1 converges strongly to ¢ = Poh(g).

Proof. Let p € Q. So, p e EP(f,C)NFiz(T) C C and Lp € EP{g, QN Fiz(S) C

(2. Since Py is finmly nonexpansive, we get

< (Po(Law) = Po(Lp), Lay— Lp)
N (PQ(L:LI\) — Lp, Loy — L])>

1
5 [1Pe(Lan) — Lpfl” | by~ Lpl* - || Po(Lay) — Lax]”]

and hence,

| Po(Law) — Lpl|* < || Lay — Lpli* — || Po(Lag) — La|® (4.21)

Since S is nonexpansive, Lp € Fix(S) and using Lemma 2.4.4(ii) and definition

to u; and vy, we have

[1Sve = Lp||* = [|Sve — S(Lp)|*
< v — Lp?
< || Po(Lax) — Lp|* — (1 — 2updy)|| P (Lax) — uelf®

—(1 — 2quda) |l — v, (4.2.2)
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for each k£ € N. From (4.2.1), (4.2.2) and assumptions, we obtain
1Svg — Lpl* < || Daw — Lpl|* — | Po(Laex) — Lee|*. (4.2.3)
By (4.2.3), we get

(L{zy — p), Svp — Lay) = (Svy — Lp, Svy — Lay) — ||Sv — Lay|?

1

5 (1S — Lpll* — [iZay — Lpll* — [|Sw — Lay)”]
1 1

—EHPQ(L’LL) < L’LL“Z — 5”81)& — L’l,.r‘”2

This implies that

25,;;(15((8;‘- - p), S’Uk — L’Lk> < *(SkHPQ(L:Ek) - L.’Eknz

*(5;\4”3'1),& - L’Lknz (424)
Since P is nonexpansive and by (4.2.4), we obtain

lye —pI* = Po (@ + 8k L (S — Lag)) = Pe(p)Ii*
< e — p) 4 Gl (Swg — L) ||
= |lza=pl* + 8L (Sux — L) ||? + 20 {zr — p, L* (Sux — Lay))
< Nlow =l + S LIPS0 — Ll — Gl PolLas) — Ll
— 61|l Sve — Lay|)?
= ok — pll* — 6:(1 — S LIPYISve — L]

—Ol| Po(Lay) — Lay|, (4.2.5)
then, we obtain

lyx — 2l < Il — 2l (4.2.6)
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By Lemma 2.4.4(ii), definition of t; and z; and assumptions we have

2 — pll < llue — ol (4.2.7)

for each & € N. From (4.2.6) and (4.2.7), we get

iz —pll < llee — 2l (4.2.8)

Set g = Brag + (1 — Fi) Tz It follows from (4.2.8) that

lae — pll < Beller — pll + {1 =B}l Tz —pll
< Billex = pll + (1 = Be)llz — Pl
< l=e — pll- (4.2.9)

By definition of z,( and (4.2.9), we obtain

los 2l < awlb(en) =l + (= aw)las =l
< allblan) — kI + ety = pll -0 = el = ol
< appllan = pll + oxlli(p) = pll + (1= allz — 2
< (1= et —p)lles — pl| +on(i— p)w
<

max {||ch —l, M}
L=p

< max {”:L‘l —pll,

|2 (p) — pl } _

1-p
This implies that the sequence {z;} is bounded. By (4.2.6) and (4.2.8), the sc-

quences {y} and {z;} are bounded too.

By Lemma 2.4.4(ii), (4.2.6), the definition of ¢; and assumptions on ;. and

&y, we get
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o — > < Bellew —plI* + (1 — B) [Tz — plI*
< Billze—pl* + (1 Bl — pll?
< Bellaw = pI? 4+ (1 = B)lllye — plI* — (1= 22ner) lye — tell?
—(1 = 2)he)llte — 2]
< Billee = ol + (L= Bl — plI* = (1 = 2xnen)llye — tall®
—(1 = 2Xpea)||te — 2ll?]
= Ao =p]? = A= Be) T =20 llge — tall? + (1= 22ee2) It — 2] -
Therefore,

lzes =) < arlibted) = plP + (1 = ar)la — o

A

< sapll(e) = oI+ @ = )l —pl?

