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ABSTRACT

In this thesis, we separate into two parts. First, we study two cases of the

constrained convex optimization problems in Hilbert spaces. While the first case

concerns the smooth convex objective function over the set of minimizers of a

convex differentiable constrained function, the second case deals with the nons-

mooth convex objective function over the same constrained set. We also present

several iterative methods for approaching solutions of these problems. Second, we

present methods for solving the monotone inclusion preblems. Moreover, we also

present iterative methods for solving fixed point problems which can be applied

to solve the monotone inclusion problems. Some numerical examples are provided

in order to support the convergence results.
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CHAPTER 1

INTRODUCTION

Constrained convex optimization problem is one class of convex optimiza-
tion problem conecerning minimization of a convex objective function over a convex
feasible set. It is preferable to minimize a convex function over a convex set be-
cause for a convex function any local minimum must be a global minimum. It is
worth noting that the constrained convex optimization has application in many
areas such as estimation and signal processing, image processing, communications
and networks, electronie civcuit design, data analysis and modeling, statistics,
and finance {1]. When we try to find common minimizers of two convex functions
we recognize that it complicated to consider each function, as a result, we set
one of them as the objective function and another convex function becomes con-
straint. There are several methods for solving the convex optimization problem
such as gradient, subgradient, polyhedral approximation, proximal, and interior

point methods.

Actually in 2010, Attouch and Czarnecki [2] have represented the starting
point of numerical algorithms for solving general constrained convex optimization
problems. In 2011, Attouch et al. [3,4] studied the constrained convex optimiza-
tion problem in the form of minimization of a convex objective function over a
set of minima of another convex function which is also called constrained convex
optimization problem or hierarchical-type problem. They also proposed iterative
methods for sovling this problem in many cases of the objective function and the
penalization function. The convergent results of their iterative methods are pre-
sented under the inf-compactness assumption. In order to solving the constrained
convex optimization problem without the inf-compactness assumption, in 2012,
Peypouquet [5] proposed iterative method combining the gradient method and
the penalty method for solving this problem in the case that both the objective
function and the penalization function are nonsmooth. After that, in 2013, Noun
and Peypouquet [6) proposed an algorithm for solving the constrained convex opti-

mization problem and also proved convergence result without the inf-compactness



assumption. We refer the reader to the series of papers [3,4,7-16] for more iterative

schemes for solving general constrained convex optimization problems.

To improve the convergence behavior of the iterative methods, one is the
inertial concept. Algorithms of inertial type were first introduced by Polyak in
[17] and Bertsekas in [18] in the context of the minimization of a differentiable
function. Since the works [17,18], one can notice an increasing number of research
efforts dedicated to algorithms of inertial type (see [19-32]). For a variety of
situations, in particular in the context of solving real-world problems, the presence
of inertial terms improves the convergence behavior of the generated sequences.
Recently, in 2017, Bot et al. [33] applied the idea of the gradient penalty method
and the inertial concept to propese a new algorithm for solving the constrained
convex optimization problem in the case that both the objective function and the
penalization function are smooth. They also proved a convergence result. After
that, Bot et al, [34] introduced an algorithm combining the proximal method and
the inertial method for solving the generalized constrained convex optimization

problem.
Let us come now to the monotone inclusion problem: find z € # such that

0 ¢ Az + Buz,

where A : H - H is a single-valued mapping and B : H — 2" a multi-valued
mapping. Many interesting problems can be formed into the monotone inclusion
problem, such as convex minization problems, variational inequalities and equi-
libium problems, image processing problems, etc. Most well known algorithms
to approximate the solution of this problem is the forward-backward algorithm
(FB) [35-37]. Tn 2001, Alvarez and Attouch [21] introduced a new algorithm by
using the idea of the inertial method to solve the monotone inclusion problem
consisting one maximal monotone operator. After that, Moudafi and Oliny [32]
proposed iterative method which involed the idea of the inertial method for solving
the monotone inclusion problem consisting of two maximal monotone operators.
Another type of the inertial methods was introduced by Polyak [38], which is
a two-step iterative method in which the next iterate is defined by making use

of the previous two. The several methods that are in reference to this study



are reviewed in the next extensively (see, e.g. [27,28,39-45]). Recently, Kitkuan
et al. [46] proposed the viscosity approximation algorithm concerning the iner-
tial forward-backward for finding a solution of the considered problem. In 2019,
Kitkuan et al. [47] presented a new method combined Halpern-type method and

forward-backward splitting method for solving the monotone inclusion problem.

On the other hand, the monotone inclusion problems can be reformulated
to the fixed point problems for nonexpansive mappings. Approximating a fixed
point of nonexpansive mappings has been happened to the difference of the itera-
tive methods. The well-known iterative method to solve the fixed point problem
for nonexpansive mapping was introduced by Mann [48]. Many researchers have
generalized, improved and extended his iterative method for solving various prob-
lems. For more details and most recent works on the methods for solving fixed

point problems, we refer the reader to {27,28, 30,33, 34,39,41,42,44,46,47,49-63}.

Motivated and inspired by the work mentioned above, we separate into two
parts. First, we are going to consider the constrained convex optimization prob-
lems where the objective function is a convex function and the the constraint set
is a set of minima of another convex functions. Moreover, we also propose the
various algorithm for solving this problem of both smooth and nonsmooth cases
of the objective functions. Second, we present iferative methods for solving the
monotone inclusion problem and generalized monotone inclusion problem. Fur-
thermore, we show the numerical experiments to demonstrate the effectiveness of

our algorithms in every part.
This thesis is organized in the following way.

Chapter II. We will include some basic definitions, lemmas and theorems

that are useful in the framework of the problems considered in this thesis.

Chapter ITI. This chapter, firstly, we propose an algorithm for solving con-
strianed convex optimization problem with smooth objective function. Under the
observation of some appropriate choices for the available properties of the con-
sidered functions and scalars, we can generate a suitable algorithm that weakly

converges to the solution. Further, we also provide a numerical example to com-



pare among the our algorithm, the algorithm introduced by Peypouquet (5] and
the algorithm introduced by Bot et al. [33]. Secondly, motivated and inspirated
by the recent work, we propose an algorithm for solving constrianed convex opti-
mization problem with nonsmooth objective function. Under suitable choices for
the step sizes, the convergent results can be obtained. We also give applications

and numerical results for proposed algorithm.

Chapter IV. This chapter, firstly, we propose an algorithm which is a
combination of viscosity forward-backward algorithm and inertial extrapolation
steps to solve monotone inclustion problem with sum of two monotone operators
in a real Hilbert space. By using some suitable control conditions, the strong
convergence is obtained. For the virtue of the main theorem, it can be applied
to find a solution of the convex minimization problems. As an illustration of
the behavior of the proposed algorithm, we compare the convergent behavior of
our method and the algorithm was introduced by Kitkuan et al. [46]. Secondly,
motivated and inspirated by the recent interest on inertial-type algorithm and the
work in [41,62], we propose a new Mann-type method combining both inertial
terms and errors to find a fixed point of a nonexpansive mapping in a real Hilbert
space. The strong convergence theorem of the iterate under some appropriate
assumptions of parameters sequences are obtained.” For the virtue of the main
theorem, it can be applied to solve the monotone inclusion problem with sum of
three monotone operators. Moreover, we give applications and numerical results

for the proposed algorithm.

Chapter IV. We give some conclusions.



CHAPTER 1I

PRELIMINARIES

This chapter, we summarize some useful notations, definitions, properties,
and some results, which are used throughout this thesis.
In this thesis, we denote two specific sets that R stands for the set of all real

numbers and N the set of all natural numbers.

2.1 Basic results.

Definition 2.1.1. [64] A linear space or vector space H over R is a set H with
binary operation eddition defined for elements in H and scalar multiplication de-
fined for numbers in B with elements in H satisfying the following properties: for
all z,y,z€eHand a, € R

(V1) z+y=y+a

(V2) (z+y)+z=a+{y+2).

(V3) there exists an element 0 € H called the zero vector of H such that z+0 =«
for all zx € H.

(V4) for every element z € H, there exists an element —x € H called the additive

inverse or the negative of 2 such that z +(—z) = 0.
(V5) ofz +y) =az+ ay.
(V6) (a+ Bz = azx + Bz
(V7) (aB)z = ().
(V) 1.2 ==.

The elements of a vector space H are called wvectors, and the elements of R

called scalars.



Definition 2.1.2. [64] A normed space is a vector space H on which there is
defined a real-valued function [| - | which maps each element z in H into a real
number ||z|| called the norm of z. The norm satisfies the following properties:
(N1) |lz|| > 0 for all z € H, ||lzf| = 0 if and only if z = 0.

(N2) |laz|l = |a|||z|| for all scalars o € R and each = € H.

(N3) flz +yll < lleil + ||yl for each z,y € H.

Definition 2.1.3. [64] An inner product space is a vector space H on which there
is defined a real-valued function (,-) which maps any pair of elements z and ¥ in
H into a real number {z,y) called the inner product of z and y. The inner product
satisfies the following properties:

(11) (z,z) > 0 for allw € H, (z,2) = 0 if and only if z = 0.

(12) {oz,y) = a(z,y) for all scalar & € R and each z,y € H.

(13} (z,y) = (g, ) for each z,y € H.

(14) {z +y,z) = (x,2) + {y, 2) for each z,y,2 € H.
Let H be an inner product space. The function |- || : H — R, defined by
|zl = V/{z,x) for every z € H,

is a norm on H. Indeed, it is clear that || > 0 for every z € H and |[z|| =
0 <= z = 0, Moreover, for each & € R and z € H, we have |laz|]® = (az, az) =
a?|jz||?. Tt only remains to show that (N3) holds. We need the following inequality
which is known as the Cauchy- Bunyakousky-Schwarz inequality (in short, Schwarz

inequality).

Theorem 2.1.4 (Schwarz inequality). Let H be an inner product space. For each

z,y € H, we have

[z, )| < lllyll



Proof. See [64, Lemma 3.2-1}. ' O

We use this inequality to deduce that for each z,y € H

-+ ylI? = =ll® + 20z, 9) + Iyl < lol + 2l + lyI* = el -+ Tyl

whence (N3} holds. In this situation, we conclude that the inner product space

with the inner product (-, -) is a normed space with the norm || - || = {-,").

Definition 2.1.5. [64] A scquence {zj}ren in a normed space H is said to
converges (strongly) to-an element @ € H.if limysyo0 ffzx — 2] = 0. We usually
write limg_s4o0 Tp 3= & OL Ty — T a8 k — +00 and call the element z the limit of
the sequence {mp }ren. If @ subsequence {zy; }jen of {33 }ren converges to z € H,

then z is called a cluster point of the sequence {& }ren-

Definition 2.1.6. [64] A sequence {zx}ren in a normed space H is said to be
Cauchy if for every € > 0 there is N € N such that flz) — L €eforall k1> N.

Definition 2.1.7. [65] A normed space is said to be complete if every Cauchy

sequence is convergent.
Definition 2.1.8. [65] A Hilbert space is a complete inner product space.

Example 2.1.9. Let us consider the square-summable sequence space b ={z:=
(&1,6,.. ) o0 16a)? < +oo} over R with the inner product (z,9) = S0 &

n=1

where T = (£1,&2,...) and y = (1,72, ...) and the essociated norm

+o0 1/2
el = (Z |§n|2) -
n=1

We know that ¢, is o Hilbert space (sce [64, Example 3.1-6]).

Definition 2.1.10. [64] A sequence {z}ren in an inner product space H is said
to converges weakly to an element © € H if for any y € H, limy s 1 oo{zr —2,9) = 0.
We write 2, — « as k — 400 and call the element z the weak limit of the sequence
{z1}ren. If a subsequence {zp, }jen of {21 }ren converges weakly to z € H, then

z is called a weak cluster point of the sequence {Tk }ren.



Theorem 2.1.11. A strong convergent sequence in o Hilbert space is weak con-
vergent with the same timat. In particular, a weakly convergent sequence of a finite

dimensional Hilbert space is strong convergent with the same limit.

Proof. See [64, Theorem 4.8-4]. O

The following example shows that the converse is not generally true.
Example 2.1.12. [64, Example 3.1-6] Consider the sequence {Tx}ren C €2 where

zx = (g1, ex2, . ..), where

1 ;i=k,
0 itk

€L =

For any y = (M,7a,--.) € 42, we have (z, — 0,y) = m = 0 as k — o0 This
means that = — Q0 as k — +oo. Note, however, that Jjay - Of = 1 for every

k > 1. Hence, {x)}ren does not converge strongly to 0 as k — -+-00.

Definition 2.1.13. [65] A sequence {x}ren in a normed space H is said to be
bounded if there exists a positive number M such that ||zx]| < M for all k € N.

A Hilbert space has an important property which is expressed in the following

theorem.

Theorem 2.1.14. Fuvery bounded sequence in a Hilbert space possesses a weakly

convergent subsequence.

Proof. See [66, Lemma 2.37}. O

Let H be a normed space, we denote the set B(z;7) :={z e 1 : ||z —z|| <r}
a ball with center x € H and radius r > 0. Next, we recall some useful sets in a

normed space.

Definition 2.1.15. [64] A subset A of a normed space H is said to be open if
for each = € A, there exists r > 0 such that B(z;r) C A. A subset B of H is said

to be closed if its complement H \ B is open.



Definition 2.1.16. [64] Let A be a subset of a normed space H and = € . Then,
1 is said to be an interior point of A if there exists » > 0 such that B(z;r) C A.

The interior of A is the set of all interior points of A and may be denoted by
int(A).

Definition 2.1.17. [64] Let A be a subset of a normed space H. The closure of
A is the smallest closed set containing A; it is denoted by cl(A).

Definition 2.1.18. [64] Let A be a subset of a normed space H. The boundary
of A is the closure of A without the interior of A; it is denoted by bd(A).

Definition 2.1,19. [64] Let H be a Hilbert space. A subset A of H is said to
be compact if every sequence A has a convergent subsequence whose limit is an

element of A.
Definition 2.1.20. [64] Let H be a Hilbert space. A subset A of H is said to be
relatively compact if cl(A) is compact.
Let us recall useful facts related to convergence and closedness which will be

needed later.
Theorem 2.1.21. Let A be a subset of a normed space H. Then,

(1) = € cl(A) if and only if there is a sequence {Tx}ren C A such that zp —

as k — +o0.

(2) A is closed if and only if for any sequence {Tp}ren C A with zx = w € H

as k — oo, we have x € A.

Proof. See [64, Theorem 1.4-6]. O

2.2 Convexity.

Throughout this subsection, we let H be a Hilbert space. In the following
definition we recall the convexity of a real-valued function which goes together

with the convexity of a set as we are recalled above.
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In practical properties of convexity, then, we denote the extended real number
[~00, +00] := R U {—00, +00}.

Definition 2.2.1. [65] A subset C of # is said to be convez if ax + (1 - a)y € C
for every z,y € C and for every « € (0, 1).

Theorem 2.2.2. [66] Let {C;: j € J} be an arbitrary collection of convex sets

in . Then, their intersection (., Cj is also convex.
Definition 2.2.3. [66] Let [ : H — [—00,+00]. The domain of f is
dom(f) = {z € H | f(z) < +oc},

the graph of f is

gra(f) = {(z,€) e H x R| f(z) = &},
the epigraph of f is

epi(f) = {(z,§) e H xR | f(x) < &}

The function f is proper if —co ¢ f(H) and dom(f) # 0.

Observe that if f is a function from H into R, then dom(f) = and —oco ¢
F(H).

Definition 2.2.4. [66] Let f:+H — [—00, +-00]. Then f is convez if its epigraph

is a convex subset of H x R.

Proposition 2.2.5. Let f : H — [—co,+e0]. Then f is convez if and only if for
any z,y € dom(f) and for any a € (0,1), we have

flaz + (1 - a)y) < af(@) + (1 - a)f(y).

Proof. See [66, Proposition 4.8}. O

Definition 2.2.6. [66] Let f : H — {—o00,+0c0]. Then f is S-strongly convez
with 8 > 0 if,

e+ (1~ o) < af(@) + (1 — ) (3) + 5l - a)ls — ol

for all z,y € dom(f) and for all @ € (0,1).
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 One more considering with regard to the generalization of the inequality in
Proposition 2.2.5 in the case of convex combination of more than two points this

so-called Jensen’s inequality.

Theorem 2.2.7. A function f : H — [—o0,+o0] is convez if and only if for
any finite families {z; 1 i € I} < dom(f) and {a; : i € I} C (0,1) such that
Y ez 0 = 1, there holds

f (Z aiiﬂi) < Zaa'f(i’i)-
i€z i€t
Proof. See [67, Theorem 7.5}. 0

Definition 2.2.8. [68] A subset C of H is a cone if az € C whenever z € C and
a € (0, +00)

Definition 2.2.9. [66] Let C be nonempty convex subset of H and let z € H.

The normal cone to C at a point  is

{TeH: (T,c—xz) <0 forallcel}, ifzel
Nc(m):z

@, otherwise.

Definition 2.2.10. [66] Let C be nonempty subset of H. The indicator function
of C is ¢ : H — [—00,+00], which is defined by

0, ifzel
te(z) =
+00, otherwise

for all x € H.

Definition 2.2.11. [66] Let C be nonempty subset of H. The support function
of Cis o¢c : H — [—00, +00], which is defined by

oe(z) :=sup{{c,z)} for all z € H.
ceC

We can observe that T € Ng(x) if and only if oe(Z) = (7, z).

Next, we recall some semicontinuities of a function on a Hilbert space.
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Definition 2.2.12. [65] A function f : H — R U {400} is said to be upper
semicontinuous on H if {x € H: f(z) < A} is an open set for all X € R.

Definition 2.2.13. [65] A function f : H — R U {400} is said to be lower
semicontinuous on H if {z € H : f(z) < A} is a closed set for all A € R.

Definition 2.2.14. [66] Let D be a subset of [~o00,+00]. A number a €
[—00, +00] is the (necessarily unique) infimum (or the greatest lower bound) of D
if it is a lower bound of D and if, for every lower bound a of DD, we have a < a.

This number is denoted by inf(D). The supremum (or least upper bound) of D
is sup(D) := —inf{--b: b € D}.

