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CHAPTER I

INTRODUCTION

A popular tool in nonlinear analysis is the fixed point theory. The knowl-
edge of the existence of fixed points has attracted increasing attention and have
been widely investigated by many authors (e.g., [1-4] and the references therein)
because these theorems play important roles in mechanics, physics, differential
equations, and so on. The Banach contraction principle [5] is the first important
result on fixed points for contractive-type mappings, by using the Picard iteration
process for approximation of a fixed point. Since then generalizations of the con-
traction principle in different directions as well as many new fixed point results

with applications have been established by different researchers (refer to [6-8]).

The notion of b-metric spaces as a generalization of metric spaces was intro-
duced by Bakhtin [6], which was formally defined by Czerwik [9] in 1993 with a view
of generalizing the Banach contraction principle. On the other hand, Matthews [10]
presented the notion of partial metric spaces, which is a generalization of metric
spaces, and proved the partial metric version of the Banach fixed point theorem and
applied it in program verification. There are many authors who have worked in b-
metric spaces and partial metric spaces (refer to [11-14] and the references therein).
In 2014, Shukla [15] proposed the notion of partial b-metric spaces, which is a gen-
eralization of partial metric spaces and b-metric spaces, and established fixed point
theorems for Banach contractions and Kannan contractions defined on complete

partial b-metric spaces.

The variational inequality problem (VIP) was introduced by Stampacchia
[16]. After that, Hartman and Stampacchia [17] suggested the VIP as a tool
for the study of partial differential equations. The ideas of the VIP are being
applied in many fields including mechanics, nonlinear programming, game theory
and economic equilibrium (see [18-22]). Many authors have studied extensively
convergence theorem for finding a common element of fixed point set and the
solution of VIP (refer to [23-27]). In 2012, Censor et al. [28] proposed a new
problem, the so-called split variational inequality problem (SVIP), it constitutes
a pair of the VIPs. One of the special cases of the SVIP is the split feasibility



problem (SFP), it was first suggested by Censor and Elfving [29] in the finite-
dimensional spaces. The SFP arises in many fields in the real world, such as signal
processing, image reconstruction, and medical care (see [29-31]). The multiple-
sets split feasibility problem (MSSFP) was first proposed by Censor et al. [32],
which finds the application in intensity-modulated radiation therapy (IMRT) [33].
The MSSFP arises in many fields in the real world, such as inverse problem of
intensity-modulated radiation therapy, image reconstruction and signal processing
(see [29,32,34] and the references therein). The MSSFP includes the two-set split
feasibility problem as its special case, and it is usually called SFP for simplicity.

In [35,36], the sequence of Picard iterates is a strongly convergent sequence
in the solution of VIP. However, Picard iterates cannot use to solve VIP when a
function is monotone and Lipschitz continuous, which can be seen from the coun-
terexample in [37]. During the last decade, many authors devoted their attention
to study algorithms for solving the VIP. Extragradient method for solving the VIP
was studied by Korpelevich [38] in 1976 (see also Facchinei and Pang [39]). Af-
ter that, Nadezhkina and Takahashi [24] suggested a new modified extragradient
method motivated by Korpelevich [38] and Takahashi et al. [40]. They showed that
the sequence generated by the mentioned method converges weakly to a common
element of the set of fixed points of a nonexpansive mapping and the set of solu-
tions of the VIP. In 1974, Ishikawa [41] proposed a new iteration scheme which is
called the Ishikawa iteration for constructing fixed points of a nonlinear mapping.
Since then, several authors studied the Ishikawa iteration process for solving the
equilibrium problems, the variational inequality problems in Hilbert spaces and
Banach spaces (see [42—44]). Krasnosel’skii [45] and Mann [46] used the K-M algo-
rithm to solve a fixed point equation. Note that the K-M algorithm is the special
case of the Ishiwaka iteration process.

In 2002, Byrne [34] proposed the popular CQ algorithm, which is a special
case of the K-M algorithm, to solve the SFP. Afterward, Zhao and Yang [47],
studied the convergence of general CQ algorithm, which is a motivation for Zhao
and Yang [48] to study more general K-M algorithm in a finite dimensional Hilbert
space. In 2006, Xu [49] extended the results of Zhao and Yang [47] from finite
dimensional Hilbert spaces to infinite dimensional Banach spaces and presented

some projection algorithms for solving the MSSFP in Hilbert spaces. Motivated



by the idea of Xu [49)], that is CQ algorithm can be viewed as a fixed point algorithm
for averaged mappings, Xu [50] applied the K-M algorithm to present the algorithm
for solving the SFP. Furthermore, in 2017, Tian and Jiang [51] introduced an
iterative method by combining Korpelevich’s extragradient method with Byrne’s
CQ algorithm, for finding an element to solve a class of split variational inequality
problems under weaker conditions and get a weak convergence theorem. On the
other hand, Buong [52] considered the following algorithms, which is proposed
in [53] and [54] for solving the common solution of variational inequality problem
and split feasibility problem. Moreover, Buong [52] considered the sequence {x,},
which is generated by the following algorithm, which is weakly convergent to a
solution of MSSFP.

In the following, we give a description of the contents of this thesis.

Chapter II. We will recall some well-known definitions and useful results
that will be used in our main results of this thesis.

Chapter III. In this chapter, we introduce a concept of generalized JS-
quasi-contractions and obtain sufficient conditions for the existence of fixed points
of such mappings on p,-complete partial b-metric spaces. Our results extend the
results in the literature. In addition, an example is given to illustrate and support
our main result.