~ (1= Bl 22y — tal)® 4 (L= 2Xnco)llt — 2]}

and hence,

(1= B [(L = 2he) e — tll? -+ (1 = 2Xea) e — 2|

< g — plI? = Newgr = plI* + andd, (4.2.10)
where

M = sup{' () — plIZ — |2k — p||21 + (1= Bo(L — 20 ) lyw — il

+(1 — 2/\k02)|lt.‘: - Zkllz], ke N}

By (4.2.9), we have
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lapm —plI° = law(h{ze) — p) + (1 — an)a — )l
< (1 —ap)?lge — pl|* + 20 {h{ar) — papg — ) (4.2.11)
< (L= )l — pll* + 200{h(x) = h{p), wrin — p)
20 {h{p) — p, 241 — D)
< (1= o lee = pif* + 200pllz — pllizris — ol
+2a.({p) = P, Tey1 = P)
< (L = o[l — pI*+owp (o — 2l + 2 — plI?)

+200.(h{p) — p, 2p11 — P)
= (1= ax)® + axp) llor — plI* + arpllorys — pif?

+20.(h{p) — p, 211 — P)-

So, we get

2(1 — pay
oo s (1220200 e

b= oagp

200 —plag  apdy 1 .
(e (2(1_p)+(1_p)(h(1) Py i 1))
= (I—yi)llwe —pif?
My 1 , ,
+Ye (2(1 — '0) + (1 _ p) (h(})) IR RSN P)) ! (4212)

where My = sup {|Jzx — p||?>, ¥ €N}, Put v = 2{11:—(’22“, for each & ¢ N. By

assumption on ar, we have

Jim . =0, and AZ;%. = 0. (4.2.13)

Since Foh is a contraction on € there exists ¢ € §2 such that ¢ = Poh(q).
We prove that the sequence {z;} converges strongly to ¢ = Pohi(g). In order to

prove it, let us consider two cases.
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Case 1. Suppose that there exists kg € N such that {||lzx — ql|}72,, is
nonincreasing. In this case, the limit of {||zx — ¢||} exists. This together with

assumptions on {ak}, {Be}, {Ae} and (4.2.10) implies that
li yp — L] = 1 c— 2] = 0. 1.2.14
Jim flye — el = lim [t — 2| =0 (4.2.14)
On the other hands, from definition of z;.., and (4.2.8), we get

lzier — gl = axlliben) —all* + (1 — )l Brew + (1~ B) Tz ~ g

= apliifwr) — gl = @ = o) [Billzx —all® + (1 = BTz — gff?
B~ Bl — Tal?]
apll(z) = @i® + (1 = cn)[Bellzx —al® + (3 = Bu)llex — gl
~Bi(1 = Bllwx ~ Tal?]

= ax[lh{z) = gl* + (1 — aw) [l — ol = Bl = Bllex ~ Taell”],

VAN

and hence,

Br(U= Bl — allzs = Tali® - < awllhla) — all® + |l — all”

“Nlzrs =gl (4.2.15)

Since the limit of {

2 — g||} exists and by assumptions on {ap} and {8}, we

obtain

Alﬂg} lex — Tad] = 0. (4.2.16)
From (4.2.9} and (4.2.11), we have

H-’UA-H - Q‘H2 - ||33A- - G|i2 - QO‘k(h(fb‘k) —q, Tk —q) < o — Q’||2 — |y — Q'||2

I

0. (4.2.17)



Again, since the limit of {||lz — ¢||} exists and a; — 0, it follows that

. —allZ2 — e — all2) —
Im (llge = qll® = [le — ql[*) =0

and hence,
Jim flg — gl = lim la — g,
and by {4.2.9}, we get
Sl = gl = T |z =gl
We also get from (4.2.6), (4.2.7) and (4.2.18)
lim ||z —¢|| =1 c— gl
Jim e gf| = lim [l — 4
By (4.2.5) and (4.2.19),
li e — Lagll =1 sy — Lagll =
Jimn | Sop = Laglf= lim [[Po(lae) — Layl| =0
which implies that
nggo |Svp — Po(Lay)|| = 0.
1t follows from (4.2.2) that