Remark 2.2.15. Note that If D is bounded from above in R, we know from the
completeness of R that there exists the supremum sup(D) of D in R. If D is not
bounded from above in R, in this situation, we have sup(D) = +oco. Similarly, if
D is not bounded from below in R, we have the infimum inf(D) = —co. In this

viewpoint, the set D always admits an infimum and a supremum in {00, +060].

Definition 2.2.16. [49] Let f: H — RU {400} be a function. For a sequence
{zr}ren € H, the limit inferior of { f(x;) tren in [—o00, +00] is

lim inf £ (2x) := sup Il f (1)

and its lkmit superiorin [—oo, +00] is

Hmsup f(xy) 1= inf sup f(zy).
k—+o0 k21 p<n

With these means the following theorem gives the characterization of lower

semicontinuity in the term of limit inferior.

Theorem 2.2.17, Let f : H — R U {+cc} be a function. Then, f is lower

semicontinuous at x € H if and only if, for every sequence {xx bren in H,
T, =& ask = +oo = f(2) < liminf f(x).
k—3+oco

Proof. See [49, Theorem 1.3.2]. : O
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It is alike to the upper semicontinuity, we also have the characterization of

upper semicontinuity in the term of limit superior.
Theorem 2.2.18. Let f : H — R U {+oo} be a function. Then, f is upper

semicontinuous at x € H if and only if, for every sequence {zp}ren in H,

wp = % as k- oo = limsup f(zs) < f(z).
k—+-c0

Proof. See [49, Problem 1.3(7)]. O
Definition 2.2.19. A function f : H — R U {400} is said to be continuous at
xz € H if, it is lower and upper semicontinuous at z.

The following theorem concerns a sufficient condition for continuity of a con-

vex function.

Theorem 2.2.20. Assume that H is finite dimensional. Then a convez funclion

fiH — R is continuous.
Proof. See [69, Theorem 5.23]. O

Now, we give a definition of inf-compactness function.
Definition 2.2.21. [70] A funetion f :H — R is said to be inf-compact if,
Vr>0, VAER, {zeH: |z <r flz) <A}
is relatively compact.
Furthermore, in a practical point of view of Hilbert space, it sometimes con-

cerns with weak convergence. Also, motivated by Theorem 2.2.17 we can consider

the semicontinuity relating to weak convergence.

Definition 2.2.22. A function f : H — R U {400} is said to be weakly lower

semicontinuous at x € H if, for every sequence {zx}ren in H,

T~z as k= +oo = f(z)< liminf [ ().
i +o0
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Herewith we have got a practical relation of lower semicontinuity and weakly

lower semicontinuity.

Theorem 2.2.23. Let f : H — RU{+o0} be a conves function. Then, f is lower

semicontinuous if and only if its is weakly lower semicontinuous.
Proof. See [66, Theorem 9.1]. O
There exist two definitions involving differentiabilities of a function in the

setting of Hilbert space.

Definition 2.2.24. [66] Let f : H — R be a function and x,5 € H be given.

The directional derivative of f at z in the direction s is

fle +ts) — f(z)
t

1 s -— 1
f(fE,S) Y il_?&

whenever this limit exists. The function f is said to be Galeauz differentiable at

z if its has directional derivatives f'(z; s) for all s € H and

f'(z;s) = {g,3)

holds for some g € H. The element g is called Giteauz derivative or Gdteauz

gradient of f at x and is denoted by V f(#}.

Definition 2.2.25. [66] Let f: H — R be a function and = € H be given. The
function f is said to be Fréchet differentiable or, shortly, differentiable at x if there

exists an element y € H such that

o T ) = (@) = (g h)

= .
lall—0 Al

The element y is called Fréchet derivative or gradient of f at x and is denoted by

One of the main points of interest at the relation between these two differen-

tiabilities is advocated by the following theorem.
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Theorem 2.2.26. Let f : H — R be a function end 2 € ‘H. If f is Fréchet
differentiable at z, then it is Giteaux differentiable at z and Df(z) = V f(z).

Proof. See [66, Lemma, 2.49]. O

Convexity can be characterized in the term of Gateaux differentiability as

presented in the following theorem.

Theorem 2.2.27. Let f : H — R be a Giteauz differentiable function. Then the

following are equivalent:

(i) f is conver.
(i) fy) = f(@) +{Vi(z),y — x) for everyz,y € H.

(itr) (Vf(y) = Vf(@),y —a) =0 for every z,y € H.
Proof. See [66, Proposition 17.10]. O

The next theorem shows not only the necessary condition for a Gateaux dif-
ferentiable function to be Fréchet differentiable but also useful property of Fréchet
differentiability.

Theorem 2.2,28, Let f + H — R be a convex lower semicontinuous and Géteaus
differentiable function and x € H. Then, [ is Fréchet differentiable at x if and
only if Vf is continuous at x, that is, for every sequence {T}ien, T — T as

k — 400, we have V f(z) - Vf(z) as k — +o0,

Proof. See 66, Corollary 17.33]. O

Definition 2.2.29. [66] Let a function f : H — RU {400} be proper and = € H.
An element g € H is a subgradient of f at z if

fly) = f(z) + (g,y — x) for every y € H.

The set of all subgradients of f at x is called subdifferential of f at z and may be
denoted by df(z). If 8f(x) # @, we say that f is subdifferentiable at z.
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In order to guarantee subdifferentiability of a function, the continuity is an

important one as follows.

Theorem 2.2.30. Let f : H — R be a convex function. If [ is continuous at
some element xo € H, then it is subdifferentiable. Furthermore, if f is lower

semicontinuous, then it is also subdifferentiable.
Proof. See [69, Theorem 5.35] and [71, Theorem 2.4.12]. O

The relation between differentiability and subdifferentiability is referred.

Theorem 2.2.31, Let f . H ~> R be a convex function and x € H. If f is
Géteauz differentiable at x, then 0f(z) = {V f(z)}.

Proof. See [66, Proposition 17.26]. 0
We provide the characterization of minimizers of a proper function in the

following Theorem.

Theorem 2.2.32 (Fermats rule). Let f: H — RuU {400} be proper and convez.
Then

argmin f = zer(0f) := {z € H | 0 € df(z}},

where argmin f = {z € H | f(&) < fly) Yy e H}.
Proof. See [66, Theorem 16.3]. O

We close this subsection by providing the definition of a Fenchel conjugate of

a function.

Definition 2.2.33. [66] Let f : H — [—o0,-t00]. The Fenchel conjugate of f is
f*:H = [—o0,+00], which is defined by

[7(w) = sup{{u,z) — f(z)} forallueH.

cEH

Notice that 1 = o¢.
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2.3 Operators,

Throughout this section we also let C be a nonempty closed convex subset of
a Hilbert space H. We denote the subset of fixed points of an operator T : H — H
by

Fix(T) = {z e H: Tz =z}

More than that the crucial basic operators serving as nonlinear operators are

presented and with this we normally apply in the later chapters.
Definition 2.3.1. [66] Let T : # — H be an operator.
(i) T is said to be nonezpansive if

|72 = Ty|| < fle =yl forall z,y € H.

(ii) T is said to be firmly nonezpansive if

1Tz — Tyl < {z —y, T —Ty) for all z,y € H.

(iii) T is said to be contraction operator if there exists a positive real number

p € (0,1) such that

Tz — Ty|| < pllz —~y|| forall a,y€H.

(iv) T is said to be Lipschitz operator if there exists a positive real number L

such that

| Tz — Ty|| < Lljz —y| for all z,y € H.

(v) T is said to be monotone if

0<{z—y,Tax—"Ty), forall z,y € H.
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(vi) T is said to be S-stongly monotone with 8 > 0 if

Bllz —y||* < {x —y, Tz — Ty) for all 2,y € H.

(vii) T is said to be §-cocoercive (or B-inverse strongly monotone) with § > 0 if

BTz — Ty|* <z —y, Tz — Ty) forall z,y € H.

(viii) 7 is said to be pseudomonotone if

0<(Ty,z —y)=>0< (Ta,z—y) forall 2,y € H.
It is easy to check that a [(-strongly monotone mapping is monotone and a
monotone mapping is pseudomonotone.

In addition, it is viewed in some of work as an essential of the metric projec-

tion’s definition and its properties should be focus.
Definition 2.3.2. Let C be a nonempty subset of H and & € H. If there exists
an element y € C' such that

e —y|l < |lle —¢|j forallceC,

then the element y is called a metric projection of & onto C and is denoted by
proj(z}. Further, if projs(z) exists and uniquely determined for all z € H, then

the operator proj, : H — C is called the metric projection onto C.

We can guarantee the existence and uniqueness of the metric projection by

the following theorem.

Theorem 2.3.3. Let C' be a nonempty closed and convezx subset of H. Then for

any © € H there exists a unigue metric projection projs(x).
Proof. See [72, Theorem 1.2.3]. W

Likewise, there exists a useful properties of metric projection as follows.
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Theorem 2.3.4. Let C be a nonempty closed and convex subset of H. Then the

operator projg : H — H is firmly nonezpansive and Fix(projg) = C.
Proof. See [72, Theorem 2.2.21]. O

"The correspondence definitions and theorems are provided as follows.

Definition 2.3.5. [66] Let T': % — 2%. The domain of T is
dom(T) = {z € H | Tz # 0},

the range of T is
ran(T) =T(H),

the graph of T is
gra(T) = {(z,€) € H x 2" | ¢ € Tz}

Definition 2.3.6. Let T+ H — 2% be a set-value operator. Then the operator T
is called monotone if,

(u—v,z~y) =20

for all (z,u), (y,v) € gra(T),

the operator T'is said to be mazimal monotone if, it is monotone and there

exists no proper monotone extension of the graph of T and

the operator T is said to be j3-strongly monotone if,

Bllz —yl* < (= —y,u—v),

for all (z,u), (y,v) € gra(T)

A fundamental example of a maximally monotone operator is the subdiffer-

ential of a proper, convex, and lower semicontinuous function.

Theorem 2.3.7 (Moreau). Let f : H — RU {400} be a proper, convez, and

lower semicontinuous function. Then Of is a mavimal monotone.

Proof. See [66, Theorem 20.25]. |
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The following definition also plays an important role in convergent analysis.

Definition 2.3.8. Let 7 : H — 2M be a set-values operator. The resolvent of T
with parameter A > 0, JT : H — 2% defined by J{ = (Id+ AT)™}, where Id is
the identity operator from H to H.

If T is maximally monotone, JT is a single-valued.

The following definition involving proximality of a function in the setting of

Hilbert space.

Definition 2.3.9. [66] Let f : H -+ RU {+oc} be a proper, convex, and lower

semicontinuous function. For A > 0, the mapping prox,; : H — H is given by

. 1
proxa(z) = argmin,u{£@) + 52 ~ I}

is called prozimal operator of the function f with scaling parameter A.

Next, we present the characterization of a proximal operator.

Theorem 2.3.10. Let f : H — RU{+oo} be proper, conves, and lower semicon-
tinuous. Let A >0, and let z and p be in H. Then

p=proxy(z) & z—p € AOf.
In other words,
prox,, = (Id + AGf)!

Proof. See [66, Proposition 16.44]. 0

We observe that if f: H — RU {+co} is proper, convex, and lower semicon-

tinuous, then prox,, = Jff :
In the following definition, we recall the Fitzpatrick function.

Definition 2.3.11. [66] Let A : H — 2 be monotone. The Fitzpatrick function
of Ais Fy: H x H — [—00,+oc], which is defined by

Fylz,u) = sup  {{y,u)+ (@,v) — {y,v)} forall (z,u) € H xH.
(yv)egra(A)
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Tn addition, F is convex and lower semicontinuous (see [73, Proposition 4.2).

Theorem 2.3.12. Let A : H — 2% be mazimal monotone. Then

Fylz,u) > {z,u) for all (x,u) € H X H.

Proof. See [66, Proposition 20.58]. O

Theorem 2.3.13. Let f : H — [—o0, +00] be convez, proper, and lower semicon-

tinuous. Then
Fys(m,u) < f(z) + [*(u) for all (zju) € H X H.
Proof. See (74, Proposition 2.1]. O
We next state some results in real Hilbert spaces that will be useful in the

later chapter.
Lemma 2.3.14. [49] Let H be a real Hilbert space. The conditions are verifiable,
as follows.

1) 2(z,9) = l=1*+ 1ol = llz = y|* for all z,y € H,

Gi) Yz =yl = el — wl? — 26z —y,y) for allw,y €4,

(i) =+ yl* < l=f® + 2(e+ y,u) Jor allz,y €H,

(iv) e+ (1= Pyl = rlla]® + @ =)yl ~ (1 = )|z — yl|* for all 7 € [0,1]

and z,y € H.

The following definition is very important and gets along with the cutter.

Definition 2.3.15. An operator T': H — H with Fix(T) # § is said to satisfy
the demiclosed principle if for every sequence {Zx}ren C H such that zp =z € H

and Tzy — z — 0 as k — o0, we have z € Fix(T).

The following theorem is due to Opial [75] involves the demiclosed principle

of a nonexpansive operator.
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Theorem 2.3.16. If an operator T : H —+ H is nonezpansive with Fix(T) # 0,

then it 15 satisfying the demiclosed principle.
Proof. See [75, Lemma 2]. O

The following definition of operator will play an important role in this thesis.
In what follows, we let H; and H, be two Hilbert spaces with the inner products
{-, "), and {-,")n, and the associate norms Il - Y12, and || - ||2,, respectively. We
denote the range of an operator A : Hy — Ha by Ran(A)}, that is,

Ran(A) :== {y € Hs : y = Ag, for some z € Hy}.

For a subset D' C Ha, we denote the inverse image of D under Aby A~Y(D), ie,
AYD) = {c € Hy: Az € D}.

Definition 2.3.17. Let A : H; — Hq be an operator.

(i) A is said to be linear il

Alaz + By) = aAwx + BAy for all z,y € H; and for alla,f €R.
(ii) A is said to be bounded if there exists a real number M > 0 such that
Az |3, < M||all3, for all x € H,.

(ii) A is said to be continuous at an element z € H, if for every sequence
{z1}rew C Hi such that @ — 2 € H, as k — +o0, we have the sequence
{ Az }ren C Ho satisfies Az, — Aw € H; as k - 400. And, A is said to be

continuous if it is continuous at every element of H;.

Definition 2.3.18. Let A : H; — H, be a bounded linear operator. The number

A} = sup {U,Afc_ll%_}

OtzeHy ”T’H'Hl

is called a norm of the operator A.



23

The following theorem gives some useful properties of a linear operator.

Theorem 2.3.19. Let A : Hy — Hjy be a linear operator. Then the following

statements are true:
(i) If A is bounded, then
Azl < [Alli@lly, for every z € Hi.

(i) A is bounded if and only if A is continuous.

Proof. See [64, Theorem 2.7-9]. ]

Definition 2.3.20. Let A : H; — H; be a hounded linear operator. An operator
A* : Hy — Hy is called adjoint operator of A if

(Az, Y, = (&, A*y)n, for all & € Hy and for all y € Hs.

Of course, we can guarantee the well-defined of the adjoint operator of a

bounded linear operator by the following theorem.

Theorem 2.3.21. Let A : Hy — Hy be a bounded linear operator. Then there
ezists a unique adjoint operator A* : Hy — Hy of A. PFurthermore, the adjoint

operator A* is bounded lineer operator with norm
AT = [lAfl.
Proof. See [64, Theorem 3.9-2]. m

The following theorem provides a general property of adjoint operator which

is used frequently.

Theorem 2.3.22. Let A : H; — Ha be a bounded linear operator. Then it holds
that

IATA|| = [ AA*] = | A]"

Proof. See [64, Theorem 3.9-4]. ' O
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2.4 Further Convergence Tools,

Lemma 2.4.1. [50,76} Let {ax}ren and {u}ren be sequences of nonnegative real

numbers and satisfy the inequality
opp1 < (1 —dr)ap +p tex Ve 2 1,
where 0 < &, < 1 for all k > 1. Assume that )3, x < +o00. Then the following
statement hold:
() If i < cBy (wheree > 0), then {ag}ren s bounded.

(il) If Y 4p1 0k = 00 and limsup; o 5 <0, then the sequence {ay}ren con-

verges to 0.

Lemma 2.4.2. Let {7 }ren; {0xtren and {ex}ren be real sequences. Assume that

+oo

{vi}ren is bounded from below, {0x}ren s non-negative and Zsk < +oo such
k=1
that
Yit1 — Y+ 6 <&y forall k= 1.
+co

Then L.ILHJOW exists and ;ék < 400,
Proof. See {3, Lemma 2| O

Lemma 2.4.3 (Opial Lemma). Let H be a real Hilbert space, C € H be nonempty
set, {1 yren be any arbitrary sequence, {Mi}ren a sequences of positive real num-

bers and {7 }ren defined by

I
(]
s

k
Zp = % E AnTn, where T
n=1

such that:

(i) For every z €C, lex — 2| ewists;

lim
k—=+too
(il) Every weak cluster point of the sequence {my}ren (resp., {2 }ren) belongs to

C.
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Then the sequence {xy}ren (Tesp., {zx}ren) converges weakly to a point in C.

Proof. See [66, Lemma 2.47] 0O

Lemma 2.4.4. [77] Let A be an p-inverse strongly monotone operator from a
real Hilbert space H into itself and B : H — 2" o mazimal nomotone operator.

Then, the following inequalities hold.

\T4Ee — THPy)? <Yz —y)* — A2p — M| Az — Ayl)?
— |d— JB)Y(Id = MA)z — (Id — JP)(Id — AA)y
(2.4.1)

for all 2,y € By =4z € H |z} < A}, where
T4B = JE(Id+ AB) ' (Id — X4), A= 0.

Lemma 2.4.5. [50, Lemma 2.5] Let {Si}rew be o sequence of nonnegative real

numbers satisfying the following inequalities
Spr1 < (L= p)Si + prox Ve 21 and Spy1 S Sk — e+ VA 2 1,

where {pitren 18 a sequence in (0,1), {mi}ren 43 @ sequence of nonnegative real

number, {ox }xen and {7 tren are real sequences such that

(i) Z.L 1Pk =
(i) Jimpo o0 7 = 0;
(it) limy 4ok = O implies limsup; ., o 0r, < 0 for any subsequence {nx, Yien

of {m}ren-

Then the sequence {Si}ren converges to 0.