Chapter IV. In this chapter, we separate two sections of convergence the-
orems for solving the variational inequality problems and related problems with

applications as the following:

Firstly, we establish a new iterative algorithm by combining Nadezhkina and
Takahashi’s modified extragradient method and Xu’s algorithm. The mentioned
iterative algorithm presents the common solution of the split variational inequality
problems and fixed point problems. We show that the sequence produced by our
algorithm is weakly convergent. Finally, we give some applications of the main

results.

Secondly, we establish an iterative algorithm by combining Yamada’s hybrid
steepest descent method and Wang’s algorithm for finding the common solutions

of variational inequality problems and split feasibility problems. The strong con-



vergence of the sequence generated by our suggested iterative algorithm to such
a common solution is proved in the setting of Hilbert spaces under some suitable
assumptions imposed on the parameters. Moreover, we propose iterative algo-
rithms for finding the common solutions of variational inequality problems and
multiple-sets split feasibility problems. Finally, we also give numerical examples

for illustrating our algorithms.

Chapter V. We give the conclusion of this thesis.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, several notations and useful results

that will be used in the later chapter.

Throughout this thesis, let R, R, and N be the set of all real numbers, the set
of all non-negative real numbers, and the set of all natural numbers, respectively.

Let C be a closed convex subset of a real Hilbert space H.
A mapping T': C' — C' is said to be k-Lipschitz continuous with & > 0, if
1Tz — Ty|| < kllz - yl,

for all z,y € C. The mapping 7T is said to be nonexpansive when k = 1. We say
that z € C is a fixed point of T if Tx = = and the set of all fixed points of T is
denoted by F(T'). It is well-known that if C' is nonempty bounded closed convex
subset of H and T': C — C is a nonexpansive, then F(T') # { (see [61]). Moreover,
for a fixed @ € (0,1), a mapping T : H — H is a-averaged if and only if it can be
written as the average of the identity mapping on H and a nonexpansive mapping
S:H— H,ie.,

T=01-a)l+asS.
Recall that a mapping f : C — H is called -strongly monotone with > 0 if
(fz = fy,2 —y) 2 nllz -yl

for all z,y € C. If n = 0, then the mapping f is said to be monotone. Further, a

mapping [ is said to be v-inverse strongly monotone with v > 0 (v-ism) if

(fa:~—fy,:v-—y) 2V||f$—f3/||2,

for all z,y € C. In [55], we know that a 7-strongly monotone mapping f is mono-
tone and a v-ism mapping f is monotone and %—Lipschitz continuous. Moreover,
I —«yf is nonexpansive where f is v-ism with -y € (0, 2v), see [50] for more details

of averaged and v-ism mappings.



A mapping T : H — H is said to be firmly nonexpansive, if
1Tz - Ty||* < (Tz - Ty, & — y),
for all z,y € H. Moreover, a firmly nonexpansive mapping is %-averaged.
In [29], we know that the metric projection Pp : H — C'i.e., for z € H,
o~ Poall = min s ~ 1,
is firmly nonexpansive.

We collect some basic properties of averaged and inverse strongly monotone

mappings in the following results.

Lemma 2.0.1. [50,56] We have:

(i) The composite of finitely many averaged mappings is averaged.
In particular, if T; is oz-averaged, where o; € (0,1) for i = 1,2, then the

composite T1Ty is a-averaged, where a = oy + g — Qv

(ii) If the mappings {T;}Y, are averaged and have a common fized point, then

N
F(I Ty Ty) =) F(T)).

i=1
(iii) T is monezpansive if and only if the complement I — T' is 2-ism.
(iv) If T is v-ism and v > 0, then ¥T" is Z-ism.

, . 2 . . 1
(v) T is averaged if and only if the complement I — T is v-ism for some v > 3.

Indeed, for o € (0,1), T' is a-averaged if and only if I — T is %-z’sm.

Proposition 2.0.2. [57] Let D be a nonempty subset of H, let m > 2 be an
integer, and ¢ : (0,1)™ — (0,1) defined by
1
dag,...,0m) = T . (2.0.1)

1+_——*'CT—'
Yhiss

T

For every i € {1,...,m}, let &; € (0,1) and T; : D — D be a;-averaged. Then

T="T - T, is a-averaged, where o = ¢(a, ..., Q).



The following result concerns the averagedness of a convex combination of

averaged operators.

Proposition 2.0.3. [57] Let C be a nonempty subset of H, let {T;}:cr be a finite
family nonezpansive mappings from C to H. Assume that {&;}icr C (0,1), and
{0:}ier C (0,1] such that 3 ,.; 6; = 1. Suppose that, for every i € I, T; is ;-

averaged, then T = ., &;T; is a-averaged, where o =), 1 6; ;.

The following lemmas of the nonexpansive mappings are very convenient and

helpful to use:

Lemma 2.0.4. [58] Assume that Hy and Hy are Hilbert spaces. Let A : Hy —
H, be a linear bounded mapping such that A # 0 and let T : Hy — Hy be a
nonexpansive mapping. Then, A*(I —T)A is W%’sm. Moreover, for 0 < v <
L/J|A|?, I —yA*(I —T)A is || A||*-averaged.

Lemma 2.0.5. [59] Let T, A, N : H — H be mappings where the T is defined by
T = (1-a)A+aN, for some a € (0,1). If A is B-averaged and N is nonexpansive,
then T' is a + (1 — a)B-averaged.