(1 — 2ppch) || Po(Lwg) — wgl|* + (1 — 2pddy) ||ty — 0|2

< N Po(Lay) — Lp||* — ||Sve — Lp|?
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(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

= (1Pe(Lay) — Lpll + 1Sv — Lpll) (| Po(Zax) = Lpl| — | Svx — Lpl)

= (1Po(Lax) — Lpll + [1Sv — Lpll} | Fo(Lay) — Suil..
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So,
Algl;} | Po{Lax) — well = Llil)lolo jux — vl =0, (4.2.22)
and hence,
Alim | Po(Lay) — v = 0. (4.2.23)
ey {e ]
From (4.2.20) and (4.2.23), we get
lim || Lag — v = 0. (4.2.24)
k—oo

It follows from zyp € C, the definition of ¥, and (4.2.20) that

lye —zrll = §Po (zg+ L' (Svp — Lay)) — Polzy)||
< ”’L,k + 8, L7 (S‘Uk = L’Lk) —X ’L,k“
< Ol LlSve — La|| — . (4.2.25)

Because {21} is bounded, there exists a subsequence {zy,} of {z} such

that {zy, } converges weakly to some 7, asn — oo and

limsup{zy, — ¢, h(g) =) = lim {zx, — ¢, h(q) ~ ¢)
k__)m n—ro0
= {T-¢ Mg~ q. (4.2.26)

Consequently, { Lz, } converges weakly to L3. By (4.2.24), {ws, } converges weakly
to L&. We show that ¢ €. We know that z;, € C' and v, € @, for each
k€ N, Since ¢ and @ are closed and convex sets, so € and ¢} are weakly closed,
therefore, € C and Lz € Q. From {4.2.25) and (4.2.14), we get that {yx, }, {tk, }
and {z;,} converge weakly to . By (1.2.22) and (4.2.23), we also get that {uy, }

and {Po(Lxy,)} converge weakly to LE. The Algorithm 4.2.1 and assertion (i) in
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Lemma 2.4.4 imply that

Y

{thn — Yhwr trw — Y)

élltkn - yknll“tkn - y”1vy € C’

Mo (F Weer ¥) — (e )

v

and

i, (9(Po(Lay,),w) — g{Po(Law, hur,)) 2 (g, — PolLaw, ), uk, — )

— |, — Po{ Lwa, M g, — wll, Yo € Q.

A%

Hence, it follows that

1

,\ ”tkn — yl’\'n ”Htkn - y” 2 O,Vy & Cr?
kn

T ) — Flyna tra) +

and

1
g(Po(Law, ), u)~ 9(Po(Lak, ), ur,) + ;L——Hukn — Po(Lai lww, — ul = 0,Vu € Q.

n

Letting n -3 oo, by the hypothesis on { A}, {14}, (4.2.14), (4.2.22) and the weak

continuity of f and g, we obtain that
f(Z,y) > 0,Vy e, and g(Lz,u) = 0,Vu € Q.

This means that Z € EP(f,C) and Lz € EP(g,Q). It follows from {4.2.14),
(4.2.16) and (4.2.25) that

iz — Tzl < o — tell + e — vl + Ny — @l + 2w — Tarl| — 0.

This together with Theorem 2.3.11 implies that Z & Fiz(T"). On the other hand,
from (4.2.21) and (4.2.23), we get

lux — Svell < lox — Po(Lag)if + || Po(Lae) — Swel| — 0,
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and using again Theorem 2.3.11, we obtain L& € Fiiz(S). Then, we proved that
ze EP(f,CYNFiz(T) and Lz ¢ EP(g, Q)N Fiz(S5), that is T € §1. By Theorem
2.3.18(i), # € Q and (4.2.26), we get

limsup{zr — ¢, h{q) —¢) ={& — ¢, h(qg) — @) <0. (4.2.27)

k—o0

Finally, from (4.2.12), (4.2.13), (4.2.27) and Theorem 2.4.5, we imply that the

sequence {x} converges strongly to g.