Lemma 2.4.6. [77] Let A be an p-inverse strongly monotone operator from a
real Hilbert space M into itself and B : H — 2" a mazimal nomotone operator.

Then, the following conditions hold.

(i) For A > 0, Fix(Cy%) = (A+ B)"(0);

(i) For0<d<Aandx €M, |z — P < 2|z — {2z,



CHAPTER III

THE CONSTRAINED CONVEX OPTIMIZATION PROBLEMS

In this chapter, we study and propose iterative methods of solving the con-

strained convex optimization problem for both smooth and nonsmooth cases.

Mathematically, the constrained convex optimization problem which was in-

troduced by Attouch and Czarnecki (2] deals with

min  f(z), (3.0.2)

r€arg min g
where f : ‘H — R is a convex lower semicontinuous function and g : H — R is
a convex and Fréchet differentiable function on a Hilbert space H. We denote
S = argmin{f(z) : & € arg min g} the set of all solutions of the problem (3.0.2).
In order to find a solution of the problem (3.0.2) in nonsmooth objective function,
we mention that, in 2011, Attouch et al. [4] applied the forward-backward method
to offer the so-called diagonal forward-backward algorithim, which is defined by

zeir = ([d ¥ A0F) L aw — MBeV (), VE 21,

where an initial point £y & H and {\; ren and {Bi}ren are sequences of positive
real numbers. Under inf-compactness assumption on the functions f or g and some
appropriate assumptions of parameters sequences, the convergence results of the
sequence {z; }ren to a solution of the considered constrained convex optimization

problem was presented in the paper.

To obtain the convergence results of the sequence {2, }ren Without inf-compactness
assumption to solve the problem (3.0.2) in smooth objective function, Peypou-
quet [5] applied the gradient method with a general exterior penalization scheme

to offer the so-called diagonal gradient scheme (DGS), which is defined by
Tip1 = Tk — MV f(2r) — MBiVglar), Yk 21,

where an initial point , € H and {M}rew and {B}ren are sequences of

positive real numbers.

Tn 2017, Bot et al. [33] proposed a new algorithm called gradient-type penalty
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with inertial effects method (GPIM) for solving the problem (3.0.2) in smooth
objective function. For given points @, z; € 7, generate a sequence {zk }ren by

the following iterative scheme
Trpyr = T + a(in — Tp_1) — /\ka(fEk) — /\kﬁng({!Jk), Yk > 1,

where {Ar}ren and {f}rew are sequences of positive real numbers and o €
{0,1). He also proved the weak convergence of the sequence produced by the above

procedure to a solution of the problem (3.0.2).

Inspired by the research works in this direction, we are interested in the
development of the method for finding solutions of the considered problem. While
in Section 3.1 we focus on the constrained convex optimization in the case when
the objective function is differentiable, in Section 3.2 we consider the case that

the objective function is not differentiable.

3.1 Gradient Method for Solving Constrained Convex Op-

timization Problem with Smooth Objective Function

In this section, we consider constrained convex optimization problem (3.0.2)
in the case that f and g are convex Fréchet differentiable and gradient Lipschitz

continuous functions with constants Ly and Ly, respectively.

We assume that the solution set § is a nonempty set. Further, without loss of

generality, we may assume that min g = 0, that is g(z) = 0 for all x € argming.

We wish to establish the algorithm called repid gradient penalty algorithm
(RGPA) for solving (3.0.2) which is generated by a controlling sequence of scalars
together with the gradient of objective and penalization function. The iterative

method for solving Problem (3.0.2) is presented as follows.
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Algorithm 1: (RG.PA)
Initialization: Given {ax}ren C (0,1) and two positive sequences { A }ren

and {Bx}ren. Choose x; € H arbitrarily.
Iterative Steps: For a given current iterate z; € H, calculate as follows:

Step 1.Compute ¥ as

yr = a1 — MV f(zx) — MBrVg(zi)-
Step 2. Compute
Tt = U + oy — 2x)-

Update k :== k + 1 and return to Step 1.

For & € N, we write {};, = f + Brg, which is also Fréchet differentiable
function. Therefore, VY, is Lipschitz continuous with constant Ly, := Ly + B¢ Ly,
In particular, if we setting ap = 0 for all & > 1, the Algorithm 1 can be reduced
to (DGS) in Peypouquet [5).

We recall definitions of £; and £; spaces which are needed in main assumptions

as follows:

+oo
b={z:=(&,6,..) SR Jal < 400}

n=1

and

400
by={z= (G158, . ) TR Y |€al* < +o0}.

In order to analyze the main convergence theorem, we present main assump-
tions, which is indicating some important properties of the sequences generated
by Algorithm 1.

Assumption 3.1.1.  (I) The function f is bounded from below;

(IT) There exists a positive I > 0 such that
Biyr — B S KX, — — - <K

and a_;’,\%l + (14 ap)?K <0 forall k21

(ITI) {on}ren € €2\ &1, ZA;; = +o00 and liminf A5 > 0;
b1 k—oo
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(IV) For each p € ran(Narg ming), We have

3 (2Y_,. (p
;Akﬁk lg (ﬁk) Oargming (ﬁk):l < 400,

Remark 3.1.2. The conditions in Assumption 3.1.1 sparsely extend of the hy-
potheses in [5]. The differences are given by the second and third inequality in
(IT), which here involves a sequence {oy}rex which controls the inertial terms,

and by {a}ren € &\ b

The following remark, we present some situations where Assumption 3.1.1 is

verified.

Remark 3.1.3. Let £ >0, ¢ € (0,1), § > 0 and v € (0, ﬁ) be any given. Then

+o0
we set ay = %4-1 for all & > 1, which implies that Lgl}rloo o = 0, Zai < +oo
k=1

and oy, < 3 for all k > 1. We also set

Ly FHE AN L ppe and oy = L foallk > 1.
1-—-3y4L,

B : A

Since Sy > 3—"'[1—’1%%%;6—”, we have for each k > 1

Br(l — 3yLy) 2 3v{Ls + 2(K + 6}].

It follows that

é%—ﬁﬂ@zLy+%K+§)EMMk2L
k
which implies that
Ly 1
(K48 >Z = forallk> 1 (3.1.1)
2 6

According to (3.1.1), we obtain that

L 1 1
K> ———— 3 — , W > 1.
K> 5 R and 3>2)\&K forallk >1

Let us consider, for each & > 1

a? —1
25

~3 4+ 2NK —§+§:0
2Ak 2k ‘

+{1+a)’K <
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On the other hand,
Bri1 — B = vK[(k+ 1)T — k9 < 4K = K)Xj118e+1-

Hence, we can conclude that Assumption 3.1.1 (II) holds.

+oc +00
1
Since ¢ € (0,1), we obtain that Zﬁ = +00, S0 Z)\k = -+00. Notice
%

k=1
that A\, =y forall k > 1. Tt follows that liminf A;B; = liminf~y > 0. Thus
k—+o00 k—+o0

Assumption 3.1.1 (III) holds.

Finally, since ¢* — Ourgming = 0. If g{z) > %dist2 (z, arg min g) where £ > 0,
then g*(2) — Cargming() < o= ||=|f® for all z € H.

Therefore, for each p € ran(Nugming), we obtain that

b 0" () = ougoins (2 )] < 2ol

o0
Thus, Z)\kﬁk [g* ([33) — O otEmny (g—)} converges, if Z A converges, which
k=1 s y

+oo
1
is equivalently to Z 2 converges. This holds for the above choices of {8 }ren

and {Ax}ren When q G (3,1).

Convergence Analysis

In this part, we present the convergence of the sequence of {z;}ren gen-

erated by Algorithm 1 and of the sequence of objective values {f(z)}.
We start the convergence analysis of this section with technical lemmas.

Lemma 3.1.4. Let z* be an arbitrary element in S and set p* := —V f(z*). Then
foreach k=21

lerer — %)% = |2 — )% + (1 + ) MeBrglzs)
< (1 + o) — wel|?

+ (1 + ag) e [g* (z—é—) — Cargming (%)] . (3.1.2)



Proof. .Applying to the first-order optimality condition, we have
0 € VF(z") + Nagming(2")-
It follows that

p'=—Vf(@") € Nargming(z").

Note that for each k > 1, 528 — B Vg(zy) = V f(zx).

By monotoncity of V f, we obtain that

< o~ AValen) £ " } = (Vf{m) = Vf ("), - o)
>0 Wk>1,
and hence, for each k£ > 1
2(xp — Y, @k - ) 2 208k (Vglzg), & — %) — 20 (% 2 — 7).
Since g is convex and differentiable, we have for each k& > 1
(Vg(zr), 2" —zr) +g(a) < 9(z%) =0,
whence
20 8kg(zs) < 20Bk(Vglzr), ar — 27).
On the other hand,
2k — ye, o — 27) = lox — gall® + llow — 277 = llye — 2"}
Combining (3.1.3), (3.1.4) and (3.1.5), we get that
e~ [ < Yo — gl + 2w — 2P — 2wBea(an) -+ 200 (5", o — ).
Since z* € § and p* € Nupgming(z*), we have
Targming(P) = (07, 27).

From the inequality (3.1.6}, we observe that

20u{p%, 2k — ) — AeBrglzn) = 22 (0", 1) — AuBrglzr) — 20 (p%, &%)
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(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)
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2p* 2p*
= M [< B s L > —glzx) — <E>$ >}
< ALJBK [g (ﬁ ) T arg ming ('2;;;_)] .

Combining (3.1.7) and (3.1.6), we obtain that

e — 217 < Nk — yall* + loe — 211> — MeBrgla)

+ ArBi [9* (%) " Targming (%%t)] . (318)

On the other hand, we observe that

|Zk41 — fi’*”2 =l + alyr — i) — $*||2
= (1 + ar)(y — 2*) +ar(a” = z)|?
= (1 + ap)llye — &*[* — axllze — 2* |2

+ (1 + ag)llze — wll®. (3.1.9)
By (3.1.8) and (3.1.9); we obtain the desired result. O

Lemma 3.1.5. For all k > 1, we have

2
od
Qer1(Trr1) < @) + (Brtr — Br)g(@r1) + o Hyk — zx|?

Ly 1
N {7 \ K] Fores E ol

Proof. Since VQ is Ly-Lipschitz continuous and by Descent Lemma (see [66, The-
orem 18.15]), we obtain that

Ly
Q(zrg1) < Qelzr) + (VQi(zn), T — a2) + %me — x|
Recall that —#£2 = Vy(ax).

It follows that

(@i} + Brg(ri)

. — Th

Ly
< flaw) + Brg(zr) — <y;, A s Thtl — $k> + ”2i||34‘k+1 - 33k||2

1 1
= f(zy) + Brglar) — N —— |l — zxll* — N i1 — 2|
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1 Ly
* o o l9x — o | + —Ilfﬂm — z|?

aj 2 Ly 1 2
U U=l + | 2 = o o — .

= fzx) + Brglzx) +

Adding Sy,19(@xr41) to both sides, we have

f(@re1) + Beraglzrar) < flaw) + Brglze) + (Brrr — Br)g(@rsr)

():;2;“1 Lk 1

'_'“2 e — s g - -2
+ Ol 4 | = i o —

which means that

a? -1
Qi1 (zp41) < Qelzr) + (Brer — Br)g(@rin) + ;)\k o — @l)?

(5 ] v -

]

Let K > 0 be such that Assumption 3.1.1 holds. For £ > 1 and z* € &, we
denote by

A = f($k) G (1 N (1 1 ak)K}«k)ﬁkg(a:k) + Kz — .’E*”Z
= Oplzp) = (1 + o) KMeBrg(mn) + Kz~ 2*||%

Lemma 3.1.6. Let z* € § and set p* := -V f(z*). Assume that Assumption
3.1.1 holds. Then there exists @ > 0 such that for each k > 1

2t 2p*
Ak-H - Ak + gllyk — mkllz S (1 + ak)K)‘kﬁk l:g* (Iéi ) - Uargming (’_ﬂp:)] .

Proof. From Lemma 3.1.5 and Assumption 3.1.1 (II), we obtain that

o2 —
Qesa{zrer) — Qulzr) < K Bra9(ze) + 2)\ ||yg — z?

< (14 ap) K41 8r19(@p41)
2
ol —

+
2k

1
Iy — @t (3.1.10)
On the other hand, multiplying (3.1.2) by K, we have

Kllarss =[P = Kz — 22 + (1 + ) K \ura(a)



34

S (1 + O_’k)zf(”l?k — ’yknz

+ (1 + ak)f(’\kﬁk I:g$ (251*) — Targming (Zﬁi:)] -

(3.1.11)
Combining (3.1.10) and (3.1.11), we have
ag—1 2 2
Ay — A < + (L + o) K| |lyx = 2l
22Xk
. (20 2p*
+ (1 + ak)l{)‘kﬁk g ~ Targming | 5 . (3112)
B B
For each k > 1, 32;23;; + (1 + axY?K < 0, we have there exists # > 0 such that

ai —1

2 N
o (L a)’K <=0,

From (3.1.12), we have

2p* 2p*
Apy1 ~ Ay + 9”% o mk“z < (1 + ak)K}‘kﬁk [g* ( ;;. ) ki & (%)] .

This completes the proof. 0

Lemma 3.1.7. Assume that Assumption 3.1.1 helds. Then the following state-

ments hold:

(i) The sequence {Ay} is bounded from below and Llilf Ay, exists;
oo

oo
W) D llye — 2il? < +oo;
k=1

+o00
(iil) Let z* € §. Then k}irilm |zy — z7||* ewists and f\;/\kﬁkg(mk) < -}o0o;

(iv) LEI—E)O Qi (zr) emists,

(v) LHI}} g(z) = 0 and every weak cluster point of the sequence {zy, }ren belongs
100
to arg min g.

Proof. We set p* := —V f(z*).
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(1). From Assumption 3.1.1 (1) implies 1—(1+ax ) KAy > 0. Since f is convex

and differentiable, we have for each k£ > 1
Ag = flan) + (L= 1+ o) KM)Brglar) + Koy - o

> fla) + K|z — 2|
> f(z*) + (V%) 5 — %) + K|z — 27|

- ) - (2

VoK (z — cc*)> + Koy, — 2*||?

V2K’

> )= W Koyt K~ )P
* (12

= fe) - 12

Therefore, {Ax} is bounded from below.

Next, we set ¥n = Ax, 6p = Ollyx - z]}* and

(S (1—|—ak)f{/\kﬁk ‘:g* (Qﬁp:) T Targming (gﬁp%)} !

Recall that ming = 0. Thus g < Surgming- Therefore turyming = (Sargming)” < §°

and hence, §* — Gargming = 0. It follows that

= (1 +ak)ff)\kﬁk [g* (Zﬁ}f) — Cargming (%E):\

< QI(Akﬁk [.g* (%) — Oargming (?g):\ .

+00
By using Assumption 3.1.1 (IV) and p* € Nugming(2*), we have Zsk < +o0.

k=1
Applying Lemma 3.1.6 and Lemma 2.4.2, we obtain that Alil_'l_l Ay exists.
i~ 4+-00

(ii). Follows immediately from Lemmas 3.1.6 and 2.4.2.

(iil). We set v = |lzr — =%, 0 = (1 + ax) Mefrg(zr) and

- (1 * ak)2|lyk - mk”2 + (1 + ak))\kﬁk [g* (zp*> ~ Cargming (zi):| '
B Br

From statement (ii), Lemma 2.4.2 and Lemma 3.1.4, we get that

+o0
, . : 1
kllyg-}:o |zx — ¥ exists and g—i MeBrg(zr) < +oo.
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For (iv) since for each k > 1 Qi (zs) = Ap+ (1 +ax) K \frg(ar) — K|z —2¥||?,

by using (i), (iii} and lim ey = 0, we have lim Qp(z)) exists.
k—+o0 k—+o00

(v). It follows from Assumption 3.1.1 (III) that lim inf AeBr > 0. According
:—+oo

to statement (iii) implies klirf g{zr) = 0. Let T be any weak cluster point of the
v —*-+ 00

sequence {z }ren. Therefore, there exists subsequence {z,,, } of {z\ }rew converges

weakly to T as k — +oo. By the weak lower semicontinuity of g, we get that

- - Y < )=
g(z) <liminf g{z,,) < kklilwg(ﬁk) 0,

k—+oo

which means that T € argmin g. This completes the proof.

Lemma 3.1.8. Let 2* € S. Assume that Assumption 3.1.1 holds. Then

Zz\k [QA(TL) = f(il,*)] < +00.

Proof. Since f is differentiable and convex, we obtain that for each k > 1

Fz) 2 fz) + (V@) @ =),

Since g is differentiable, convex and min g = 0 ; we obtain that for each £ > 1

0.= g(z") > glzx) + (Vg(zp), 2" = 2x),

which implies that

0> Brgler) + (B Vg(zr), 2" — ay), forall k> 1.

Therefore, we can conclude that

(@) = (zr) + (VOx(zr), 2° — 2p)

= Op(zp) + <“"‘°_y‘°,x* —xk>.

Ak

From (3.1.13), we obtain that

220 [ (zr) — f(2*)] < 2(@p — yr, 21— 77)

= |zp — yell® + [lzn —

o)

= llyw — =

(3.1.13)

(3.1.14)
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On the other hand, for each k > 1

fon — 2°1° = llonss — anlys — o) — 2
= Jlarm — <12 + ajllyn — 2l — 2{an(zen — 27,00 — o)
= lzee — @I+ ogllys — ol — efherin — 217 = Ry — 2
+ law(zrin — a7) = (g — zi)|1?

> (lensr — 2717 + aillyn — 2ull® = aillzner — 27112 =y — 2%,
which implies that

—lo — 2*|* < ~Nargs =27 = oilive = 2| + agflwrsa — 2|

+ )|yg\._ -y .’L‘k“2. (3.1.15)
Combining (3.1.14) and (3.1.15), we have for all k > 1

22 [ low) = (@) < 2 )l — well” + [l — 2|
~akes =2 + offler — 2°)*
< 2|z ~ ysll® + llox — 27|
= o — 2* 1 + agllzign ~ 27|
Therefore, according Lemma 3.1.7 (iii), we get that the sequence {||zx — z*||} is

bounded, which means that there exists M > 0 such that ||zx — 2*|| < M for all
k>1.