The following results play the crucial role in the next section:

Lemma 2.0.6. [60] Let t be a real number in (0,1}. Let f : H — H be an 7-
strongly monotone and k-Lipschitz continuous mapping, the mapping I —tuf, for

each fized point p € (0, %321), is contractive with constant 1 — tr, i.e.,

I = tuf)z = (I —tufyl| < (1 —tr)]lz -yl

where T =1 — /1 — p(2n — uk?) € (0,1].

2.1 Fixed point theorems for generalized JS-quasi-contractions in com-

plete partial b-metric spaces

We recall the following definitions and preliminary results that will be used
in the sequel. Throughout this section, let C' be a closed convex subset of a real

Hilbert space H.

We begin discussing a basic definition on the setting of metric spaces.



Definition 2.1.1. [61] Let X be a nonempty set. A functiond: X X X — Ry is
called a metric if for all z,y, 2 € X the following properties hold:

(d1) d(z,y) = 0if and only if z = y;
The pair (X, d) is called a metric space.
Two of the most interesting generalizations of metric spaces are partial metric

spaces and b-metric spaces. The notion of b-metric spaces was introduced by

Czerwik [9].

Definition 2.1.2. [9] Let X be a nonempty set and s > 1 be a given real number.
A function dp : X x X — R, is called a b-metric if for all z,y, z € X the following
properties hold:

(de1) dp(z,y) = 0 if and only if z = y;
(de2) do(w,y) = di(y, 2);
(des) dy(z,2) < s(dy(z,y) + du(y, 2))-
The pair (X, dp) is called a b-metric space.
The class of b-metric spaces is larger than that of the class of metric spaces,
since a b-metric is a metric when s = 1.
The following example shows that a b-metric space need not be a metric space.

Example 2.1.3. [62] Let X = x1, %3, %3, 24 and dp(x1,22) = k > 2, dp(21,23) =
dp(21,%a) = dp(®2,T3) = dp(®2,24) = dp(xs,x4) = 1, do(m;,%5) = dp(z, ;) for
i,j=1,2,3,4 and dp(z;,z;) = 0 for i = 1,2,3,4. Then

LV

do(wi, 75) < =ldp(zi, ) + dp(Tn, 75)],

for 4,7 =1,2,3,4, and if k > 2, the ordinary triangle inequality does not hold.



We need the following definition that will be used in the next part.
Definition 2.1.4. [9] Let (X, dp) be a b-metric space.
(i) A sequence {z,} in X is called b-convergent if and only if there exists z € X
such that d{z,,z) — 0 as n — oco.

(i) The sequence {z,} in X is said to be b-Cauchy if and only if d(x,, ) — 0

as n,m — 00,
(iii) The b-metric space (X, dp) is called b-complete if every b-Cauchy sequence in
X is b-convergent,
The following notion of partial metric spaces was introduced by Matthews [10].

Definition 2.1.5. [10] Let X be a nonempty set and s > 1 be a given real number.
A function p : X x X — R, is called a partial metric if for all z,y,z € X the
following properties hold:

(1) p(z,2) = p(y,y) = p(z,y) if and only if z = y;
(p2) plz,x) < p(z,y);
(ps) p(z,v) =p(y,2);
(pa) p(=,2) < p(x,9) +p(y,2) — P(¥, ).
The pair (X, p) is called a partial metric space.
The class of partial metric spaces is larger than the class of metric spaces since
a metric space is a special case of a partial metric space with the self distance

p(z, ) = 0. But the converse does not hold in general (see [10]). A trivial example

of a partial metric space is the pair (Ry,p), where p: X x X — R, is defined by
p(x,y) = max{z, y}.

The notion of partial b-metric spaces which introduced by Shukla [15], it is a

generalization of partial metric spaces and b-metric spaces.
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Definition 2.1.6. [15] Let X be a nonempty set and s > 1 be a given real number.
A function py : X x X — R, is called a partial b-metric if for all z,y,2 € X the
following properties hold:

(Pon) @ =y if and only if py(z, ) = ps(x, y) = Pe(y, ¥);
(pe2) po(, %) < po(,9);

(pe3) po(,y) = po(y, );

(Pes) Po(2,y) < slpu(w, 2) + Po(Y, 2)] — Po(2, 2)-

The pair (X, pp) is called a partial b-metric space.

The class of partial b-metric spaces is larger than the class of partial metric
spaces, since a partial metric space is a special case of a partial b-metric space with
the coefficient s = 1. Also, the class of partial b-metric spaces is larger than the
class of b-metric spaces since a b-metric space is a special case of a partial b-metric

space with the same coefficient and the self distance py(z, ) = 0.

The following example shows that a partial b-metric space need not be a partial

metric space nor a b-metric space.

Example 2.1.7. [15] Let X = R, and ¢ > 1 be a constant. Define a function
pp: X X X >Ry by

po(z,y) = [max{z,y}]? + |z —y|? forall z,y € X.

Then (X, py) is a partial b-metric space with the coefficient s = 277! > 1, but i is

neither a partial metric space nor a b-metric space.

Proposition 2.1.8. [15] Let X be a nonempty set, p be a partial metric and d be
a b-metric with the coefficient s > 1 on X. Then the function pp : X x X — R,
defined by py(z,y) = p(z,y) + d(z,y) for all z,y € X, is a partial b-metric with

the coefficient s.

Proposition 2.1.9. [15] Let (X, p) be a partial metric space and ¢ > 1. Then
(X, pp) is a partial b-metric space with the coefficient s = 297!, where p; : X x X —

R, is defined by py(z,y) = [p(z, y)]".
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Mustafa et al. [63] introduced a modified version of Definition 2.1.6 in order
to get that each partial b-metric p, generates a b-metric dp,.