Case 2. Suppose that there exists a subsequence {k;} of {k} such that
||"l;-i\'i =gl < |lzrr —all, Ve N

According to Theorem 2.4.6, there exists a nondecreasing sequence {m,, } < N such

that m, — co,
(e =gl < ([ @mger gl and {lzn — @lf < l@w, 10— g, Ve N (4.2.28)
From this and (4.2.10), we get

(1 ~ RN [(1 =\ 2’\mncl)“ymn 1 tmn”2 + {1 = 2Anm, c2)|ltm, — ZmnHia]
< O M+ 2, — (l'“z A Q'HQ

<y, M.
This together with assumptions on {ax}, {fx} and {\;} implies that
]irn Hymn o tmnli = 0’ lin—l ”tmn o zmn“ = 0 and hnl “ymu o Zmn“ = 0‘
n—oo n—roo n—roo

From (4.2.15), we have
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)an(l - ,an)(l - amn)“f’;mn “ szn ”2 S Qm,, ”h(fl:mn) - Q||2 + ||$mrl - q”il,

“‘“fvmn.+.i - qnz

[

W, (2m, ) — all*.
By hypothesis on {ar} and {8}, we have

lUm ||#m, — T#m.l = 0.

n—rod

By (4.2.17), we get

_QQ'ﬂln(h'(‘,L‘??ln) - Q) m?ﬂn"}'l N Q> S ||"E:mn“l‘1 - QII2 - Ilmmn U q”"2

“‘2amn<h'($mn) =4 Ty 1 — q)

[

Han _ (1'”2 - ”-’Umn - (1”2

= (i
Since the sequence {z;} is bounded and oy — 0, we obtain
lim (g, = ¢ll = lim |[#n, —ql.
n—od n—oo
By the same argument as Case 1, we have
limsup{z.,, — ¢, h{q) —q) <0.
n—oo

It follows from (4.2.12} and (4.2.28) that

1Zm 1 — q“2 < {1- ’Ymn)nmmn - QHZ

Ot M 1
+ Y, ( 2 + ( )(h(Q) T4 Tl q))

2(1-p)
S (1 o /Y”In)“:Emn"i‘l - q”2

1—p

O, 1
e (e L@ gm0

2(1 - p)
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and hence,

My 1
2(1-p) (1—p

S{h(0) = s - q>) .

’Ymn”mmn+1 - Q||2 S ’Ymn (

Since 7y, > 0 and using (4.2.28) we get

CE,,IHAJO )
b h0) — 08mrs —) ).

1
2 2
Ty — (1'| S Tm+1 — 4 S (

Taking the imit in the above inequality as n.— oo, we conclude that the sequence

{z,} converges strotgly to g = Poh(q). O

4.2.2 Application to variational inequality problems

In this part, we apply Theorem 4.2.2 for finding a solution of variational

inequality problems {or pseudomonotone and Lipschitz continuous mappings.

Fivstly, we consider the variational inequality problem which is a problem
Ys Y P

of finding a peint ¢* € €' such that
{Az®, v —a*) 2 0,Vo € O (4.2.29)

where €' is a nonempty closed convex subset of a real Hilbert space H and A: C' —
C'is a mapping. We observe that if f(z,y) = (dz,y — z), for each z,y € C, then
the equilibrium problem (3.1.1) become the variational inequality problem (4.2.29).
The set of solutions of the variational inequality problem {4.2.29) will be denoted

by VI(A,C).

Now, for a nonempty closed convex subset C' of # and a mapping A: C' —

C', we are concerned with the following assumptions:
) p
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{B1) A is pseudomonotone on C;

(B2) A is weak to strong continuons on C that is, Az, — Az for each sequence

{zr} C C converging weakly to z;

(B3) A is Lipschitz continuous on €' with constant L; > 0.

Next, let H; and Hjy be two real Hilbert spaces and ¢ and ¢} be nonempty
closed convex subsets of Hy and H,, respectively. Suppose that A: ¢ — C and
B: ) — Q are mappings which satisfy Bl — B3 with some positive constants L
and Lo, respectively. Let T € — € and S+ — @ be nonexpansive mappings,
h: C — C be a p-contraction mapping, and L: H; — Hy be a bounded linear
operator with its acdjoint L*. We present the following algorithm for solving the

split variational inequality and fixed point problems.