By Assumption 3.1.1 (III) and Lemma 3.1.7, we obtain that

+00 +00 +o0
2> Ml ulzr) = £ <2 Ny — mall® + flz — 272+ M? ) af < oo
k=1 k=1 k=1

]

We perform our main convergence theorem as follows.

Theorem 3.1.9. Let {x1. }ren be define by Algorithm 1. Assume that Assumption
3.1.1 holds. Then {zy }ren converges weakly to a point in S. Moreover, the se-

quence {f(zr)}ren converges to the optimal objective value of the problem (3.0.2).
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Proof. From Lemma 3.1.7 (iii), Llil}} |zi — z*|| exists for all z* € S. Let 7 be
e 100

any weak cluster point of {zx}rew. Then there exists a subsequence {zy, }ien of

{Zx}ren such that {zy, }ien converges weakly to T as k — +oo0. According to

Lemma 3.1.7 (v} implies T € arg min g. It suffices to show that f(Z) < f(z) for all
+o0

z € argming. Since Ap = ;i—oo, and by Lemma 3.1.8 and Lemma 3.1.7 (iv),
g g

k=1
we have

lim Qu(ze) — f(z*) <0 forall 2” € S.

k—+too
Therefore, f(Z) < lim +inf flzk) < Ali]ll Oplzg) < f(z*), Vaz* € 8, which implies
—+00 ' —++0C
that T ¢ S. Applying Lemma 2.4.3 (Opial Lemma), we obtain that {zg}ien
converges weakly to a point in & The last statement follows immediately from

the above. O

Numerical Experiments

In this section, we present the performance of the Algorithm 1 for the
minimization problem with linear equality constraints. We consider the following

problem, say, the minimization problem with linear equality constraints.
e QA
minimize —2—||3,||
subject to Az = b, (3.1.16)

where A € R™M and b € R™ with n > .

The problem (3.1.16) is equivalenct to the following problem.
UV ST
minimize -2—”3,”
1
subject to z € arg min §||A() — bi?, (3.1.17)

where A € R™” and b € R™ with n > m.

We set f(z) = }|z|? and g(z) := L[| A(z) — b]|>. In this setting, we have
Vf(z) = z and notice that V f is 1-Lipschitz continuous. Furthermore, we get

that Vg(z) = AT(Az — b) and notice that Vg is {|A||*-Lipschitz continuous.
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We begiﬁ with the problem by random matrix A in R™*" | vector z; € R”
and b € R™ with m = 1000 and n = 4000 generated by using MATLARB, which
the entries of A, 2, and b are integer in [-10,10]. Next, we are going to compare a
performance of three algorithms consisting of Algorithms 1, (DGS) and (GPIM).
The choice of the parameters for the computational experiment in both Algorithms
1 and (DGS) is based on Remark 3.1.3. We choose v = ﬁ'”'f and § = 1. We
consider different choices of the parameters K € (0,1] and ¢ € (3,1). The choice
of the parameters for (GPIM) is based on Remark 12 in [33] with o = 0.001.
We obtain the CPU times (seconds) and the number of iterations by using the
stopping criteria :

”.’Ek = fck—l“ S 10_6.

Fable 1: Comparison of the convergence of Algorithm 1 and (DGS) for the
parameters K = 0.001 and ¢ € (,1).

Algorithm 1 (DGS)
Time {(sec) #(Iters) — Time (sec)  #(Iters)
0.6 2.38 566 10.23 2221
0.7 )| 568 107.78 25336
0.8 2.46 581 384.00 - 90636
0.9 44.96 11458 44711 103487

In Table 1 we present a comparison of the convergence between two algorithms
including Algorithm 1 and (DGS) for the parameters X = 0.001 and different
choices for the parameters ¢ € (3,1). We observe that when ¢ = 0.6 leads to
lowest computation time for Algorithm 1 and (DGS) with 2.38 second and 10.23
second, respectively. Furthermore, we also observe that (DGS) hit a big number

of iterations than Algorithm 1 for all choices of parameter ¢.
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Table 2: Comparison of the convergence of Algorithm 1 and (DGS) for the

parameters ¢ = 0.6 and K € (0, 1].

Algorithm 1 (DGS)

Time (sec) #(Iters) Time (sec) #(Iters)
0.001 2.38 566 10.23 2221
0.005 2.40 585 17146 40888
0.01 6.63 1612 254.93 64469
0.05 83.22 20480 288.39 65722
0.1 107.41 26257 212.02 52464
0.5 79.95 18606 100.33 24419
1 51.46 13414 67.20 16616

In Table 2 we present a comparison of the convergence of Algorithm 1 and
(DGS) for the parameters ¢ = 0.6 and K € (0,1]. We observe that the number

of iterations and computation time for Algorithm 1 smaller than the number of

iterations for (DGS) for each choices of parameters /. Furthermore, Algorithm

1 need tiny computation time to reach the optimality tolerance than (DGS) for

each choices of parameter K.

Finally, we give the comparison of convergence for Algorithm 1, (DGS) and

(GPIM) in Fieure 1.

100 -

£ s Agoihm 1 ]
* 4 uDGS
&=t GPIM
_ e
=
>|( g
<
ab
197
b
b ", .
.'t. By
: ...llii.u... -
10—51. ' LE ¥ T BEEE SN B porenle o v
0 2 4 5] 8 12 14 16 18
Number of iterations (k) x 10t

Figure 1: Ilustration of the behavior of |jzy — x4—1]|| for Algorithm 1, (DGS)
and (GPIM) when ¢ = 0.9 and (m, n) = (100,400).

We observe that the our algorithm performs an adventage behavior when
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comparing with él.lgorithm (DGS) for all different choices of parameters. Note
that the number of iterations for (RGPA) smaller than the number of iterations
for (DGS). Furthermore, Algorithm 1 need tiny computation time to reach the
optimality tolerance than (DGS) for each different choices of parameters. Fur-

thermore, the our algorithm performs an adventage behavior when comparing
with (DGS) and (GPIM).

3.2 Forward-Backward Method for Solving Constrained
Convex Optimization Problem with Nonsmooth Ob-

jective Function

In this section, we consider constrained convex optimization problem (3.0.2)
in the case that f: H — [—00, | ool is proper convex lower semicontinuous and g :
H — IR is Hréchet differentiable on the space ‘H and gradient Lipschitz continuos
functions with constants 7,. Assume that the solution set of the problem (3.0.2)
is nonempty and some gualifications in [66, Proposition 27.8] hold. Then, problem

(3.0.2) is equivalent to the following problem: find & € H such that
0 € 07(2) + Nargrming(®): (3:21)
In order to solve the problem (3.0.2}, we are going to consider the following
problem.
Find z € H such that
0 ¢ A(z) + Ngery (2, (3.2.2)

where, A : ‘H — 2" is a maximally monotone operator and B : H — H is a
) Y P

cocoercive operator with parameter w > 0.

We recall the set of all zeros of the operator B dencted by zer(B) = {z &
H: 0= B(2)}.

Note that if A = 8f and B = Vg, then the problem (3.2.1) is a special case
of MIP (3.2.2).
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'The aim of this work is to employ the forward-backward penalty method to
solve {3.2.2) from [3] with a new inertial effect. Inspired by the research works
mentioned above, we wish to develop the algorithm called a new forward-backward

penalty algorithm (NFBP) for solving (3.2.2) as follows:
Algorithm 2: (NFBP)
Initialization: Given three positive sequences {a }rew, { A teen and

{Bx tren. Choose z; € H arbitrarily.
Iterative Steps: For a given cwrrent iterate x, € H, calculate as follows:

Step 1.Compute g, as

Yk = J{ Az — MeBeB (k)
Step 2. Compute
Tp+1 = Y + O’k(yk - mk)'

Update k := k + 1 and return to Step 1.

The proposed numerical scheme can be reduced to the algorithm investigated

in [4] which is called forward-backward method (FB) when oy = 0, Vk > 1.

Let {zx}ren be a sequence generated by Algorithm 2, {A\1}ren 2 sequence of

positive real numbers and {2z }ren the sequence of weighted averages
k k
Zp = 717 Z)\nrnn, where g = Z)\n. (3.2.3)
n=1 n=1

We carry out the convergence analysis for new gradient penalty algorithm

(NFBP) which is settled by the following hypotheses.

Assumption 3.2.1.  (I) The qualification condition zer(B) N int dom(A4) # §
holds.
(II) {M} €6\ £, lim op =0 and 0 < liminf A8, < limsup A5, < w.
k—3+o0 k—+oo k4o

(III) For each p € ran(N,e(n)), we have

+oo
;/\kﬁk [ sup Fp (ﬁ,iﬁ*) — Oyer(B) (fg)

< 00,
z*Ezer{B)

We present some siuations that satisfy the Assumption 3.2.1 as the following

remark.
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Remark 3.2.2. (i) Since A and N, (p)y are maximal monotone and Assump-
tion 3.2.1 (I) holds, we obtain that A+ N, () is maximal monotone operator

(see [66, Example 20.26 and Corollary 25.5]).

(i} There are some examples satisfying Assumption 3.2.1 (I} e.g. sequences

Ak~ 1, B~ wk for some @ € (0,w) and oy ~ i forall k € N.

(iii) Assumption 3.2.1 (IIT) has already been used in [9] in order to show the
convergence of the proposed algorithm (see [9, Assumption (Hpy,)|). They
also pointed out that for each p € ran(N,(py) and any & € N one has
SUP 4+ czer(B) I'B (3%, :1:*) — Oer(B) (ﬁ«) > 0. Some examples of the operator
B satisfying Assumption 3.2.1 (H1I) can be found in |78, Section 5].

Let us denote an arbitrary sequence verifying Algorithm 2 by {zi}ren and

provide some estimations.

Lemma 3.2.3. Let =" € zex(B) Ndom(A} and v € A(z*). Then the following
inequality holds for each k € N and e > 0

e = 27| — e = 2717 + (1 + ) (5 ) Ml Bzw), o — 27)
+ (Ut ) (75 = o) o — )
<L ap)ABr (14 &)X fr— 220 || B )|1?
+ 2(1 + o) dlv, 28—y (3.2.4)

Proof. 1t is not hard to verify from 2 that for each k € N, =2 — BrB(zi) € Alyy).
By the monotonicity of A and v € A(z*),

<“I"}‘{f% — BeB(zk) — v,y — $*> > 0.
It follows that
(Zp — Y, 2" — i) < Ae(BuBlzx) +v,2" — ), forall k € N,
From Lemma 2.3.14 (i), we obtain that for each k € N

Haew —ull® + ll2™ — walf® — llzn — 27* < 2M(BiB(za) +0,2" — 3), (3.2.5)



which me.an that

s — @12 = flow — I + s — will® < 2helo, 2 — )

+ 220 B (Blzi}, 2% — )

+ 2B B (1), T — Y)-

Note that B is w-cocoercive and B{z*) = 0, we have
2B (Bw), & — wi) < 20| Bl |
for all k£ € N. From (3.2.7), we observe that

OBl Blan)y 5" —2x) = NG (B (), 27 )
+ 5220800 (B2}, &% — o)
< =N 6| B i) |
+ 25 0Bl Blan), 7" — m):

For each k € N, let us consider

0 < pizllon = 2 + (1 + ) MBi B ()|

= Tl — el oF (L4 NBNBler* + 2280 (Blaw), v — @),

which implies that

0B (Ba), 2r — yi) < gigllve — @l (0 + NG Bz |-

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

Joining (3.2.8) and (3.2.9) to (3.2.6) together with some simple calculations, we

have that

Iy = 272 < 2206{v, 2* — 1) + P M Br{Blzr), 2" — i)
+ A (1 + €)MBe — 22) | Bi)i? + o — «*|?

— 5 lys — @l

(3.2.10)

On the other hand, by using Lemma 2.3.14 (iv), we have the following equation

lener — 2”17 = llyw + oy — 2x) — 2|

= ||(1 + o) (e — =) — gz — 27) P
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= (1+ an)llys — 2*|I* — ol — 212
+ o (L + an) ek — wilf (3.2.11)

Multiplying both sides of (3.2.10) by (1 + o3) and then connecting to (3.2.11), it
yields that

lzrps — 2*)1? < 201 4 ardhelv, & — ) — (1 + ar) (F=) MBu{B(ar), o — z)
-+ (1 + O.’k)}\};ﬁk ((1 + E)/\kﬁ~ — 12—_:2) “B("U}‘,)Hz
+ (1 + ax)llae — 27> — (14 ) (£5) lle — 2|

— apeller — =¥ + ol + agller — il

for all £ ¢ N. This completes the proof. ]

Lemma 3.2.4, Let (z*,w) € gra(A + Nyoe()), v € A(z®) and p € Nyerm(z*)

be such that w = v + p. Suppose that limsup A\yfr < w. Then there exist k € N,
koo

g0 > 0 and K >0 such that for each k > F,

lorer = o7 = lox — 7P + {78y ) e = )

. (5‘{’}—%‘) (B(ay), zx = 2*) + (1_‘:50) M\ B (o)

1+ K egAr Bk 2p(1+ 2p(14-
ctsign [ oy (S350 ) oot (1)
a* ezer(B)

+ 201+ K)g{w, 5 w) +2 (ﬂl—t)) (14 K222

Proof. Since lim sup A8, < w, there exists Ny € N such that A5, < w for all k >

k—+oco

Ny. So, wecan find gg € | 0, m — 1} and hence, (14€9) A\fr < H“fe{)

k—+oo

for all k > Ny. Note that o, — 0 as & — 400, there exists N; € N such that
ay < ;1—(1%:;) for all k > N;. Choose k := max{Ny, N;}. For each k € N, by
appljfing Lemma, 2.3.14 (i), the following inequality holds:

201+ o) Ay, &% — g = 2(1+ o) A, 2 — ) + 201 + ) (Awv, 2x — 4)
< 2(1 + ag) Ailv, 37 — a)

+2(1 + o) (1 ZE 0, | [ (@t — )

< 2(1 4 ag) Ay, ©° — xp)
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+ (14 ) (g ) o — 2l

(1 + ) (2<1+f°>) 2|2, (3.2.12)

Coombining (3.2.12) to (3.2.4), we obtain that for each k > k,

laer — 112 — lla — "1 + (14 ) (g — o) Mo —
+ (14 ayz) (HEO) MeBr(B(zi ), on — °)
+ (14 o) (525 ) MBI Bl I°
< (1 + ap)AnBe ((1 + o) Arfr — ﬁgo) 1B (k) |I?
+ (1 ) () ol 4 20 +adufe, o — o). (3:219)

From (3.2.13), we get that for each &k 2 k,

ks =21 = o= @I+ (1 + a) (e ) o =l
+ (1 + o) (22) MBu{B(on), 21 - @)
+ () (52 ) Bl Bl
<2014 o) (2= 220 + 201 F a8t — ). (32.14)

Next, for each k > k, we focus on the following terms of (3.2.14)

201+ )M, 2%~ ) = SN (B 3y 27)

=2(1 + ar)Alw = p, 2" — x) — Ll"toﬁ?“"‘_uwﬁ(B(mk): Tk — T7)
= 2(1 + ak))\k(w,m* — 21};) + 2(1 + Qk))\h@), .’Bk>

— (hemeodbh (), wy, — 2% — 21+ e ep, 27)
o A ®
- o [(20500, ) ¢ 5o
— (Bow),x) — (XE0p, 0t )| + (1+ aw) 2w, " — o)

(3o )eoAs 2(1+¢0) 2(1+€0)
< ————1'=+E‘{’J kEk { sup Fp ( Eoﬁf P,z ) < EDBAD T >}
z” Ezer(B)

+ 2(1 + ap) M\ (w, 27 — zx). (3.2.15)

Since p € N,er(p)(2*), we have ( +e°} 222 € Nyeypy(a*) for all k € N. Tt is equivalent
to say that ogern) (Mp) <2(1+E°} P, T > for all £ € N. It follows from (3.2.15)

0P g0k
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that

2(1 + o) M (o, 2% — ) < @%(B(fﬂk%fﬁk - )

(1+ap)eorB 2(14eg) N
+ 1k+e?) = |: sup Fig ( euﬂiﬂ P, 1*)
z* €zer( B}

—Oger(B) (%p)} + 2(1 4+ ap) Ap{w, 2° — ).
(3.2.16)

Combining (3.2.16) to (3.2.13), it appears the result that for each k > k,

||-’15k+1 — T*“E — ||’L’L = a;*HZ + (1 + Crk) (4(15—4?50)) ”yk - 33k||2

- PO (), = ) (L ) (255) Bl B

l+eg
1 Ak >

21 A ) (w, 2F = 1) +2 (?ﬂ%@) (1 an) A2 v

Note that the positive sequence {ay }ren 18 bounded, there exists £ > 0 such that
ap < K for all k € N, Since (B(zx), zx — «7) is nonnegative for all k € N, we
obtain that

lonss = 20 = o = o112 (g ) o = ol

+ () (B, aw =)+ (525 ) Al Blow) I
14+ K)ep A B 2{1+ 2(1+
<o, oo ) - o (35|

214 KM, = ) +2 (2E90) (1 KON, VE 2 F.

This completes the proof. (]

Convergence Results for Monotone Inclusion Problem
In this section, some convergence results for Algorithm 2 are demonstrated.
Before going into the main results, it is useful to know the following propositions.

Proposition 3.2.5. Let {1 }ren be a sequence generated by Algorithm 2. If all
assumptions in Assumption 5.2.1 hold, then the following hold:
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i) For each z* € zer(A + wer(BY), Hm |lzp — z%|| exists.
i) I h A+ N, (B) 1 ¢
k—too

+00 +o0 o0
(i) The series Z N — 2 )?, Z Bl Bz )|, and Z ABr(B(zy), zp — %)
k=1 k=1 k=1

are convergent.