Definition 2.1.10. [63] Let X be a nonempty set and s > 1 be a given real

number. A function p, : X X X — R, is called a partial b-metric if for all
z,y, 2 € X the following properties hold:

(pe1) = =y if and only if py(z, %) = pe(z, ) = Ps(y, );

(Pe2) po(@,2) < po(z, Y);

(pe3) Po(2,9) = pol(y, 2);

(Poar) Po(,9) < s(po(z, 2) + po(y, 2) — Po(2, 2)) + (55°) (pe(, 7) + Po(y, ).

The pair (X, pp) is called a partial b-metric space.

Since s > 1, by (pss), we obtain that

po(z,y) < s(oo(z,2) + (2, 9) —mo(2,2)) < s(po(, 2) +po(2,9) — Po(2, 2).

Thus, a partial b-metric in the sense of Definition 2.1.10 is also a partial b-metric

in Definition 2.1.6.

In a partial b-metric space (X, ps), if pp(z,y) = 0 implies py(z, ) = po(z,y) =
po(y,y) = 0, then z =y, but if z = y, then py(z,y) may not be 0. It is clear that
every partial metric space is a partial b-metric space with the coefficient s = 1 and
every b-metric space is a partial b-metric space with the same coeflicient and the

self distance py(z, z) = 0, but the converse of these facts may not hold.

The following example shows that a partial b-metric space (Definition 2.1.10)

need not to be a partial metric space nor a b-metric space.

Example 2.1.11. [63] Let (X, d) be a metric space and p, : X x X — R, defined
by

po(z,y) =d(z,y)?+a forall z,y € X,

where ¢ > 1 and @ > 0. Then p, is a partial b-metric with s = 2971, but it is

neither a partial metric nor a b-metric.
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We need the following propositions, definitions and lemmas that will be used
in the next part.

Proposition 2.1.12. [63] Every partial b-metric p, defines a b-metric d,,, where

dp, (2, y) = 2ps(z,y) — po(z,2) — po(y,y) forallz,y € X.

Definition 2.1.13. [63] Let {z,} be a sequence in a partial b-metric space (X, ps).

(i) A sequence {z,} is py-convergent to a point z € X if
73_1_{20 pb($, Tp) = po(, T).
(ii) A sequence {z,} is a p,-Cauchy sequence if

Hm  pp(z,, zm) exists (and is finite).
n,M—00

(ifi) A partial b-metric space (X, py) is said to be p,-complete if every py-Cauchy
sequence {z,} in X py,-converges to a point x € X such that

lim pb(wnawm) = lim pb($n,ﬂ3) 7 pb(m7$)-
n,m—+c0 n-300

Lemma 2.1.14. [63]

(1) A sequence {z,} is a p,-Cauchy sequence in a partial b-metric space (X, ps)
if and only if it is a b-Cauchy sequence in the b-metric space (X, dp, ).

(2) A partial b-metric space (X, p,) is py-complete if and only if a b-metric space
(X, dp,) is b-complete. Moreover, lim dp,(z,x,) = 0 if and only if
n—roQ

lim py(z,z,) = lim py(Tn, Tm) = po(z, ).
n—00 n,Mm—300

Definition 2.1.15. [63] Let (X,p) and (X', p}) be two partial b-metric spaces
and let f: (X,p) — (X',p}) be a mapping. Then f is said to be p,-continuous
at a point a € X if for a given £ > 0, there exists 6 > 0 such that x € X and
po(a, @) < 6+ po(a, a) imply that py(f(a), f(2)) < e+py(f(a), f(a)). The mapping

f is pp-continuous on X if it is py-continuous at all @ € X.
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Proposition 2.1.16. [63] Let (X, ps) and (X', pj) be two partial b-metric spaces.
Then a mapping f : X — X is py-continuous at a point z € X if and only if it

is py-sequentially continuous at z, that is, whenever {z,} is p,-convergent to z,

{f(z,)} is pj-convergent to f(z).

Recently, Li and Jiang [64] introduced the notion of JS-quasi-contractions and

proved some fixed point results for JS-quasi-contractions in complete metric spaces.

Following Hussain et al. [65], Li and Jiang [64] denoted ¥ by the set of all

nondecreasing functions ¢ : [0, +00) — [1, 4+00) satisfying the following conditions:
(¥1) () =1 if and only if ¢t = 0;

(¥2) for each sequence {t,,} C (0, +00), le ¥(t,) = 1 if and only if lim ¢, = 0;

n—+00
¥3) there exist r € (0,1) and [/ € (0, +00] such that lim 3—/}—@_—1 ==1/;
( ’ t—0+ 7
_—)

(V4) P+ s) <P(t)P(s) for all ¢, s > 0.
Li and Jiang [64] have set the following symbols:
®y = {9 : (0, +00) = (1,+00) : ¥ is a nondecreasing function satisfying (¥2)
and (¥3)};
O, = {1 : (0,+00) = (1,+00) : ¥ is a nondecreasing continuous function};

@3 = {1 : [0,+00) — [1,+00) : ¥ is a nondecreasing continuous function
satisfying (¥1)};

O, = {1 :[0,+00) — [1,+00) : 9 is a nondecreasing continuous function
satisfying (V1) and (¥4)}.

Furthermore, in [64], they presented the following examples for illustrating the

relationship among the above sets.