Algorithm 4.2.3. Choose &y € Hy. The control parameters Ay, ft, ¢, B, Ok

satisfy the following conditions

0< A<M SAaly, O0< p<up<u<to Bi €(0,1), D<li£ninfﬁ'k§
= =0

| 1 =
limsupfFr <1, 0<d <& <0< —=,ap €{0,——), lim ap =0 0 = 00,
msu VS < an S0 570 i ek =00

Let {x} be a sequence generated by

up = Po (Po(Lak) — juB (Po(La)))
vy = Po (Po(Law) — B (1))

Y = Pe (g + 8 L* (S — Lay))

te = Po (yr — MeAyn)

2z = Po (yn — M Aty

Tpy1 = akh(:r:,p\.) + (1 — Q’k)(ﬁkﬂ?k + (1 — ﬁk)TZk).
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Theorem 4.2.4. Suppose that the solution set Q) := {p € VI{A,CYNFiz(T): Lp €
VI{B,Q)NFiz(S)} # 0. Then, the sequence {xy} which is generated by Algorithm

4.2.8 converges strongly to ¢ = Pah(q).

Proof. 1t is known that the bifunction f{z,y) = {(Az,y — ) satisfies conditions

{A1)-(A3). Since A is L;-Lipschitz continuous on O, it follows that

f(fb',y)‘f‘f(y,z)—f(ﬁ?,z) == (Am_Ay>yﬁZ>

Z Az —Ay|lly — =
= —Lille=ylilly =zl
I 5 L
> e —yl"< Fy =2l Vop,zeC.

Then, f is Lipschitz-type continuous on ' with ¢; = ¢; = %, and hence f satisfies

condition (Ad).

It follows from the definitions of f and y, that

\ 1
tr = g min {,\k(Ayk,y — ) + §||y ulPiye C’}

: 1
= arg in {5”’“ ~ (i = Ayl vy € C}

= FPolyx = MeAyr),

and similarly, we can get uy = Po{Po(Lag) — un B(Po(Lay))), v = Po(Po(Lay) —
i B(u))), and 7z = Pol(ye — Ardty). Then, the Algorithm 4.2.1 reduces to the

Algorithm 4.2.3 and we get the conclusion from and Theorem 4.2.2. a

4.2.3 Numerical experiments

In this part, we consider examples and numerical results to support The-
orem 4.2.2. In addition, we compare the introduced algorithm with the PEA

Algorithm, which was presented in [66].
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We consider the bifunctions f and g which given by the form of Nash-

Cournot oligopolistic equilibrium models of electricity markets, see [68, 69],

fz,y) = (Pz+ Dy)"(y —z), Va,yeR", (4.2.30)

glu,v) = (Tu+ Vo) {v—u), VYuveR", (4.2.31)

where P, D € R™" and U, V € R™™ are symmetric positive semidefinite ma-
trices such that P — D and U — V_are positive semidefinite matrices. We know
that the bifunctions f and ¢ satisfy conditions (A1)—{A4), see [70]. Notice that
f and ¢ are Lipschitz-type continuons with constants ¢; = ¢z = ;P — DJ| and
dy = dy = 3||U—V/||, respectively. Choose by = max{ei, di}, and by = max{cy, da}.
Then, both bifunctions [ and g are Lipschitz-type continuous with constants b

and bs.

The following numerical experiments are written inn Matlab R2015b and per-
formed on a Desktop with Intcl(R) Core(TM) i3 CPU M 390 @ 2.67GHz 2.67GHz
and RAM 4.00 GB.

Example 4.2.5. Let the bifunctions f and g be given as {4.2.30) and
(4.2.31), respectively. We will concern with the following boxes: €' = [, [-5, 5],
Q = [I;L,1—20,20, C = [[",[-3,3] and @ = J[7L;[~10,10]. The nonexpansive
mappings T : ¢ = C and S+ @ — @ are given by 7' = Pz and 5 = Fp,
respectively. The contraction mapping h : € — € is a n X n matrix such that

||l < 1, while the linear operator L : R" — R™ is a m x n matrix.