113 i — 2 ‘:. i , D 1 — ™) =
(i) lim fye — il = Lim Bz (B(zx), zx — 27) = 0.

|t = lim
k—+oo
Proof. Let z* € zer(A 4+ N,e(p)). Taking w = 0 in Lemma 3.1.5, we get that

e — w2l a2 (i ) e ol
+ () (Bl - 2%) 4 (32, ) MBrl Bl I°
(194 K o e By 2p(1-+en) 2p(1ten)
S ¥/t L*giﬁm Fg (———psoﬂk” ,a:*) — Ozex(B) (—iuﬁk” )]

[ (%;ﬁ) 4+ KA olf2, Wk > .
By Assumption 3.2.1, the conclusion in (i) and (ii) follows from Lemma 2.4.2.

(iii) From (ii), we have lim |lyx— 2x[” = 0. Sinee liniinf Ay By > 0, we obtain
n—+co n—-+oo

that .L'ETOO N B(zx)lt = kEﬂg@(%)ﬁk —z*) =0, L]

Theorem 3.2.6. Let {@r}ren be a sequence generated by Algorithm 2 and {2} ren
be a sequence of weighted averages as (3.2.3). Suppose that all assumptions in
Assumption 3.2.1 hold. Then the sequence {z}ren converges weakly to an element

in zer(A + Nyer(p))-

Proof. Let z be a weak cluster point of {z; }ren. Then there exists a subsequence
{zr biew of {Zk}rew such that 2z, — 2z as i — +oo. We will show that z €
zer(A + Nzer(B)). Since A + N,er(p) is @ maximal monotone operator, it suffices to

show that (w,2* — z) > 0 for all (2%, w) € gra(A + N,e(s))-

Let {z*, w) € gra(A + Nyyp)), v € A(z*) and p € Nyer(s)(2*) be such that
w = v + p. Recall from Lemma 3.1.5 that

ek = 212 = llzw — 217 + (s ) o = 2

+ (328 (Bae), o — %) + (7225 ) Aefll Blan) P
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(14 K}ea A B 2(1+=p) _ 2(1+4ep)
< T Iteo [E*ES;EP(B) FB ( €0 g T ) Tzer(B) ( coBk p)]

21+ KN, — ) +2 () (L+ KON i, VE 2 F.

Discarding nonnegative terms (B(zy), zx—2*), | B(z)||? and [Jyx—z4|?, we deduce

to

e e

< {1+12L.-:£0A;ﬁk [ sup Fa (2(51:3?) P,z ) () (2%;;0@)}
z*€zer(B)
4201 F ) Nl & = ) T 2 (Eﬂlti) (L K)ol VE>E.
Summing up for k =k, k +1,..., k; in the above inequality, we have

g =2 =g — o)

2(1 + K) <w,Z)\km* - Zz\k:ck> + Iy

k=k k=k
ks E-1 ki k-1
= 2(1 + K) <w, MZT = MemT = Y NTk o+ Z Ak$k> + 1
b1 k=1 k=1 k=1
where
ky
R N i e
P z*ezer{ B)

+2 (M) (1 4 K) Z Mol

Discarding the nonnegative term ||z,+1 — 2*||* and dividing inequality above by

2(1 + K)m,, we obtain

gz~ | * ' L
"2(1A+K)Tkl_ <H{w, 2" Zk,:) + 2(1“2{)“‘_, (3.2.17)
k—1 k-1
where Ly = L; 4+ 2{1 + K) <w, — Z)\ka:* 4+ Z /\;,.a:k>. Note that L, is a finite
k=1 k=1
real number. Taking ¢ — +o0 (so that 1121 T, = +00) on both sides of (3.2.17},
o0

we get that

0< (w,z" — 2).
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Since (1: ,w) € gra(A + Nyeymy) is arbitrary, we have z € zer(A + Nyeys)). By
Lemima 2.4.3, we can conclude that the sequence {2 }ren converges weakly to an
element in zer(A + Noe(p)). O

Next, we will prove the strong convergence of the sequence {2 }ren.

Theorem 3.2.7. Let {zx}ren be a sequence generated by Algorithm 2 and the
operator A be a y-strongly monotone with y > 0. If all assumptions in Assumption

8.2.1 hold, then the sequence {x }ren converges in norm to the unique =* € zer( A+

Nzer{B) ) .

Proof. Let a* be the unique element in zer(A + Nzer(B)). Then there exists v €
A(z*) and p & Noer(w)(2”) such that 0 = v + p. Since ®¥ — B B(xy) € A(yx)

and v € A(z*), the strong monotonicity of A implies

Avllys — 212 < (@ = ye — M(BeB(ax) +v), v — 2°)
for all k € N, It follows that

Mvllye = 212 4 (@ — v, ° — vr) < MBiBlay) 4 v, 2" — ) (3.2.18)
for all £k € N. By applying Lemma 2.3.14 (1), we have

20y llys — =¥ | + e = 2%l = llow — ") < 20 (B B(zx) +v,2° — y)
— [lzk — yll? (3.2.19)

for all k£ € N. Focusing on the right hand side of (3.2.19), we see that
20:(BiBlwr) + v,3" — yi) — ||z — yalf?
= 2M(B B(zx) +v,7" — zk) + 220 (B B{zi) + v,z — yi) — llzw — wil)®
< 2B Blay) + v, 3 — mp) + A2 BrBlak) + v|?

< 2B Bl@r) + v, 8° — xx) + 22262 Blan) |2 + 202 [0lf2, Vk € N.
(3.2.20)

Next, we consider the first term on right hand side of (3.2.20),

2)\}~<ﬁkB(’Lk) + U, z¥ - ﬂ)k)
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= 2)\k(ﬁkB($k); ¥ — ’Lk) + 2)\;;(’0,33* — iEk)
= QAL(ﬁkB(:LA),'B* - IB,(;) + 2)&-(}9, ZL‘L-) — 2)\,{;(]3, ’L*>
= 20 (£ on) + (Blaw), ") — (Blow), o) - (£,27)]

<onp| swp Fa(Zo *)_<,—;’;,m*>}

| z* €zer ()

=2M\P: | sup Fp (;;k,fc*) — Ozer(B) (%,l‘*):l , ¥YkeN.

\_:I:*Ezer(B)
(3.2.21)
Combining (3.2.19), (3.2.20) and (3.2.21), we have
220yl — 2012 e — 2 — o — 272
<20 sup g ( =iy ) — Ozer(B) (ﬁi) 33*)
z* €zer(B) \
+2X28H B ||? + 223 ||v||2 Yk € N. (3.2.22)
By simple calculation using (3.2.22), we get the result that
”yk - ‘T*Hz < %‘f% l: t:zlﬂ-)(B) Fy ( ) —Uger(B) (ﬁ::m*)]
22252 23
+ oy es = &7 ¥ i || Bl |12+ o g llvl®. (3.2.23)

Combining (3.2.23) to (3.2:11), we have the following inequality

lzrer —2*|2 < (1 + )2?\%%1 |: sup g ( ) ~ O yer(B) (ng:fﬂ*)}

z* €zer(B)
* 232 p2
() [l o7+ R BGI)
+ (o) 2ulol -~ il — o

+ ap(1 -+ o)l — yal|®. (3.2.24)

It is not hard to verify from (3.2.24) and it yields that
22 |zkss = 27N Noigs — 27| — o — 27|
§ (1 -+ O.’k)z)\kﬁk [ sup FB ( *) — O'zer(B) (-‘g;,w*)]
*ezer(B)

+ (L + aw)2X5 B 11 B () |
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+ (@ + ) 2220 + (L + o) @y 4 1llex — wll®.

Since nonnegative sequences {Ax bren, {AkBkbren and {oy bren are bounded, there
exists positive numbers M, ¢ and K such that Ay < M, MG, <c¢, and ap < K
for all £k € N.

Hence,
P L R [ e e
< (L+ )20 [ swp. Fy (£,°) = 0ty (£ fc)}

z* Czer(B)

+ (1 -+ K)2edBell Blzal” + (1 + K) 22 lvll”

+ K (14 K)(2My + 1))z — wll, (3.2.25)
and then
+00
2v Y Mellei — P < flas — P
k=1

+e0 +oo
+ (1K) [202 MBl Bl +2) Aillvllz]
k=1 k=1

+oo
FR(TAK) @My 4 1) Y ok = il
k=1

+oo
(LR K02 Nfy { sup Fa (o)
k=1

z* €zer(B)
~Ozex(B) (ﬁ%: .’B*)] .

By all assumptions in Assumption 3.2.1 and Proposition 3.2.5, we have

Jo00
27" Mgy — 27| < +oo.
k=1

From (3.2.25) and Lemma 2.4.2, we obtain that klil}rl ||zx — 2*|} exists.
s 00

+oo
Since Z}"‘ = -+oo, we have kli:}} lzx — 2*|| = 0. This completes the proof.
c~3-|-00
k=1

O]
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Applications to Constrained Convex Optimization Problem

In this part, we will apply the results obtained in the previous part to
solve constrained convex optimization problems (3.0.2). Furthermore, we may
assume without loss of generality that ming = 0. We assume that the solution
set of the problem (3.0.2) S is a nonempty set. Notice that f is proper convex
lower semicontinuous, we have that the subdifferential df is maximally monotone.
Moreover, since the function g is convex differentiable, by using the Theorem of
Baillon-Haddad (see [66, Corollary 18.17}), Vg is El’;-cocoercive and argmin g =
zer(Vg).

By using this and Algorithm 2, we will consider the following algorithm,
Algorithm 3:
Initialization: Given three positive sequences {axtren, {Ak}ren and

{Br}ren. Choose z; & H arbitrarily.

Tterative Steps: For a given current iterate z; € H, calculate as follows:
Step 1.Compute y;, as
Ye = PI'OX)\kf(fL‘k — B V().
Step 2. Compute
Bt = Y+ opyr — Tp)-

Update k := k + 1 and return to Step 1.

In order to obtain the convergence of the sequence generated by Algorithm 3,

we have to assume the following assumption.

Assumption 3.2.8. (a) The qualification condition argmin g Nint dom(f) # @
holds.

, B . . 1
(b) {/\;,} € by \f], kl—l>r4l—loo ap=0and 0 < 1&1;1;25 Afr < };\,IE;S_E.‘OP ArBr < T,

(¢) For each p € ran(Nargming), We have

f}\kﬁk {g* (;‘%) — Cargming (ﬁ)] < +oo.
k=1

Note that Fg, (:c*, 23%) < g(z*)tg* (3%) = g* (p%) for all z* € argmin g, we
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have sup Fy, (z*, i) < g (%) Hence, conditions (a)-(c) in Assumption

z*€argming

k
3.2.8 imply hypotheses (I)-(III) in Assumption 3.2.1.

Corollary 3.2.9. Let {zy }ren be a sequence generated by Algorithm 3 and {2z }ren
be a sequence of weighted averages as (3.2.3). Suppose that all assumptions in

Assumption 8.2.8 hold. Then the sequence {z; }ren converges weakly to an element

n S.

If we assume that the function f is strongly convex, then its subdifferential

df is strongly monotone.

Corollary 3.2.10. Let {xy}ren be o sequence generated by Algorithm 3 and the
function | be a y-strongly convex with v > 0. If all assumptions in Assumplion

8.2.8 hold, then the sequence {zy}ren converges strongly to the unique element in
S.

Numerical Experiments

In this section, we present an example of numerical set for testing the pur-
posed algorithm. Some comparisons of our algorithm Algerithm 3 with the algo-

rithm (FB) introduced by Attouch [4] are also reported.
We consider the problem with equality constraints:

minimize ||z|j1

subject to Az = b, (3.2.26)
where A € R, b € R In addition, we assume that s > {. The problem
(3.2.26) can be written in the form of the problem (3.0.2) as :

minimize f(z) = ||z

subject to 2 € argmin g,

where g(z) := 3||Az — bl|?, for all z € RS,
)
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In this setting, we have Vg(z) = AT(Az - b) and notice that Vg is || A%

Lipschitz continuous. We also get that

prox,, s(z} = { max 0,1~~’3~’“‘— 21, max 0,1——’\i T3, ..., max 0,1~»’51~‘— Ts).
Axf |z1] |2

||

We begin with the problem by random vectors z; € R®, b € R! and ma-
trix A € R**, Next, we compare the performance of the Algorithm 3 with the

algorithm (FB). The used of parameters in two algorithms are chosen as follows:

B = W, Ap = 1, Yk > 1. We obtain the CPU times (seconds) and the

number of iterations by using the stopping criteria : ||zg — 251 || < 1078,

Table 3: Comparison of number of iterations and CFU computation time between Algorithm

3 and (FB) with difference of parameter sequences {ay }gen-

Aigorithm 3 CPU times (s) Iterations
(FB) (ay = 0) 180.44 38352
Algorithm 3 (ar = 1/vE+1) 140.36 35649
Algorithm 3 (a3, = 1/(k + 1)) 155.79 35589
Algorithm 3 (e = 1/(k +1)%) 136.01 33841
Algorithm 3 (o = 1/(k + 1)%) 150.45 37164
Algorithm 3 (o, = 1/(k + 1)) 154.40 38344

We compare the performance of the Algorithn 3 and (FB) for case s =
4000, { = 1000 with difference of parameter sequences {ay}ren- The results are
reported in table 3. We observe that (FB) spends more CPU computation time
than Algorithm 3. We can see that when oy = @;}1-)3, it leads to the lowest CPU
computation time and number of iterations for Algorithm 3 of 136.01 seconds
and 33841 times, respectively. We also observe that our algorithm requires less

iterations than (FB) for all choice of parameter sequences {ou }ren.
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Table 4: The comparison of two algorithms with different sizes of matrix A.

(Ls) Algorithm 3 (FB)

CPU time (s) Iterations CPU time (s) Iterations
(20,1000) 1.99 34160 5.13 83860
(50,1000) 2.32 32986 5.72 77435
(100,1000) 2.92 30352 7.38 79054
(200,1000) 3.94 30546 7.35 56337
(300,1000) 517 26191 6.70 33513
(20,2000) 4.14 37505 11.14 98780
(50,2000) 6.14 45289 10.55 78691
(100,2000) 5.00 27642 10.42 58504
(200,2000) 8.33 24207 23.45 67317
(300,2000) 15.71 27088 28.22 48109
(20,5000) 10.17 40463 25.04 96251
(50,5000) 7.09 22812 21.79) 68287
(100,5000) 18.70 29416 42.56 66194
(200,5000) 40.66 33008 92.56 77144
(300,5000) 51.59 27193 123.60 58909

In table 4, we present a comparison between the numerical results of Algo-
rithm 3 and (FB) cases for a; = ﬁ,\v’k > 1 and different sizes of matrix A.
We can see that the number of iterations of Algorithm 3 are smaller than of (FB)
for all different sizes of matrix A. Furthermore, Algorithm 3 requires less CPU

computation time to reach the optimality tolerance than (FB) for all cases.
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Figure 2: Illustration of the behavior of ||z — 1| for Algorithm 3 and (FB)

methods when oy, = ﬁ and (I, s) = (100, 3000).

Figure 2 shows the behavior of ||z — x4 || for Algorithm 3 and (FB) methods

when ay, == ﬁ and (I, s) = (100, 3000). We can observe that by using Algorithm

3 the behavior of the red line Algorithm 3 performs better than the blue line (FB).



CHAPTER IV
THE MONOTONE INCLUSION PROBLEMS

In this chapter, we propose iterative methods for solving monotone inclusion
problem. We also propose iterative methods for solving fixed point problem of
nonexpansive mapping to apply the solution of generalized monotone inclusion

problem. We have divided into two sections as the following:

4.1 Generalized Viscosity Forward-Backward Splitting Scheme
with Inertial Terms for Solving Monotone Inclusion

Problems

The purpose of this section is to consider the monotone inchision problem:
find x € H such that

0 € Az + Bz, (4.1.1)

where A : H - H is a single-valued mapping and B 1 H — 2% a multi-valued
mapping. We denote the set of all solutions of the problem (4.1.1) by (A+B)~(0).
Most well known algorithms to approximate the solution of the problem (4.1.1)
is the forward-backward algorithm (FB) [35-37]. The algorithm (FB) was first
introduced by Passty [36] that was defined by a sequence {z;}ren as follows:

T = Jo (g — MAxy), forallk > 1, (4.1.2)

where JP = (Id+AB)?! is the resolvent of the operator B and A > 0 and Id is an
identity mapping. This method involve with the proximal point algorithm [79-83]

and the gradient method.

In 2001, Alvarez and Attouch [21] introduced a new algorithm by using the
idea of the inertial method in [17,38]. This method is written as follows:
wy = Tk + Op(Tr — Tr-1),

(4.1.3)
Tpsr = (Jd + AgB)lwy, for all k> 1.
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They pfoved that the sequence {zj }ren generated by algorithm (4.1.3) con-
verges weakly to a zero point of the operator B under the following conditions
{0k ken € [0,1] and {A}rew is non-decreasing with

-+o0

ZBkﬂxk — o 1| < Hoo. (4.1.4)

k=1

Moudafi and Oliny [32] proposed iterative method which involed the idea
of the inertial method to solve the problem (4.1.1). They also proved weakly

convergence of the iterate under the following conditions:

(i) the condition (4.1.4) holds;

(i) Ax < 2/L with L the Lipschitz constant of A.

Their algorithm is defined by

wy = T+ Ok — Tp-1), (4.1.5)
Trys = (Id + ApB) Hwyp — MAzy), forall k> 1,

where A:H — H and B : H — 2%,

The several methods that are in reference to this study are reviewed in the

next extensively (see, e.g. [27,28,39-45])

Recently, Kitkuan et al. [46] proposed the viscosity approximation algorithm
concerning the inertial forward-backward for finding a solution of the problem
(4.1.1} as follows:

wy = Tk + Ol@r — Tr-1),
(4.1.6)
Tpyl = 'Yh(f(mk)) + (]. - ’Y}»)']ﬁ (wk - /\kAwk), for all & 2 1,
where A : H — H is p-inverse strongly monotone operator with p > 0, B :
H — 2" is a maximal monotone operator and f : H — H is a contraction with
constrant ¢ € (0,1). They also proved the strong convergence of their proposed

method under some appropriate conditions imposed on the parameters.
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On the other hand, in 2019, Kitkuan et al. [47] presented a new method com-
bined Halpern-type method and forward-backward splitting method for solving

the monotone inclusion problem (4.1.1) as follows:

(
u, 1 € H,

25 = Ty (1 - Q‘k)Jﬁ (il)}u- — ,\kA.’Ek),
Y = Brax + (1 — Bi)J5 (2 — MeAz),

[ Zr41 = MU+ (1 —vi)yg, forallk>1,

(4.1.7)

where J§ = (Id 4+ AB)7! is the resolvent of B and ay, B, 7 € (0,1). Strong

convergence results are obtained under some appropriate conditions.