Example 2.1,17. [64] Let f(t) = €' for t > 0. Then f € &, N O3, but f ¢

tet
=0 for each r € (0, 1) and e(t+s)e(t+s) > esesetet for

¥ U P, Uy since lim
t—0+
all 5,¢t> 0.

t’l‘
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Example 2.1.18. [64] Let g(t) = €'* for t > 0, where a > 0. Whena € (0,1), g €
TNO, NP, NPsN Py Whena =1, g € Do NP3 N Dy, but g ¢ ¥ U Py since

t

1
tl_i—)rgi ¢ - =0 for each 7 € (0,1). Whena > 1, g € ®,NP3, but g ¢ TU D, U Dy
o _
since lim ©——+ = 0 for each r € (0,1) and e(t+9)* > ete*” for all s,t > 0.
=0+ {7

The main aim of [64] is introducing the concept of JS-quasi-contractions and
assure the existence of the fixed point theorems for such mappings in complete

metric spaces.

Definition 2.1.19. [64] Let (X, d) be a metric space. A mapping T': X — X is
said to be a JS-quasi-contraction if there exist a function ¢ : (0, +00) — (1, +00)
and A € (0,1) such that

P(d(Tz, Ty)) < P(My(z,y))* for all 2,y € X with Tz # Ty, (2.1.1)
where My(z,y) = max{d(z,y), d(z, Tz), d(y, Ty), dgm,TyQ;rdgy,Tw)}'

Remark 2.1.20. [64] Let T : X — X and ¢ : [0,+00) = [1,+400) and for all
z,y € X such that

AT, Ty))
< Y(d(e, ) (e, To) oy, T)) o ST L A T o,

(2.1.2)

where ki, ks, k3, ks are nonnegative numbers with ky 4 kg + k3 +2k4 < 1. Then T'is
a. JS-quasi-contraction with A = ki + ko + ks + 2k4, provided that (¥2) is satisfied.

Theorem 2.1.21. [64] Let (X, d) be a complete metric space and T : X — X be
a JS-quasi-contraction with ¢ € ®,. Then T has a unique fixed point in X.

Theorem 2.1.22. [64] Let (X,d) be a complete metric space and T' : X —
X. Assume that there exist ¢ € ®3 and nonnegative numbers ky, ko, k3, k4 with
ki + kg + ks + 2ky < 1 such that (2.1.2) is satisfied. Then T has a unique fixed
point in X.

In this part, we introduce a concept of generalized JS-quasi-contractions and
obtain sufficient conditions for the existence of fixed points of such mappings on
pp-complete partial b-metric spaces. Our results extend the results in the literature.

In addition, an example is given to illustrate and support our main result.
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2.2 Algorithms for the common solution of the split variational in-

equality and fixed point problems with applications
In this section, we recall the following definitions and preliminary results that
will be used in the sequel.
In 2005, Censor et al. [32] introduced the multiple-sets split feasibility problem

(MSSFP) which is formulated as follows:

N M
Find z € ﬂC’i such that Az € ﬂ Qj (2.2.1)

i=1 j=1
where C;,¢ = 1,2,...,N and Q;,7 = 1,2,..., M are nonempty closed convex
subsets of Hilbert spaces H; and Hy, respectively, and A : H; — H; is a bounded
linear mapping. Denote by § the set of solutions of MSSFP (2.2.1).

When N = M = 1, the MSSFP is known as the split feasibility problem (SFP),

it was first introduced by Censor and Elfving [29], which is formulated as follows:
Find z € C such that Az € @Q, (2.2.2)

where C' and @) are nonempty closed convex subsets of Hilbert spaces H; and Hs,

respectively. Denote by T the set of solutions of SFP (2.2.2).

Assuming that the SFP is consistent (i.e., (2.2.2) has a solution). It is well-
known that z € C solves (2.2.2) if and only if it solves the fixed point equation

o =Tz, T=Pe(l~yA*(I—Py)A), z€C, (2.2.3)

where <y is a positive constant, A* is the adjoint of A, P and Fy are the metric

projections of Hy and H, onto C and @, respectively, for more details see [50].

One of the iterative algorithms for solving (2.2.2) is the CQ algorithm, it was
presented by Byrne [30,34], which generates a sequence {x,} by

Tyl = Pc'(iL‘n - ')’A*(I - PQ)AiL'n), n > 1, (224)

where v € (0,2/||A||*). Moreover, Byrne [30] proved the weakly convergence result
for algorithm (2.2.4) in Hilbert spaces.
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Since CQ algorithm can be viewed as a fixed point algorithm for averaged
mappings, in 2010, Xu [50] showed the weakly convergence result of the following

method by apply K-M algorithm for solving the SFP:

Tpt1 = (1 = an)@n + o Po(zn, — yA* (I — Pg)Azy,). (2.2.5)

The split variational inequality problem (SVIP) was first investigated by Cen-
sor et al., which is the problem of finding a point
z* € C such that (f(z*),z —z*) > 0, for all z € C,
and (2.2.6)
y* = Az* € @Q solves (9(y*),y —y*) 20, forall y € Q,
where C' and @ are nonempty closed convex subsets of real Hilbert spaces H; and
H,, respectively, f : Hy — Hy and g : Hy — H, are mappings and A : H; — H, is

a bounded linear operator.

The variational inequality problem (VIP) was introduced by Stampacchia [16],
which is the problem of finding a point z* in a subset C of a Hilbert space H such
that

(f(z*),z—2z*) >0, for all z € C, (2.2.7)

where f : C — H is a mapping and we denote its solution set of (2.2.7) by
VI(G, f).