In this numerical experiment, the matrices P, D, U, and V are randomly
generated in the interval {—5,5] such that they satisfy above required properties.
Besides, the matrices & and L are randomly generated in the interval (0, %) and
[—2, 2], respectively. We randomly generated starting point 2:; € R" in the interval

1
. ap = —— and
oz T kv

. The following 3 cases of the control parameter 3, are

[—20,20] with the following control parameters: d =

1

=Ny =
H ¥ amax{by, by}
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considered:
Case 1. B, = 10710 4 WL*
. I
Case 2. 5, = 0.5.
Case 3. G, = 0.99 — .
RO PR E+1

Note that to obtain the vector uy, in the Algorithm 4.2.1, we need to solve

the following optimization problem
: 1 2
arg min § peg( Po{Lay), u) + §||u — FPo(Lag)||* v eQy,
which is equivalent to the following convex quadratic problem
1
arg min {§1LTJ'1L +KTuru e Q} z {4.2.32)
where J = 2.V + I, and K = U Po(Lay) — iV Po(Lay) — Po(Lay), see [66)].

On the other hand, in order to obtain the vector vy, we need to solve the

following convex quadratic problem
Y 1 = —T
arg min § S JuA I win € Qs (4.2.33)

where J = J and K = . Uup — jup Vg — Po{Lzy). Similarly, to obtain the vectors
i and zk, we have to consider the convex quadratic problems in the same way as
in (4.2.32) and (4.2.33), respectively. We use the Matlab Optimization Toolbox
to solve vectors ug, ve, ¢y and z,. Observe that the solution sct  is nonempty
because of 0 € . The Algorithm 4.2.1 is tested by using the stopping criteria
lzes1 — 2| < 1073, In Table 5, we randomly 10 starting points and the presented

results are in average.
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Table 5 The numerical results for different parameter 3, of Example

4.2.5
Size Average times (sec) Average iterations
n m Case 1 Case 2 Case 3 Case 1 Case2 Case 3
5 10 1.399695 1.957304  6.356185 37 54 171
10 5 2.168317 2.916557 6.551182 56 75 179
20 50 2.834138 3.785376  38.711813 58 80 186
50 20 5.292192 6.570650 10.418191 111 138 220

From Table 5, we may suggest that a smallest size of parameter ., as
B = lO_er}?_l:I, provides better computational times and iterations than other
cases.

Example 4.2.6. We consider the split equilibrinm and fixed point prob-
lems (4.1.6) when T = Ig» and S = Igm are identity mappings on R" and R™,
respectively. It follows that the split cquilibrium and fixed point problems (4.1.6)
become the split equilibriun: problem (4.1.4). In this case, we compare the Al-
gorithm 4.2.1 with the PEA Algorithm, which was presented in [66]. For this
numerical experiment, we consider the problem sctting and the control parame-
ters as in Example 4.2.5, but only for the case of parameter 3y is 10710 + k—j—l
Note that the solution set 2 is nonempty because of 0 € 2. The starting point
x; € R" is randomly gencrated in the interval [-5,5). We compare Algorithm

4.2.1 with PEA by using the stopping criteria |lwp1 — 2|l < 1079, In Table 6, we

randomly 10 starting points and presented results are in average.
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Table 6 The numerical results for the split equilibrium problem of

Example 4.2.6

Size Average times (sec) Average iterations

n m Algorithm 4.2.1  PEA Algorithm 4.2.1 PEA

5 10 0.862125 0.983111 31 44
10 5 1.037G50 1.991282 30 83
20 50 1.607701 2.618173 44 85
50 20 2.937581 7.926821 80 258

From Table 6, we see that both computational titmes and iterations of Al-

gorithm 4.2.1 are better than those of PEA.



CHAPTER V

CONCLUSION

This chapter is all the results of this thesis including corollary, lemmas,

and theorems. We conclude again that what we get from the results.

5.1 Shrinking extragradient methods for pseudomonotone equilibrium
problems and fixed points of quasi-nonexpansive mappings prob-

lems

In this section, we presented two shrinking extragradient methods, CSEM
and PSEM, for finding a common element of the set of fixed points of a finite family
for quasi-nonexpansive mappings and the solution set of equilibrium problems of a
finite family for pseudomonotone bifunctions in a rcal Hilbert space. Under some
constraint qualifications of the scalar sequences, we obtained one Lemma and two
Theorems. Lemma 5.1.1 is an important teol to prove two main theorems. The
strong convergence theorems of the CSEM Algorithm and the PSEM Algorithm

are considered in Theorem 5.1.2 and Theorem 5.1.3, respectively.