By employing the inertial viscosity forward-backward splitting algorithm (IVF-
BSA) motivated by the works of Kikuan et al. [46,47], we propose the following

algorithm.

Algorithm 4: (IVFBSA)
Initialization: Given {0;}ren C [0, 8] with # € [0,1) and three sequences

{or teerrs {8k ken and {v}ren'in [0,1]. Choose zg, z; € H arbitrarily.
Iterative Steps: For a given current iterate @y, 2 € H, calculate as
follows:

Step 1.Compute

wy = op + O () — 1),
2k = ogwy + (1 — o) T (wy — ApAwy),
v = Brwe + (1 — Bu)JE (z — MAz)
Step 2. Compute
Tre1 = WS (@) + (1 — 1)y

Update k :=k + 1 and return to Step 1.

Remark 4.1.1, If o, = 1 in Algorithm 4, we have the inertial viscosity forward-

backward splitting algorithm (4.1.6).

If 8, = 0 and setting f(z;) = u in Algorithin 4, we have generalized Halpern-
type forward-backward splitting method (4.1.7).
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The convergence behavior between the algorithm that obtained from the Al-

gorithm 4 and the algorithm (4.1.6) are illustrated by some numerical experiments.

We present the convergence analysis of our main results as follows.

Theorem 4.1.2. Let A: H -+ H be a p-inverse strongly monotone operator on a
real Hilbert space H with 1 > 0 and B : H — 2% be a mazimal monotone operator
such that (A+ B)™Y0) # @. Let f : H —» H be a contraction mapping with a
constant ¢ € (0,1). Let {zi}ren be generated by Algorithm 4. Assume that the

following conditions hold:

(i) limgeo v = 0 and >y e = +00;

(it) limpeo & flax — zeiff = 0;
(iii) 0 < liminfy syoo A < limsupy oo Ak < 2
(iv) liminfy ,qo0(l — ap)(1 = B) > 0.
Then, the sequence {Ty}ren converges strongly to T :=projs, gy (f(T))
Proof. Let I'y = JE (Id = AxA). By Lemma, we have for each k € N the mapping
T'; is nonexpansive. Next, we claim that (A + B) Y0) = Fix(T}).

Let us consider,
F=Ty7T) = T-=Jy{[Id=NA)T

> T— MAT €T+ \BT

<= 0¢€ Az + BZ. (4.1.8)

Hence, (A + B)Y~1(0) = Fix(Ty).

We expect that {zy}ren is bounded. Since f is contraction mapping and
Projiat py-1(0)(*) 18 nonexpansive, we have proji 4. gy-1(gy(f(*)) is contraction map-
ping. Then, there exists the unique fixed point T € (A + B) (0) such that
T = proj(aymy-10) (f(F)). Thus T € Fix(Ty). It follows that

2, —Z|| = |laswy + (1 — )Ty — Z|
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< ogllwr — 2| + (1 — aw)iliws — 7|

<l — 3. (4.1.9)
and

lye — Zl| = || Brwr + (1 — Bi) Tz — T}
< Brllun -zl + (1 — Bi)llTrzr — i
< Billwy — || + (1 = Bl — 2. (4.1.10)

On the other hand, we consider

ok — &) = o+ Oy = Ty — )|

< lww < Z| + Oxllze — Tl (4.1.11)
Combining (4.1.9), (4.1.10) and (4.1.11), we obtain that

lzker = Bl = Nl f(zx) + (1= e)ye — 7|
Lol f) = 2l 4 (1 = wd e — 2]
< wll Flar) — F@)I + vl f @)~ Zh AL = ye)llws — 7l
<el|ze = B+l Az — 21+ (= ye)lles — 2
+ (1= %) Oullzi — Tp—1l]
< (U =2l =Pl — 2|+l £ (@) — =
+ (1= )0k ||z = 21|
< (1 =71~ el — 2| + el F(Z) — =
+ (1= (1 — )iz — zr-all (4.1.12)

Since Imy 00 % |zx — zp—1l} = O, there exists M > 0 such that

1 — (1 — ¢))6
( %(71 DO\ — sl < M for all k € N,
k

Let My = 2 max{||f(%) — =, M}.

From (4.1.12) and by using mathematical induction, we get that

zpr — Z|| < (1 — (1 — ) llze — Z|| + (L — )My
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< max{{|z, — |, | /(@) — ZI|}

< max{||zy — 2|, |/(z) — =} , (4.1.13)

Therefore, {z }ren 18 bounded. So {wk}ren, {# }ren and {yx }ren are also bounded.

By using the condition (iv) in Lemma 2.3.14 and the definition of {z}}en and
{yk }ren, we get that

”Zk — 1_17_“2 = ||ozkwk -+ (1 — ak)I‘kwk - EHQ

< ogllwg =Z|2 + (1 — o) [Ty —E|)2 (4.1.14)

and

o — T2 = o + (L= B —
< Bellwe = Z)? + (1 — B)|Trzr — 7% (4.1.15)

Now, consider terms | Tywy — Z[|* and {2 —ZH|? by using Lemma 2.4.4, we have
| Dywy — Z|? = | Tawy — Tz|?
< Hhwp — 2> = Ap(20 — M| Awy ~ Az
|l = ApAwy, — Trws + MAT]|%. (4.1.16)
and

IThzi — F||* = [Tz — Tiz?
< o 2P~ Ael20 — Ml Az — Az
— sz — )\kAZ;; - szk -+ )\LAEHZ (4117)

Substituting (4.1.16) into (4.1.14), we have

12 — Z)” < Yuog — 7| -~ (1 — 0 M2 — M) Awy, — Az’
— (1 — o) ||wy — AeAwy, — Ty + M AT (4.1.18)

Substituting (4.1.17} into (4.1.15), we have

Iy = Z)1* < Bellwe — = + (1 = Bl — 7
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— (1= Bu) M (2p — M) || Az — Az
— (1~ Bu)llzs — MeAzy — Tz + M AT, (4.1.19)

Combining (4.1.18) and (4.1.19), we can imply that

e — Z2 < Jhwi — 2% + (L= Bi)(L = o) A2 — Mi)|| Awy; — AZ||?
~ (1= B)(1 — ap)llwe — MuAwg — Trwy + ApAZ|?
— (1= B (20 — M) Az, — AT
— (1= Belllzn — Az, — Drzp + M AT (4.1.20)

From (4.1.20), we obtain

lzxt1 — 2|2 = {pef () + (1 — v)ys — T, 002 — )
= vl (zx) — T), 2par =) {1 =)y — ), B — T)
= S (k) = [(B), 2ria = T) + Wl (Z) — 2, 241 — T)
+ (1 )y~ By Tirr — T)
< el f (@) = @Mz — &+ (f(7) =2, 2341 — )
+ (1 = )y = 2| |2 = 2|

<5 (1)~ F@)IF + lowa = 2D+ 0l @) = T, 21— 3)

+ L8 G e = )

< gﬁgc_zumk =A% :;ﬁ”fckﬂ =T+ (f(E) - T, 2141 — )
+ LWy
B T e €
RN - BRIl = ) A Awg — Tt -+ AA?
A=) ﬁ;)/\k(ﬁﬂ “ A A Az
— %)2(1 — ) 2 — AxAzg — Drzi -+ MAZ?
W,

< 7*‘_2‘32”% -3 + %“fficﬂ = ®* + nlf(2) %, Thns — )
+ Q%YQ (lox — 21”4 260 (ex — o1, we — 7))
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- (Aol B2 00 , o— )a - ?

Gk I "25‘"‘)(1 =) |y, — ApAun — Dy, + ApAZ|?

(=) (= B Ae(2e — Ak
2

1— v ){1— B
Q= =By s A — T+ AT

2
< Q- - c*)
- 2
+ M{f (@) — T, xp1 — T) + (1 — )0k {2k — 21, we — )
Q1= B = an)y
2
Zz (1 — ’Yk)(l _Qﬁk)(l 7 ak) ”wk ~ApAwy, — Typws + /\AATHZ
L (=) - ﬂ;))\k(%‘* k) A2y = Az|]?
(=) = By)
#

Az, — Azl

" 1 _
Doy~ + Sllowrn 7

e(2p — )| Awy, — Azl)?

llze = Az — Tpz + M AZ|2 (4.1.21)

Then (4.1.21) reduces to the following:

ek = 22 < L=l = Nlex =T + 2%(f(@) T, Tper — T)
+ 2(1 = v )0 {xy — Tp1, WK = T)
= (U= (T = B (L — )M (2 — M) || Awr — Az
— (L= ) (U= o) (1= ag) g — ApAwy — Tpwy, + M AT
— (1= ) (1 = B2 = MM Azy, —~ Az|?
— (L= )1 = B)llze — MeAzy, — Doz + MeAwf®. (4.1.22)

For each k € N, we set
S = llzr — 2|7,
pre = (1 — ), m = pro,

M = (1 — ) (1 — B)(1 — an) M2 — M) Awy, — AT|?
+ (1= ) (1 — B) (1 — o) lwg, — MpAwy — Dywy, + A AT ?
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+ (1 =) (1 = B (2 — A Az -~ Az
+ (1 — ’yk)(l -— ﬁ;‘)HZk — MAz, — Uz + z\kAfuz.

As a result, inequality {4.1.22) reduces to the following:

Skr1 £ (1 — pi) Sk + prow and Spyg < Sk — 1 + M

By the conditions (i) and (i), we get that 3,23 pr = -+oo and lmy, 4o M =
0. In order to complete proof, by applying Lemma 2.4.1, it is sufficient to show
that limy_, 4 oo 7k, = 0 implies limsup,_,, . 0% < 0 for any subsequence {7, }iew of

{nk}keN-

Let {nx, }ien be a subsequence of {7 }ren such that lim; , o m; = 0. There-

fore, by the agsumptions of Lemma 2.4.1; we can conclude that
lim || Awy, — AZ|| = 0;
i—+oo
i—+o0

lim g, = Ay Awy, — Trwr, + Mg AT|| = 0;

400

lim ”zk,- N /\kiAzki > I‘kizki + )\ALAT“ = 0.

i—=too

This implies that

i—i-;l}l}loo ”Fkiwki — Wy, H =0; (4.1.23)
im [T 25, — 20| = 0. (4.1.24)
i—too

From (ii), we have

“wki — Ty “ = gki”a:ki - mki-—l“ -0 ("" - +OO)' (4-125)

On the other hand, we get

”Pkizki - wkf“ < ”kazki — 2y “ + “zki - wki”

= | Thizis — 20|+ (1 — ) Thn, — wi | (4.1.26)
From (4.1.23) and (4.1.24), we otain that

.lim ||I‘k!.zk‘. — Wi, n = 0. (4.1.27)
=400
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Since lim infi. 400 Ax > 0, there exists A > 0 such that Ay, > A forall k € N. In
particular, Ay, > A for all 7 € N. By the condition (2.4.6) of Lemma 2.4.6, one has

T8 P, — || < 2| Twn, — wi . (4.1.28)

From (4.1.28), we can get that

Jim TPy, — wl) = 0. (4.1.29)
Let
7= tf(z) + (1 =TT Pz, € (0, 1) (4.1.30)

Applying Theorem 2.3.16, 2 converges strongly to the unique fixed point T =

Projiasm— o) (F(2)) as ¢ — 0. Therefore, we have

2 — w2 = JIECFE) — wi) + (1= (T3 72 — wi) P
< (1 — D282 — wp, |I° + 26(F (F) — 21, 20~ Wiy
+ 26z — Wiy, 7 — Wiy)
< (1 XT3 2 — TP w | - 15 P, — w1
F 24(F(E) - 21y 20— Wiy 26|24 = wg [P
< (1= )2 (e — i, ||+ 105 P — 2o )2

126 f (B) = 2, 2 — wy, )+ 24| 2 — wi || (4.1.31)
The inequality (4.1.31) reduces to the following:

(ze — f(Z), 20 — wiy)

1—1)° 2t —1
< B P, w4 2
(4.1.32)
Combining (4.1.27) and (4.1.32), we get that
1
limsup(z — f(T), 2 — wg;) < —{[(1 — 1)+ (2t — 1)]ME, (4.1.33)
i—+toc

where My = SupPjen e(ony 126 — W || By taking t — 0 in (4.1.33), we obtain that

limsup(z — f(Z),T — wy,) < 0. (4.1.34)

i+
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Let us consider,

(Z - f(i)a 2 :Bki) = (z - f(i)vz - wki) + 6k‘i<z - f(?f)::tki - $k5-1)
< (z — f(f):z - wki) + gki ”z - f(z)””r“u - mki—l”

(4.1.35)
From (4.1.35), one has
lim sup{Z — f(%),7 — xy,) < 0. (4.1.36}
i—=+co
Next, we claim that Nmy_,4e ||zr+1 — @] = 0. By Algorithm 4, we have the

following estimates:

[2kigs = Bl < Wl @) — i |+ (1= e 190 — 2
<l @) - el + Q= ) Uy = widl + llwx, — 1)
<l @) =zl 4 (1 — ) lwe, — o
+ (T =3, (1 — B )Tk 200 — wi, |} {(4.1.37)

From (4.1.37), by using the boundedness of {@x }rem, the condition i, and (4.1.25)
and (4.1.27), we obtain that

1141}100 l|$ki+1 N .'8,:;1.“ =0. (4138)

i

Combining (4.1.38) and (4.1.36), we infer that

limsup{z — f(T),T — &) < 0.

i—34-00
Hence, limsup;_, ., ox, < 0. By Lemma 2.4.1, we observe that limg . Sy = 0,

that is zp, — T as k — +o00. We thus complete the proof. O

Remark 4.1.3. The condition (ii) in Theorem 4.1.2 is verified, if we choose 8y

such that 0 < 8, < 0}, where

. £ .
min {9, Torea T EI} , iz # 2o,

g, otherwise,

7

and {e }ren is a positive sequence such that limg_, 4o % = 0.
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411 Applications

This subsection, we present the applications of the Algorithm 4 in the previous

part in convex minimization problems and image restoration problems.

Convex Minimization Problems

Let A : H — R be convex and differentiable function and g : H — R be a convex
lower-semicontinuous function. We consider the convex minimization problem as

follows: find T € H such that
h(T) + g(T) = l]lel?l_fil{h(ﬂl) + g(z)}. (4.1.39)

By using Fermats rule, the problem (4.1.39) can be written in the form of the

following problem as: find @ € H such that
0 € VA(Z) + d¢(z),

where Vh is a gradient of i and Jg is a subdifferential of g.
Remark 4.1.4. [84] If a function K : H — H is {1/L)-Lipschitz continuous,

then K is I-mverse strongly monotone.

By applying Theorem 4.1.2 and set A = Vh and B = dg, we can obtain the

following result.

Theorem 4.1.5. Let ‘H be a real Hilbert space. Let h : H — R be convez differ-
entiable function with a (1/L)}-Lipschitz continuous gradient Vh and g - H — R
be a conver lower-semicontinuous such that (Vh+8g) 1 (0) # 6. Let f : H—>H
be a contraction mapping with constant ¢ € (0,1). Let {xxtren be generated by

2o, €EH

'
Wy = Tg + O{zp — Tp—1),

Zp = O + (1 — ah)Jff(wk — )\thwk),
ye = Brwi + (1= Bi)Jo (21 — MV hay),

| Tg1 = vl () + (1 — )y, for all k > 1.

(4.1.40)

Assume that the following conditions hold:
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(i) Hmyyio0vk =0 and ) iy 1 = +00;
(i) limp oo %‘;Hu —ap_1|| = 0;
(iti) 0 < liminfy oo Ap < limsupy_, o Ax < 2L;

(iv) Hminfrqe(l —ag)(1 — Br) > 0.
Then, the sequence {Ty}ren converges strongly to T := projihiag-1(0)(f(2))-

Next, we present some comparisons between our method and Kitkuan et al.s

algorithm in Equation (4.1.6).

Example 4.1.6. Let K € R™* and b € R! with s> [. Let g : R® — R be defined
by g(z) = ||z]l1 for all x € R*, and & : R® — R be defined by A(z) — ;|| Kz — b||3

for all = ¢ R®. 'To find the solution of the minimization problem as follows:

1
minimize —2-”K’b — bz + ||z,

subject to 3 € R®. (4.1.41)

By setting this, we obtain that for each =z = (z!,2%, ..., z°) € R®

) Ak Ak
Jff(rc) = (max{0,1 — A—;’}mi, max{0, 1= -":g"-}fb’g, ..,max{0,1 - %}ms),
kN |2 |

Vh(z) = KT(Xz — b) and Vh is |K||*-Lipschitz continuous, where K¥ is a

transpose of K.

Firstly, we random vectors zg,z; € R® and b € R’ and matrix K € R/*s,
After that, we compare the performance between our algorithm and Kitkuan et
al.’s algorithm (4.1.6). We set f(z) = £ for all z € R®. We choose the parameters
in this example as follows: ay, == 1T{11}.371’ Br = k_-ll-_]." Vi == ﬁﬁ, Ap = iIKII++1 and

min {%, w———r}—h——} , if zp # TR,

0 = (D s (4.1.42)
% , otherwise.
We perform two algorithms and obtain the number of iterations (k) and the

elapsed times (seconds) by using the stopping criteria : ||z — zp_1] < 1078
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Table 5 shows the behaviors of two algorithms for the problem (4.1.41} with
different sizes of matrix K. In Table 5, we see that our algorithm requires the
least elapsed time to reach the optimality tolerance for all cases. Furthermore,
we can observe that for each size of matrix K, the number of iterations of our

algorithm are smaller than the number of iterations of Kitkuan et al.’s algorithm
(4.1.6).