In [36], we see that = € C solves (2.2.7) if and only if it solves the fixed point

equation
z=_8z, S=Ps(I—-~f), zeC. (2.2.8)

In [35,36], the following sequence {z,} of Picard iterates is a strongly convergent
sequence in VI(C, f) because Po(I — «f) is a contraction on C, where f is n-

strongly monotone and k-Lipschitz continuous, 0 < v < %2 :

Lyl = Pc([ - ’Yf)lL'n. (229)

However, algorithm (2.2.9) cannot use to solve VIP when f is monotone and
k-Lipschitz continuous, which can be seen from the counterexample in [37]. Dur-

ing the last decade, many authors devoted their attention to study algorithms for
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solving the VIP. One of the methods is the extragradient method which was intro-
duced and studied in 1976 by Korpelevich [38] in the finite dimensional Euclidean

space R™:

Yn = PC’(mn —vfzn),
Tpt1 = PC(a:n - '7’fyn)’ (2'2'10)

when f is monotone and k-Lipschitz continuous. Then sequence {z,} strongly

converges to the solution of VIP.

After that, Nadezhkina and Takahashi [24] suggested the following modified
extragradient method motivated by the idea of Korpelevich [38] and Takahashi
et al. [40]. They showed that the sequence generated by the mentioned method
converges weakly to an element in F'(S) NV I(C, f):

Yn = Po(Tn — Yufn),
Tpr1 = AZn + (L — M) SPo(Tn — YnfYn)s (2.2.11)

when S : C — C is nonexpansive, and f is monotone and k-Lipschitz continuous.
Since then, it has been used to study the problems of finding a common solution

of VIP and fixed point problem (see [27] and the references therein).

In 2017, Tian and Jiang [51] considered the following iteration method by
combining extragradient method with CQ algorithm for solving the SVIP:

Yn = Po(zpn — Y A* (I — Po(I — 09))Az,),
Zp = PC(yn - )\nf(yn))) (2212)
Tpy1 = PC(yn - )\nf(zn)),

where A : Hy — H, is a bounded linear operator, f : C' — H; is a monotone and
k-Lipschitz continuous mapping, and g : Hy — Hj is a d-inverse strongly monotone

mapping.

Lemma 2.2.1. [66] Given z € H and z € C. Then the following statements are

equivalent:

(i) z = Pem;



18

(ii) (x—2,2—y) >0, forall y € C,

(i) flz = yll* > flo — 2|2 + ly — 2|, for all y € C.

We need the following definitions about set-valued mappings for proving our

main results.

Definition 2.2.2. [58] Let B : H =3 H be a set-valued mapping with the effective
domain D(B) = {z € H : Bz # {}}.

The set-valued mapping B is said to be monotone if for each =,y € D(B), u €
Bz, and v € By, we have
(z —y,u—v) > 0.

Also the monotone set-valued mapping B is said to be maximal if its graph G(B) =
{(z,¥y) : y € Bz} is not properly contained in the graph of any other monotone

set-valued mappings.

The following property of the maximal monotone mappings is very convenient
and helpful to use:

A monotone mapping B is maximal if and only if for (z,u) € H x H,

(x —y,u —v) > 0 for each (y,v) € G(B) implies u € Bz.

The fixed point problem for nonexpansive mappings in Hilbert spaces is related
to the problem of finding zero points of a maximal monotone operator B on H,
then, for each 7 > 0, the resolvent J,. of B defined by
Jo:={I+rB)™*: H— D(B),
is a single-valued firmly nonexpansive mapping from H into itself and F(J,) =
B0, for all r > 0 (see [67]).
Remark 2.2.3. [67] Let r be any positive scalar. A mapping B on H is monotone

if and only if its resolvent J, is firmly nonexpansive.

Let f : C — H be a monotone and k-Lipschitz continuous mapping. In [68],

we know that normal cone to C defined by

Nez={z€ H:(z,y—1z) <0, forally € C}, forallz € C,
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is a maximal monotone mapping and a resolvent of N¢ is Pe.
The following results play the crucial role in the next section.

Lemma 2.2.4. [24] Let f : C — H be a monotone and k-Lipschitz continuous

mapping. Define a set-valued mapping B : H =3 H by

fv+ Neov, ifveC,
0, if v ¢ C.

Bv =

Then B is maximal monotone and 0 € Bv if and only if v € VI(C, f).
In particular, B7'0 = {v € H : 0 € Buv}, called the set of zero points, is closed

and convex.

Lemma 2.2.5. [24] Let H; and Hj be real Hilbert spaces. Let B : H; =3 H, be a
maximal monotone mapping, and J, be the resolvent of B for r > 0. Suppose that
T : Hy — H; is a nonexpansive mapping and A : H; — H is a bounded linear
operator. Assume that B710N A™*F(T) # 0. Let r,y > 0 and z € H;. Then the

following statements are equivalent:
(i) z = J.(I —vA*(I —T)A)z;
(ii) 0 € A*(I — T)Az+ Bz;

(ii) z € B-10N A~LF(T).

In [51], they obtained the following results by putting B = N¢ in Lemma 2.2.5.

Corollary 2.2.6. [51] Let H; and H; be real Hilbert spaces. Let C be a nonempty
closed convex subset of H;. Let T : H, — H; be a nonexpansive mapping, and
A : Hy — H, be a bounded linear operator. Suppose that C N A7 F(T) # . Let

v > 0 and z € Hy. Then the following statements are equivalent:
(i) z = Po(I —yA*(I — T)A)z;
(i) 0 € A*(I — T)Az + Ngz;

(iii) z€ CNATIF(T).