Lemma 5.1.1. Suppose that the solution set S is nonempty. Then, the sequence

{z1} which is generated by CSEM Algorithm is well-defined.

Theorem 5.1.2, Suppose that the solution set S is nonempty. Then, the sequence

{21} which is generated by CSEM Algorithm converges strongly to Ps(zo).

Theorem 5.1.3. Suppose that the solution set S is nonempty. Then, the sequence

{x)} which is generated by PSEM Algorithm converges strongly to Pg(xq).
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5.2 Hybrid extragradient methods for pseudomonotone equilibrium
problems and fixed points of quasi-nonexpansive mappings prob-

lems

For this section, we proposed two hybrid extragradient methods, CHEM
and PHEM, for finding the closest point to the intersection of the set of fixed
points of a finite family for quasi-nonexpansive mappings and the solution set of
equilibrium problems of a finite family for pseudomonotone bifunctions in a real
Hilbert space. By supposing that some control conditions hold, one Lemma, two
Theorems, and one Corollary were presented. Lemma 5.2.1 is a useful instrument
for proving two main theorems. We showed the strong convergence theorems of the
CHEM Algorithm and the PHEM Algorithm in Theorem 5.2.2 and Theorem 5.2.3,
respectively. Furthermore, Corollary 5.2.4 is an improvement version of Algorithm

(3.1.8) in the reference [51].

Lemma 5.2.1. Suppose that the solution set S is nonempty, Then, the seguence

{@} which is generated by CHEM Algorithm is well-defined.

Theorem 5.2.2. [If the solution set S is nonempty, then the sequence {xy} which

is generated by CHEM Algorithm converges strongly to Ps(zq).

Theorem 5.2.3. Suppose that the solution set S is nonempty. Then, the scquence

{z} which is generated by PHEM Algorithm converges strongly to Ps(zq).

Corollary 5.2.4. Let T be a quasi-nonezpansive self-mapping on C with I — T
demiclosed at 0 and let f be a bifunction satisfies the assumptions (A1) — (A4).
Suppose that the solution set S = EP(f,C)N Fiz(T) is nonempty. Pick zy € C,
choose parameters {pp} with 0 < inf py < sup pp < min{z-, 53-}, {ar} < [0,1]

such that iy o 00 = 1, {Be} € [0,1) with 0 < inffr < supfr < 1, and the
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sequences {z}, {yrt, {2}, {tc}, {us} are defined by
'

yr = argmin{p.f(@r,y) + 5lly — al? vy € C},

2 = arg min{px f (i, y) + 5 lly — @l 1y € CY,

e = arxr + (1 — o) Ty,

= Bebe + (1 — )Tz, (5.2.1)
Co ={x € O |lz — ]| < Jlz — =ll},

Qr = {z € O (@ — ap,z —ay) £ 0},

kﬂ?k-m - Pcank(-’Uu)-

Then, the sequence {x} converges strongly to Ps(zo).

5.3 A new extragradient method for split equilibritun and fixed point

problents

This section is the final section of this thesis. We introduced a new extra-
gradient algorithm for finding a solution-to the split equilibrinum and fixed point
problems invelving pseudomonotone bifunctions and nonexpansive mappings in
real Hilbert spaces. Under the properties of the control sequences, the strong con-
vergence theorem of the introduced algorithm is presented in Theorem 5.3.1. We
also applied the obtained theoren to the problem of the split variational inequality

and fixed point problems and considered its convergence in Theorem 5.3.2.

Theorem 5.3.1. Suppose that the solution set {1 is nonempty. Then, the sequence

{z.,.} generated by Algorithm 4.2.1 converges strongly to ¢ = Pah(q).

Theorem 5.3.2. Suppose that the solution set §1 == {p € VI{C, A)NFiz(T): Lp €
VIQ,B) N Fia(S)} # 0. Then the sequence {xp} generated by Algorithm 4.2.3

converges strongly to ¢ = Poh{q).
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