Table 5: The comparison of two algorithms with different sizes of matrix K

09 Our algorithm Kitkuan et al.’s algorithm (4.1.6)
Elapsed time (s) Iteralions  Elapsed time (s) Iterations
(20,500) 0.35568 4501 1.1314 18517
(50,500) 0.5561 6566 0.7707 15316
(300,500) 0.5716 3158 0.8861 8902
(20,1000) 0.6193 8016 0.9908 19346
(50,1000) 0.9604 8111 1.3478 20877
(300,1000) 2.0653 4871 2.428% 11560
{500,1000) 3.5339 4590 9.8424 12641
(20,2000} 1.1691 8789 1.4671 18546
(50,2000) 0.7983 2869 0.8201 5411
(300,2000) 2.4603 2385 4.2916 6248
(500,2000) 10.2722 4590 11.7226 10107
(1000,2000) 13.9273 3052 20.0587 8617

Image Restoration Problems

In this subsection, we demonstrate the effectiveness of the proposed algorithm
by applying to solve the image restoration problems, which involves deblurring
and denoising images. The image restoration problem can be formulated by the

inversion of the following degradation model:

y =Hz +w, (4.1.43)

where ¥, H, z and w represent the degraded image, degradation operator or

blurring operator, original image and noise operator, respectively.



72

To approximate the reconstructed image is obtained by solving the following

regularized least-squares minimization problem
. J1 2
min ¢ 5 [[Hz —yll; + né(z) ¢, (4.1.44)

where g > 0 is the regularization parameter and ¢{-} is the regularizer. The [
norm is a regularization functional, which is well-known that it is used to remove
noise in the restoration problem. This is called Tikhonov regularization [85]. The

problem (4.1.44) can be formulated by the following problem as:

1
find z € argmin {§[|Hm — e ,LL”:EH}} ) (4.1.45)
zeRs

where y is the degraded image and H is a bounded linear operator, We can
see that problem (4.1.45) can be formed in the problem (4.1.1) by setting B =
Ol - ||z, ¢ = 0.001 and A = VL() where L(z) = 5||Hz — y||3. By using this we
observe that A(z) = VL({x) = II"(Hz — y). Firstly, we degrade image by adding
random noise and different types of blurring. Next, solving the problem (4.1.45)
by using our algorithm in Theorem 4.1.5 and putting f(x) = Z for all z € R,
ar = o7, B = %1 W= Taokiy M = 0.7 and 0y is defined as (4.1.42).

The comparisons of the performance between our proposed algorithm and
Kitkuan et al.’s algorithm in Equation (4.1.6) that was introduced by Kitkuan

et al. [46] are presented. The quality of the reconstructed image is measured by

means of the signal to noise ratio (SNR), that is,

SNR(K) = 20log, 2B _
( )_ 0 OgIU ||3.7—33A||2}
212

where 2 and z;, denote the original and the restored image at iteration k, respec-

tively.

The comparisons between our proposed algorithm in Theorem 4.1.5 and Kitkuan

et al.’s algorithm (4.1.6) in image restoration problems are presented in Figure
3-4.
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(d)

Figure 3: The degraded and reconstructed images with different techniques

Figure 3: (a) shows the original image ‘Pirate’, ‘Lena’, and ‘Dog’ image,

respectively; (b) shows the images degraded by Gaussian blur and random noise,
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average blur and random noise, and motion blur and random noise, respectively;
(¢) shows the reconstructed images by using Kitkuan et al.’s algorithm; and (d)

shows the reconstructed images by using our algorithm in Equation (4.1.40).
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Figure 4: Illustration of the behavior of SNR. for our algorithm and Kitkuan et
al.’s algorithm (4.1.6) in Figure 3c,d

Figure 4: (a) The behavior of SNR. for two algorithms of ‘Pirate’ image in
Figure 3c,d; (b) The behavior of SNR. for two algorithms of ‘Lena’ image in
Figure 3c,d;and (¢} The behavior of SNR for two algorithms of ‘Dog’ image in
Figure 3c,d.

4.2 Inertial Mann-type Algorithm for a Nonexpansive Map-

ping to Solve Monotone Inclusion Problems

In this section, we propose iterative method to solve the following monotone

inclusion problem.

Find z € H such that 0 € Az + Bz + Cz, (4.2.1)
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where A, B, C are maximal monotone operators on a Hilbert space H and C is
§-cocoercive with parameter § > 0. The problem (4.2.1) was considered by Davis
and Yin {86} and it can be reformulated to the fixed point problem for nonex-
pansive mappings. Therefore, it is interesting to study the fixed point problem in

order to apply for solving the problem (4.2.1).

Let T : H — H be a nonexpansive mapping.

Problem: the fixed point problem for the mapping T generally denote as,
find z € H such that 2 = T'z.

A sohution of the fixed point problem for nonexpansive mappings was approx-
imated by the iterative method which was introduced by Mann [48]. In addition,
the “Mann Iteration” stated that

Tpy = aptp+ (1 — ap)Tap, VE 21, (4.2.2)

where z; € H and {og}ren 18 a real sequence in {0, 1|. The weak convergent re-
sutt of the iterative sequence {zy}ren was obtained under control condition that
> ko1 k(1 —@i) = +00, see [87,88]. In order to obtain the strong convergence
for the fixed point solutions of nonexpansive mappings, one of the most impor-
tant methods to solve the fixed point problem for a nonexpansive mapping was
introduced by Halpern [89]:

Tpp1 = ape + (L — ap)T'zy,, VE>1, (4.2.3)

where z1,u € H and (04,)5>1 is a real sequence in [0, 1}. In direction to study and
improve this algorithmn (4.2.3), many results have been presented (see [44,50-56]).
In 2000, Moudafi {57] proposed iterative method which involved the concept of
viscosity to solve strong convergence of the iterate. Moreover, many authors were
interested in studying and developing Moudafi’s algorithm. The several methods
that are in reference to this study are reviewed in the next extensively (sece, for
example, [49,55,58-61]). Recently, Bot et al. [62] proposed a new Mann-type
algorithm (MTA) to solve the fixed point problem for a nonexpansive mapping

and proved strong convergence of the iterate without using viscosity and projection



76

method under some control conditions of parameters sequences. Their algorithm

was defined by
(MTA) Tht1 = (l - a';,;)ﬁk:l’:k + oz, YVE>1, (4.2.4)
where z; € H and {ay bren, {6k }ren are sequences in (0, 1].

In 2015, Combettes and Yamada [63] presented a new Mann algorithm com-
bining error term for solving a common fixed point of averaged nonexpansive
mappings in a Hilbert space. By using the concept of the inertial method, the
technique of Halpern method and error terms, Shehu et al. [41] introduced an

algorithm for solving a fixed poiut of a nonexpansive mapping which was defined

as follows:
To, T1 € H:
Yo = Ty + (s — 24-1), (4.2.5)

Thpr = oo + Ok + ML Yk + g,

for all k > 1, where {0; ren C [0,0] with 8 € [0,1), {ar}ren, {Brtren and {Vi}ren

are sequences in (0, 1] and {ex }ren is a sequencein #.

Being motivated by the above facts, we intend to accelerate the speed of
convergence by avoiding the viscosity concept, hence, we propose a Mann-type
method combining both inertial terms and errors for finding a fixed point of a

nonexpansive mapping in a Hilbert space.

Let a nonexpansive mapping 7' from H into itself be such that Fix(T) # @.
We propose the following algorithm.
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Algorithm 5:
Initialization: Given {8 }ren € [0, 6] with 8 € [0,1) two sequences

{ap}ren and {Bi}ren in {0,1] and a sequence {ep}ren in H. Choose
g, 1 € H arbitrarily.

Iterative Steps: For a given current iterate z3_;,zp € H, calculate as
follows:

Step 1.Compute

Yk = Tp + O (Tr — Tho1).

Step 2. Compute

Trr = Onlk + an(Téryx — Oktn) + &x-

Update k := k + 1 and return to Step 1.

- 'We first state the assumptions that we will assume to hold through the rest

of this part.

Assumption 4.2.1. Let {og}ren and {0k }ren be sequences in {0,1] and let

{er}ren be a sequence in H. Assume the conditions are verifiable, as follows.

(i) liglig)f ap > 0 and Y% Jap — a1 | < oo,
(11) Lll}l—{l}oo 6k = 1, z:ﬁc{(l v 5&) = -too and z::oi ‘6L = 6};-1' < 400,

(i) Doa% llexll < +oo.

We have verified Assumption 4.2.1 as shown in the following remark.

Remark 4.2.2. Let z € H. Weset §, = 1 — ﬁi’ o =5 — TEEW and ey = i

for all k£ > 1. It’s easy to see that the Assumption 4.2.1 is satisfied.

We discuss the convergence analysis of the proposed algorithm. Beginning

with given boundedness of our algorithm as in the following lemma.

Lemma 4.2.3. Let T : H — H be a nonezpansive mapping such that Fix(T) #
and let {z;}ren be generated by Algorithm 5. Let {04 }ren be a sequence in [0, 0]
with 6 € [0,1) such that Y755 0xllzx — 21| < +oo. Suppose Assumption 4.2.1
holds. Then {zy}ien is bounded.
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Proof. Let k € N and a sequence {2 }xen be defined by
Zrer = Oz + Q’k(Téka — Or2p) + Ex

By nonexpansiveness of T, we have

Hzker — zenall = 11— o)d(ye — 21) + an(Tpyn — Torzi)|

IA

(1 o)l — 2zl + ndillun — 2l

Ollyn — 2l

Sk l|lzn — 2+ Orln — 2r1) ||
<o Ollzy - 2l + SxOnl|ms — |

< Bpllze =zl Olln — 2pall. (4.2.6)

By applying Lemma 2.4.1, we have klil}:l |z — 2z} = 0.
—r 00

Next, we expect that {2z }ren 18 bounded. Let z* € Fix(7'). It follows that
zrer — 7)) < Hokzp + ap(Torzp — Spzx + e — 27)||
< (L= ap)lldezn = 2" [| + axl| Tz — =™ + |le|
< Noxzn — @™t + [lex]
= {6k (2 = 2%) + (G — )" |} + flex]
< Siflzn - @™+ (1= ) [la™ ] + llexl]- (4.2.7)
Notice that 7 e, < 400, we can apply Lemma 2.4.1 to obtain that {zx}ren is

bounded. Seeing that Aligl [zr — zell = 0 and {2t }ren is bounded, we get that
. v—r o0

{z }ren is bounded. |

Theorem 4.2.4. Let T : H — H be a nonezpansive mapping such that Fix (T} + @
and let {z;}ren be generated by Algorithm 5. Let {0 }ren be a sequence in [0, 0]
with € [0,1) such that 2055 0|z, — zx 1| < +oo. Suppose Assumption §.2.1

holds. Then, the sequence {Ty}ren strongly converges to &* := Projpiy e (0).

Proof. From Lemma 4.2.3, we have {@)}ren is bounded. Moreover, {y}ren is
also bounded. Let ¥ := projgiyr(0). Then 2* € Fix(7'). By using Lemma 2.3.14
(iii), we get that

18xys — 2*[* = lldey — 27) + (& — 1)z" |
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= 8illyn — &7 + 2061 = 82",y — 2%) + (1 = &) e ?

< G llaer — &7+ Oz — mp )P+ (1 — ) (20 (—2™, y — 27)
+ (1= &)l="|1*)

< Gellme — 2 -+ 20 (Bn(n — 2 ), g — 27)

(L= 8) (26 (—2", gk — ) + (1= Ge)llz*]*) . (4.2.8)

By using Lemina 2.3.14 and the nonexpansiveness of T', we have

I @ksr — 2502 = [|6xvk + an(TOxys — Sxux) + £ — ¥
= || (L= o) (B — @) + an (T — 27) + e [®
<1 = ap) (G — %)+ an(T oy — 27)|* + 2(en, Trpr — 27)
= (1 =)y — «*|1* + ol Thys — >
— o (1 — e )| Torys — Sxwrll® + 2{ek, Boys — z*)
< |8kyk — 27H2 + 2{ex, Brgy — 7). (4.2.9)

Combining (4.2.8) and (4.2.9), we obtain that

i = @)1 < Sellme — 2"+ (1 = 60) (206" ye — &) + (1 = &) [1* %)

+ 26:(Oklay — Tior), yp— &%) + 2(Er Trg1 — )

- < Bllzn— o2 5 (1= 8) (26’ 9 — ) + (1 = 8) ")
+ 28 lys — 1 Gl @r — me)) F 2lirs — o [ lesl):
(4.2.10)

Next, we claim that ||z — zxl| - 0 as n — +oco. By the boundedness of a
sequence (yx)x>1 and the nonexpansiveness of 1", we have
ek — 2kll = 0kys + an(Torye — dxyi) -+ &x — ()l
<L — o) (Gre — Sk—1¥p—1) + (@ — op—1)0k 1 s 1|
+ e (T oy — TOheryr1) + (0 — g 1) Ty yp |

+ [ler — exal|

< Moy — Sp—1¥r—1|l + lar — a1}l k-1l + 1 T0k—1¥1-11})

+ [lex — ex-ll

< ||5A:yk - 5.!;—13}1:-1” + |O!k — Oékx1|o1 + ||€k - 5k—1||, (4-211)
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where Ci > 0. After that we will consider the term ||6xyr — dx-1yx-1] in the
inequality (4.2.11).

Let us consider,

N8k — Serte-a |l = 18y — ya—1) + (6 — G- 1)t |
< Sellur — y-all + 18k — S-ad (ol
< Ollze — zrotl] + Oebillzr — Br—1|l + Snbr1||Th 1 — T 2]
+ |0k = k1| ([lya-1 1)
< Spllzr — zroal] + Oullen = 21 || + Br-1llwi—1 — znal|

NAT TN [0 A) (4.2.12)

where C, > 0. Combining (4.2.11) and (4.2.12), we get that

Nzrer = 2l < S llze — zpoall + Orllen — ze—sll + Oxrllwra — 2n 2|l
~+ lak A an_lic‘l -+ |6A = ék,ﬂC‘Q + HE,{; = Ek_1||. (4.2.13)
By applying Lemma 2.4.1 and the Assumption 4.2.1, we can conclude that

lzrsr — zx|| = 0 as k = +oo.

In the following, we prove that ||T8zys - Sryxll — 0 as k = +o00. We observe
that
T8y — Setnll = N1 L0y — Zrrr + Tryr — Ok

<Nk~ wrpa |l + [lzner — Syl

= (1 — ) (T — Gin) — €l
+ 11 = 8k + SxTrrr — Sxnl

< (1 — ap)lIToryr — Sywll + llewll + (1 = i) izl
+ Sflzea — vl

= (1= a)|T0kye — deyell + el + (1 — 6e)l|zers
- Sullziss — ml] + G30ellk — ol (4.2.14)

It follows that

1
NTorys — Sryrll < a(“%” + (1 = d}llersr ]l + Onllwrsr — 2]
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-+ 6k8k[|ﬂ}k - mk—l”)- (4215)

Since Llim | k41 - zx|| = 0 and the properties of the sequences involved, we can
o—r+00

conclude that lim || Tézy, — Spyel = 0.
k—too

In order to show that the sequence {zy}ren strongly converges to z*, it is

sufficient to prove that

lim sup{—z*,yx — &*) < 0. (4.2.16)

n—+0o

On the other hand, assume that the inequality (4.2.16) does not hold then there

exists a real number & > 0 and a subsequence (yy, )ien Such that
(=z"yr, —2) 2 k>0 Ve > 1.

For {yx }ren i8 bounded on a Hilbert space H, we can find a subsequence of {yx }ren
weakly converges to a point y € H. Without loss of generality, we can assume that

Y, — Y as © — +o0. Therefore,

0<k< lim (2% y, =~ 2") = (-~ y=2a7). (4.2.17)
t—ro0

Notice that REI-POO 0)p = 1, we get 0p,yp, — ¥ a8 ¢ —+ +o0. Applying Lemma
2.4.4, we obtain that y € Fix(1'). With this, we have {(—z*,y — z*) < 0, which is
a contradiction. Hence, the inequality (4.2.16) is verifyed. It follows that

lim sup (286 (=", g — =) + (1 = ) 2" |”) < 0.
Using Lemma 2.4.1 and (4.2.10), we can conclude that lim =z, = z*. Based on

k—+oo
what is described earlier, the proof is complete. ]

Remark 4.2.5. The assumption of the seqence {0 }ren in Theorem 4.2.4 is ver-

ified, if we choose 85 such that 0 < 8 < 8y, where

; 58 T
min {9, T } , i @y # g,

4, otherwise,

5 —

and 3355 o < +oo.
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4.2.1 Applications

This subsection is devoted to discussing the applications of the Algoruthm 5
in the monotone inclusion problems (4.2.1). We assume that zer(A+ B+ C) # 0.
We propose the following algorithm for solving the problem (4.2.1).

Algorithm 6:
Initialization: Given {6k }ren € [0,60) with 8 € [0,1), p € (0, 26), two

sequences {ay tren and {O; bren in (0, 1] and a sequence {eg}ren in H.
Choose 2y, 1 € ‘H arbitrarily.

Iterative Steps: For a given current iterate z,_1,2; € H, calculate as
follows:

Step 1.Compute

ay = zp + Opon — 1),
Y = Jf((skak)a

Zp = Jf(Zyk — 5;;0* ~ ,U.Cy;,)
Step 2. Compute
Try1 = Opap -+ ar(zr — Yi) + &

Update k := k 4+ 1 and return to Step 1.

The above algorithm can be rewritten as
Th1 = Ok + a[J7 0 (277 —1d — puC o J2) + Id — J |(8rar) + e
= dray, + ap(Téar, — Srar) + &k
where xg, 21 € H, ay = 2 + O (x) — 2p—1) and

Ti=J}o@J2 —Id—pCoJly+1d—J7. (4.2.18)

The following proposition is the important tool for verifying the convergence

of Algorithm 6 (see [86, Proposition 2.1])

Proposition 4.2.6. Let 71,75 : H — H be two firmly nonexpansive operators
and C be a §-cocoercive operator with § > 0. Let p € (0,28). Then operator

T = Id—Ty+T10(2To— Id— pCoTy) is a-averaged with coefficient o = Z«%ﬁ < 1.
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In ﬁartiéular, the follo{uing inequality holds for all z,2weH

1Tz = Twl? < 12— wf? — L= 1d - )z — (1d - Ty

84

The following lemma is a characterization of zer(A + B + C).