20

We also need the following lemmas.

Lemma 2.2.7. [69] Let H be a real Hilbert space and T': H — H be a nonex-
pansive mapping with F(T) # @. If {z,} is a sequence in H converges weakly to
z and if {(J — T")z,} converges strongly to y, then (I —T)z = y.

Lemma 2.2.8. [70] Let {a,} be a real sequence satisfying 0 < a < o, < b <1
for all n > 0, and let {v,} and {w,} be two sequences in H such that, for some
g >0,

limsup ||v,|| < o, limsup |jw,|| < o, and Lm |layv, + (1 — ap)w,| = 0.
n-300 n—00 (1S e
Then
lim |Jv, — wy|| = 0.
200
Lemma 2.2.9. [56] Let {z,} be a sequence in H satisfying the properties:
(i) lim ||z, — u| exists for each v € C;
n—o0
(i) ww(z,) C C.
Then {z,} converges weakly to a point in C.

Lemma 2.2.10. [40] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {x,} be a sequence in H. Suppose that

enis — vl < ll@n —ull, Vued,

for every n = 0,1,2,.... Then the sequence { Pocz,} converges strongly to a point
in C.

Theorem 2.2.11. [24] Let f : C — H be a monotone and k-Lipschitz continuous
mapping. Assume that S : C — C' is a nonexpansive mapping such that F(T) N
VIC,f) # 0. Let {z,} and {y,} be sequences generated by (2.2.11), where
| {An} C [a,b] for some a,b € (0, +) and {on} C [c, d] for some ¢, d € (0,1). Then the
sequences {z,} and {y,} converge weakly to the same point z € F(T)NVI(C, f) #

0, where z € nlg{)lo Ppryvie,f)Tn
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Theorem 2.2.12. [50] Assume that the solution set of SFP is consistent and
0 < < y4m. Let {za} be defined by the averaged CQ algorithm (2.2.5) where

{a,} is a sequence in |0, 5;;"-1[;”-2} satisfying the condition:

> 4
> an (5o = on) =0
=\ 2+ 9]l Al

Then the sequence {z,} is a weakly convergent to a point in the solution set of
SFP.

The equilibrium problem is formulated by Blum and Oettli [23] in 1994 for
finding a point x* such that

F(z*,y) 20, for all y € C, (2.2.13)

where F' : C x C — R is a bifunction. The solution set of equilibrium problem
(2.2.13) is denoted by EP(C, F).

In [23], we know that, if F' is a bifunction satisfying the following conditions:

(A1) F(z,z) =0, for all z € C;
(A2) F is monotone, that is, F(z,y) + F(y,z) <0, for all z,y € C;
(A3) for each z,y, z € C,limsup,, F(tz + (1 — t)z,y) < F(z,y);

(A4) for each fixed z € C,y — F(z,y) is lower semicontinuous and convex,

then there exists z € C such that
1
F(Z,y)‘f“?:(y“Z,z"iU)ZO, VyEC’,
where r is a positive real number and =z € H.

From [71], we obtain that, for » > 0 and = € H, the resolvent T, : H — C of
bifunction F' which satisfies the conditions (A1)-(A4) is formulated as follows:

T,z = {zEC’:F(z,y)+—i—(y—z,z~—m) >0, forall y € C}, forall z € H,

has the following properties:
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(i) T, is single-valued and firmly nonexpansive;
(i) F(T;) = EP(C, F);
(iii) EP(C, F) is closed and convex.

Let ¢ be a real-valued convex function from C' to R, the typical form of con-

strained convex minimization problem is finding a point z* € C satisfying

(") = min ¢(z). (2.2.14)

zeC

Denote the solution set of constrained convex minimization problem (2.2.14) by

arg mingec ¢(x).

Lemma 2.2.13. [51] Let ¢ be a convex function of H into R. If ¢ is differentiable,
then z € arg min,cc if and only if z € VI(C, V).

In this part, we establish a new iterative algorithm by combining Nadezhk-
ina and Takahashi’s modified extragradient method (2.2.11) and Xu’s algorithm
(2.2.5). The mentioned iterative algorithm presents the common solution of the
split variational inequality problems and fixed point problems. We show that the
sequence produced by our algorithm is weak convergent. Finally, we give some

applications of the main results.

2.3 Convergence theorems for the variational inequality problems
Jung [72] studied the common solution of variational inequality problem and
split feasibility problem: Find a point
el : (fa*, e —2") >0, forall z € T, (2.3.1)

where T is the solution set of SFP (2.2.2), and f : H — H is an n-strongly
monotone and k-Lipschitz continuous mapping. After that, for solving the problem
(2.3.1), Buong [52] considered the following algorithms, which are proposed in [53]
and [54], respectively:

Zpy1 = (I — tpuf)T2n, n >0, (2.3.2)
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and
Tpy1 = 0y + (1 — ) (I — touf)Tz,, n >0, (2.3.3)
where T' = Pg(I — yA*(I — Pg)A), and under the following conditions:
(C1) t, €(0,1),t, > 0asn— oo and > o t, = 00;
(C2) 0 < liminf, o 0y, < limsup,_,o, 0 < 1.
In 2011, Buong showed the existence of a unique solution of the variational
inequality problems.