Lemma 4.2.7. [86, Lemma 2.2] Let A : H — 2% and B : H — 2% be mazimal
monotone operators and C : H — H be a §-cocoercive operator with 6 > 0.

Suppose that zer{ A+ B + C) # 0. Then
zer(A + B + O} = J2 (Fix(T)),
where T = J o (2% — Id = pC o JB) + Id — I with p > 0.

Remark 4.2.8.

(i) If we set Cw = 0 for all z € H in Lemma 4.2.7, zer(A + B) = JE(Fix(T)),
where T := Jf o (277 — Id)+ Id - JB with pu > 0.

(i) If we set Bz = 0 for all x € H in Lemma 4.2.7, zer(A+ C) = Fix(T), where
T = J o (Id - pC) with p > 0.

Theorem 4.2.9. Let A, B . H — 2" be two mazimal monotone operators and
C : H — H be §-cocoercive with & > 0. Suppose that zer(A + B + C) # .
Let {0 }ren be a sequence in [0,8] with 8 € (0,1) and p € (0,25). Let {xx}ren,
{yi}ren and {zi}ven be generated by Algorithm 6. Assume that the Assumption

4.2.1 holds and 3123 Okl|zx — zx—1|l < +oo. Then the following statements are

true:

(a) {zx}ren strongly converges to &* := Projpiyr (0), where
T :=Jto(2J8 —Id—uCo J7)+Id— JF for some p > 0.

(b) {¥r}ren and {z}ren strongly converge to J2(z*) € zer(A+ B + C).

Proof. (a): Let {zx}ren be generated by Algorithm 6. Then the iterative method

can be rewritten as

Tpy1 = pag + ap(Térar — drar)
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where o,z € H, ai, := Ty + Ox(2x — zx—1) and

T=Jfo(2J7 — Id—pCoJ))+1d—J7.

By applying Proposition 4.2.6, we get T' is nonexpansive.

On the other hand, by Lemma 4.2.7, we obtain that
JP(Fx(T)) = zex(A+ B+ C) # 0.

It means that Fix(T) ## §. By applying Theorem 4.2.4, we have the sequence
{@x}ren strongly converges to &* 1= Projpiyy(0) as k — +oo.

(b): The sequences {ay}ren as Algorithm 6, we obtain that a; — @ as k — -f-c0.
Since J? is continuous, we have y, — J2(¢*) € zex(A + B+ C). From the last

line of Algorithm 6, we get that klix;r_l Lz — x|l = 0. This proof is complete. [
i3 4oa

Using similar arguments as in Theorem 4.2.9 and set Cz = 0 for all z € H,

we can prove the following results,

Corollary 4.2.10. Let A, B : H —» 2% be two mazimal monotone operators and
zer(A -+ B) be a nonempty set. We consider the following algorithm.:

’3
ar = g+ O (me— 1)y

) Yi = J;;B((Ska‘k):

z = JHN 2y — Sray),

(Vk > 1)

| Zr1 = Spar + on(z — vk} -+ e,

where zo,t1 € H, u € (0,28), {fx}lren C [0,0] with 6 € [0,1), and {o}fren
and {6y }ren are sequences in (0,1] and {ex}ren 15 @ sequence in H. Assume that
the Assumption 4.8.1 holds and 373 0xlzk — zp-1]| < +00. Then the following

statements hold:

(a) {zx}ren strongly converges to z* := projFix(Jﬁo&JfmId)+Id-Jf)(0) for some

o> 0.

(b) {wr}ren and {2 }ren strongly converge to Jf(x*) € zer(A + B).
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Proof. Tt fbllows from the proof. of Theorefn 4.2.9. O

Using similar arguments as in Theorem 4.2.9 and set Bz = 0 for all z € H |

we can prove the following results.

Corollary 4.2.11. Let A : H — 2" be a mazimal monotone operator and C
H — H a b-cocoercive operator with § > 0 and zer(A + C) # 0. Let u € (0,26)

and {zx }ren be generaled by the following iterative scheme

Tp, T & H)
Ur = Ty + O — Tam1), (4.2.19)
Tt = AL — o)+ an (S — LOGYE) T £k,

for all k > 1, where {0} ren C [0,6] with @ € [0,1), and {aytreny and {0k }ren are
sequences m (0, 1] and {ex}ren 15 @ sequence in H. Assume that the Assumption
4.2.1 holds and Y 325 Oy l|zy — @p—y || < +o0.

Then, the sequence {2 }ren strongly converges to a point proj,e,(asc)(0)-

4.2.2 Numerical experiments

To illustrate the behavior of the proposed iterative method, we provide a nu-
merical example in a convex minimization problem and compare the convergence
performance of the proposed algorithim with some algorithms in the literature.
Moreover, we also employ our algorithm in the context of image restoration prob-
lems. All the experiments are implemented in MATLAB R2016b running on a
MacBook Air 13-inch, Early 2017 with a 1.8 GHz Intel Core i5 processor and 8
GB 1600 MHz DDR3 memory.

Convex Minimization Problems

In this subsection, we present some comparisons among Algorithm 6, MTA,
and Shehu et al. algorithm (4.2.5) ( [41, Algorothm 3.1]) in convex minimization

problem.
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Example 4.2.12. Let f : R® > R be defied by f(z) = ||z]|; for all z ¢ R®, g :
RS — R be defined by indicator function g(z) = dw(z) with W = {z: Az = b}
for all z € R®, where A : R® — R is a non-zero linear transformation, b € R' and
s>l and h : R* — R be defied by h(z) — 3||z|3 for all z € R®. Since s > I, we
get that A is an asymmetric transformation. Finding the solution of the following

problem:

1
minimize ||z|); + dw (z) + §||'L||§

subject to z € R°. (4.2.20)

The problem (4.2.20) can be written in the form of the problem (4.2.1) as:
find z € R® such that 0 € d||z|; -+ ddw (2) + Vh(z), (4.2.21)
where A = 3|+ |i, B =8dw(:) and C = Vh().
In this setting, we have J2W(z) = z + AT(AAT)" (b — Ax),
Jg”'”’(m) = (max{0,1 — Té%'}ﬂ;l,max{(),l - ﬁ}mg, ..,max{0,1 — TﬁT}mS)’
and Vh(z) =z, where z = (=, 2%, ..., %) € R®.

We begin with the problem by random vectors z, zg,z; € R®* and b ¢ R
and matrix A € R™*. Next, we compare the Algorithm 6 performance with two
remained performance. The parameters that are used in our algorithi are chosen

as follows: ay =1 — (L,—J;I-E)-z, Sp=1-p, &= tioery?> @nd

. 1 1 if =« i
9}.; = fon {5’ {k+1) szﬁfck—l“} ’ if T ?é ety (4222)
% , otherwise.

We choose o = ;TJIE: S =1 = 2(T1+1) and e; = £, for the algorithm of Shehu
et al. (4.2.5) in [41]. We obtain the CPU times (seconds) and the number of
iterations by using the stopping criteria : ||y — yp_i1] < 1072
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Table 6: Comparison: Algorithrh 6, MTA and Shehu et al. Alg. (4.2.5)

Algorithm 6 MTA Shehu et al. Alg. (4.2.5)

(1,5) CPU Time (s) Iterations  CPU Time (3) Herations  CPU Time (s) lterations
(20,700} 0.0218 7 0.0428 278 0.0756 626
{20,300} 0.0189 7 0.0914 350 0.1745 796
(20,7000} 0.0302 7 1.7751 1273 0.0977 53
(20,8000) 0.0308 6 1.2419 1290 0.0671 54
(200,7000) 0.0365 8 1.9452 858 4.6538 2028
(200,8000) 0.0406 7 2.5115 977 0.1425 93
(500,7000) 0.0403 7 4.1647 892 8.3620 1956
(500,8000) 0.0548 8 4.3239 813 9.0929 1835
{1000,70680) 0.0703 7 6.7954 786 14.1693 1751
(1000,3000) 0.0728 7 7.8302 825 16.3752 1784
{3000,7000) 0.1597 7 18.0559 779 44.8129 1940
(3000,8000) 0.1763 7 22.3514 841 49.6872 1891
(100,80000) 0.1376 8 26.6863 1489 1.5926 94
(1000,30000) 0.6948 8 344.7048 3289 9.4181 93

In table 6 we present a comparison among the numerical results of Algorithm

6, MTA, and Shehu et al. Algorithm (4.2.5) in different sizes of matrix A. The

smallest number of iterations is generated by Algorithm 6 for all different sizes

of matrix A. Moreover, Algorithm 6 requires the least CPU computation time to

reach the optimality tolerance for all cases.

%Y pall
E
"

= tigtatn e

| A

| - statuata Ay,

10*
Kurmber of Eeratons (k}

(a) Case: (I,s) = (100, 80000)

|

1

10*
Kumber of Rerations (x)

-m’

(b) Case: (I,s) = (500, 7000)

Figure 5: Illustration the behavior of ||yy — yg_1|| for Algorithm 6, MTA, and
Shehu et al. Alg. (4.2.5)

Figure 5 shows the behavior of ||yx — yr_1]| for Algorithm 6, MTA, and
Shehu et al. Algorithm (4.2.5) in two different choices of (I, s). We can observe
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that by using our algorithm the behavior of the red Tine Algorithm 6 is the best

performance.

Image Restoration Problems

In this subsection, we apply the proposed algorithm, image restoration prob-
lems, which involves deblurring and denoising images. We recall the following

problem as:

1
find z € argmin {§||Hfs —yllz+ ,u[|:c||1} , (4.2.23)
TERS

where y is the degraded image and H is a bounded linear operator. Note that
problem (4.2.23) is a spacial case of problem (4.2.1) by setting A = 9f(-), B =0,
and C = VL(-) where f(z) = ||z|, and L{z) = 1||Haz — y||3. This setting we
have that C(z) == VL{z) = H*(Hz — y), where H* is a transpose of H. We begin
the problem by choosing images and degrade them by randem noise and different
types of blurring. The random noise in this study is provided by Gaussian white
noise of zero mean and 0.001 variance. We solve the problem (4.2.23) by using
our algorithm in Corollary 4.2.11. We set oy, = 1 — m, O =1—
0.001, e, = 0 and @ is defined as (4.2.22).

1 _
ookt M —

We compare our proposed algbrithm with the inertial Mann-type algorithm
that was introduced by Kitkuan et al. [46]. In Kitkuan et al. Algorithm ( [46,
Algorithm in Theorem 3.1]), we choose ¢, = f, ap = 7, A = 0.001 and
h(z) = Z|z|3. We assess the quality of the reconstructed image by using the

signal to noise ratio (SNR) for monochrome images which is defined by

SNR.(k) = 201 ﬂ
( ) - Ogm ||113—$k||%,

where z and zy denote the original and the restored image at iteration k, respec-

tively.
For colour images, we estimate the quality of the reconstructed image by using
the normalized colour difference (NCD) [90] which is defined by
o \/(L?,j — Lig(B)) + (uf; — w3 (R))? + (v8; — vi3(k))?
SR S A (L)% + () + (7,2

NCD(k) =

b]
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where 4, j are indices of the sample position, N, M characterize an image size and

o o
LE5 uds

vy, and Ly ;(k}, u;;(k), vi;(k) ave values of the perceived lightness and
two representatives of chrominance related to the original and the restored image
at iteration k, respectively. We generated the noised model in order to obviously
see the differences between degraded and original figure as follows. Figure 6
firstly shows the original image. Secondly, the degrated image was corrupted by
average blur (size 20 by 20} and Gaussian noise (zero mean and 0.001 variance).
We randomly selected parameters which visibly showed the differences sharpness
level and. Lastly, reconstructed images are shown. Figure 7 firstly shows the
original image. Secondly, the degrated image was corrupted by Gaussian blur
(size 20 by 20 with the standard deviation 20) and Gaussian noise (zero mean and
0.001 variance). With this point, we found that any adjustment of the standard
deviation as much as small might not shown the difference between degraded and
original figure. Lastly, reconstructed images are shown. Figure 8 firstly shows the
original image. Secondly, the degrated image was corrupted by motion blur (the
linear motion of a camera by 30 pixels with an angle of 60 degrees) and Gaussian
noise (zero mean and 0.001 variance). We randomly selected parameters which
visibly showed the differences sharpness level. Lastly, reconstructed images are
shown. The comparisons between our proposed algorithm (4.2.19) and Kitkuan et
al. Algorithm ( [46, Algorithm in Theorem 3.1]) in image restoration problems are
presented in Figure 4 and Table 7. Furthermore, we also present the comparison
Kitkuan et al. Algorithm ( [46, Algorithm in Theorem 3.1j), our algorithm, and
the well-known technique for image restoration which is Weiner filtering (WF)
[91,92]. In Figure 5 present the comparative results of two degradation images
'Artsawang’ and 'Mandril’ corrupted by motion blur and different salt & pepper
noise from 0% to 10%.
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(d) Kitkuan et al. Alg. {e} our algorithm

Figure 6: The degraded and reconstructed ‘camera man’ images with different

techniques
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(a) Artsawang

(b) Gaussian blur & random noise (e) Weiner Filtering

(d) Kitkuan et al. Alg. (e) our algorithm

Figure 7: The degraded and reconstructed ‘Atrsawang’ images with different

techniques
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(d) Kitkuan et al. Alg. (e) our algorithm

Figure 8: The degraded and reconstructed ‘Mandril’ images with different tech-

niques

€

Figure 6: (a) shows the original image ‘camera man’, figure (b) shows the



93

images degraded by average blur and random noise (Gaussian noise) and figure
(c), (d), (e) show the reconstructed image by using Weiner filter, Kitkuan et al.
algorithm, and our algorithm (4.2.19)., respectively.

Figure 7: (a) shows the original image ‘Artsawang’, figure (b) shows the
images degraded by Gaussian blur and random noise (Gaussian noise) and figure
(c), (d), (e) show the rcconstructed image by using Weiner filter, Kitkuan et al.
algorithm, and our algorithm (4.2.19)., respectively.

Figure 8: (a) shows the original image ‘Mandril’, figure (b) shows the images
degraded by motion blur and random noise (Gaussian noise) and figure (¢), (d),
(e) show the reconstructed image by using Weiner filter, Kitkuan et al. algorithm,

and our algorithm (4.2.19)., respectively.
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Figure 9: Illustration of the behavior of SNR and NCD for our algorithm and
Kitkuan et al.’s algorithm in Figure 6, 7, and 8.

Figure 9: (a) shows the behavior of SNR for two algorithms in figure (d),
(e) of figure 6, figure (b} shows the behavior of NCD for two algorithms in figure
(d), (e) of figure 7 and figure (c) shows the behavior of NCD for two algorithms
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in figure (d), (e) of figure 8.

Table 7: The performance of the normalized colour difference (NCD) in two

images.

The normalized colour difference (NCD)
Kitkuan et al. Alg. Our algorithm (4.2.19)

Mandril image

k  Artsawang image Mandril image Artsawang image

1 0.99803 0.99842 (0.99663 0.99731
50 0.99660 0.99730 0.99659 0.99727
100 0.99661 0.99729 0.99658 0.99726
200 0.99660 0.99728 0.99658 0.99726
300 0.99659 0.99727 (0.99658 0.99726
400 0.99659 0.99727 0.99658 0.99726

S L]

L S -

0z f,. 'mm

4
51 & pepper 0'sa (%)

(a) Artsawang

s&Y & papper noise (%)

(b) Mandril

Figure 10: Illustration of the behavior of NCD in motion blur and different

different salt & pepper noise from 0% to 10%.



CHAPTER V

CONCLUSION

In this thesis, we presented a number of contributions in the context of solv-
ing constrained convex optinmization problems and monotone inclusion problems

in Hilbert spaces by means of optimization iterative algorithms in two parts.

The first part of the thesis addresses the constrained convex optinmization
problem, which is to minimize a smooth convex objective function subject to
the set of minima of another differentiable convex funetion (3.0.2). In order to
investigate the convergence properties of this problem, we proposed iterative al-
gorithm combines the gradient method with a penalization technique, which is
called rapid gadient penalty algorithm (in short RGPAY). Moreover, the iterative
mathod of our algorithm are developed by using the new computation of gradient
mehod. The convergence results will not go on whenever the key assumptions, As-
sumption 3.1.1, has not been verified. We also presented a numerical example to
illustrate the convergence behavior of the iterate and compared the performance
of the algorithm (RGPA), the algorithm introduced by Peypouquet (DGS) [5]
and the algorithm introduced by Bot et al. (GPIM) [33]. It has been showed
that our algorithm (RGPA) performs better behavior when comparing with other

algorithms.

Subsequently, we investigated the constrained convex optinmization problem,
which is to minimize a nonsmooth convex objective function subject to the set
of minima of another differentiable convex function (3.0.2). In a similar fashion
with smooth convex objective conterpart, we proposed the so-called new forward-
backward penalty method Algorithin, which combines the proximal method with
a penalization technique. Under some appropriate assumptions of parameters,
the main convergence result for the sequence generated by this method was pre-
sented in Theorem 3.2.7. We also discussed a numerical example to illustrate the

convergence behavior of the iterate.

In the second part of the thesis we approached the solving of the monotone
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inclusion problem {4.1.1). This problem involved with the sum of two maxi-
mal monotone operators. The monotone inclusion problem can be considered to
be a generalization of many existing mathematical problems such as fixed point
problems [41] and constrained convex minimization problems [27, 28, 39-44, 46].
We proposed the so-called inertial viscosity forward-backward splitting algorithm
(IVFBSA) for solving the problem (4.1.1). By using some suitable control condi-
tions, the strong convergence was obtained in Theorem 4.1.2. For the virtue of
the main theorem, it can be applied to find a solution of the convex minimiza-
tion problems. As an illustration of the behavior of the proposed algorithm, we

compared the convergent behavior of our method and the algorithm introduced
by Kitkuan et al. [46].

Finally, we investigated the iterative method combining both inertial terms
and errors to find a fixed point of a nonexpansive mapping the strong convergence
of the iterate under some appropriate assumptions was presented in Theorem 4.2.4.
For the virtue of the Theorem 4.2.4, it can be applied to an approximately zero
point of the sum of three monotone operators, that was presented in Theorem
4.2.9. We also illustrated the functionality of the algorithm through numerical

experiments addressing image restoration problems.
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