Theorem 2.3.1. [73] Let f be a k-Lipschitz continuous and n-strongly monotone
self-mapping of H. Assume that {T}}Z is nonexpansive self~mappings of H such
that C' = NY,F(T;) # 0. Then the sequence {z,} defined by the following algo-
rithm, converges strongly to the unique solution z* of the variational inequality

(2.2.7):

Tntr = (1~ :82)‘7’11 + ,Bg,(l ~ o) INT Ny T{Tp, 120, (2.3.4)
where pu € (0,2n/k?), TP = (1 — B)I + B¢T;, for ¢ = 1,..., N, and under the
following conditions:

() t, € (0,1),t, > 0asn— oo and ) .~ t, = 00;
(ii) Bt € (a,p), for some o, B € (0,1), and |B5, — B > 0 asn = oo (i =

0,...,N).

After that, Zhou [74] presented the strong convergence theorem for solving the
variational inequality problems.

Theorem 2.3.2. [74] Let f, C, p, {B}Y4, {t.} and {T}}, be as in Theorem

nSi=

2.3.1. Then the sequence {x,} defined by the following algorithm.
Tpi1 = (I = tapb Y INTN - TT T, n 21, (2.3.5)

converges strongly to the unique solution x* of the variational inequality (2.2.7).
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Moreover, Buong [52] considered the sequence {z,}, which is generated by the

following algorithm, which is weakly convergent to a solution of MSSFP (2.2.1):
Tpy1 = Pl(flfn ey ’)’A*(I - PQ)A(Un), (236)

where P, = Pg, -+ Pg, and P, = Py, -+ Pg,, or P, = Zfil a;Pg, and P =
E;Vi 1 BiPg,, a; and B, for 1 <4 < N and 1 < j < M, are positive real numbers
such that SN oy = E;‘il B; = 1.

In this part, we establish an iterative algorithm by combining algorithms
(2.3.2) and (2.3.3) for solving the solution of problem (2.3.1), and obtaining a
strongly convergence theorem in Hilbert spaces. Moreover, we propose iterative
algorithms for solving the common solutions of variational inequality problems and
multiple-sets split feasibility problems. Finally, we also give numerical examples

for illustrating our algorithms.



CHAPTER III

FIXED POINT PROBLEMS

In this chapter, we propose the concept of generalized JS-quasi-contractions
and obtain sufficient conditions for the existence of fixed points of such mappings on
py-complete partial b-metric spaces. Our results extend the results in the literature.

In addition, an example is given to illustrate and support our main result.

3.1 Fixed point theorems for generalized JS-quasi-contractions

in complete partial b-metric spaces

We now introduce the concept of generalized JS-quasi-contractions on partial

b-metric spaces.

Definition 3.1.1. Let (X, py) be a partial b-metric space with the coefficient s > 1.
We say that a mapping 7' : X — X is a generalized JS-quasi-contraction if there
exist a function 9 : (0,+00) — (1,+400) and X € (0,1) such that

P(spy(Tx, Ty)) < W(My(z,y)) forall z,y € X with Tz #Ty, (3.1.1)

where M,(z,y) = max{py(z,y), po(z, Tx), 0s(y, T'), po(e TP me@T2) y

2s

The following example shows that a generalized JS-quasi-contraction need not

to be pp-continuous.

Example 3.1.2. Let X = [0,4+00) with the partial b-metric p, : X x X — R
defined by
pb(m)y) = [max{:c,y}]2

for all z,y € X. Obviously, (X,pp) is a p-complete partial b-metric space with
s = 2. Define the mapping T': X — X by

Ty — 3 zelol),
92—_51, otherwise.
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We will show that T is a generalized JS-quasi-contraction with ¥(t) = €' € ®;. In
fact, it suffices to show that there exists A € (0, 1) such that, for all z,y € X with
Tz # Ty,

2pp(Tz, Ty)
M,(z,y)

Let z,y € X with Tx # Ty. Without loss of generality, we may assume that

<A

z < y. It follows that 1 < z < y. Therefore,

z—1 y—l}]z_y2—2y+1
2t ' 2y ~ 42

po(T'z, Ty) = [max{

and

[max{z, %+ }]* +°
M,(z,y) = maxfy®, 2% ", -

}=9"

2s
This implies that
oy(Tz, Ty) _y*—29+1 _ 1
My(z,y) 2y* TR
This slhows that T is a generalized JS-quasi-contraction with () = e’ € ®; and
A€ [§2—, 1).

On the other hand, T is not p,-continuous because there exists a sequence

{fﬁ} such that
Jggopb(l,mn) — Jg{‘lo[max{17$’n}]2 =1= Pb(l, 1)a
but

4
lim (71, Ta) = [max{0, 2} = 5 # 0 = p(T1,T0)

The following example shows that a p,-continuous mapping need not to be a

generalized JS-quasi-contraction.

Example 3.1.3. Let X = {0,1,2} with the partial b-metric p, : X x X — Ry
defined by

po(z,y) = o — yl*
for all z,y € X. Obviously, (X,pp) is a py,-complete partial b-metric space with
s = 2. Define the mappingv T: X > XbyTO=T1=0and T2 =1. Then T is

pyp-continuous.
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We will show that 7' is not a generalized JS-quasi-contraction with ¥(t) =
e’ € ®,. In fact, it suffices to show that for all A € (0,1), there exist z,y € X
with T'z # Ty such that

20y (T, Ty)e?Po(ToTH)~Malw)
M, (m ) y)

Let A € (0,1), for z = 1 and y = 2, we have p,(T1,T2) = 1 and M,(1,2) = 1.

Therefore,

> A

2pb(T1, T2)62Pb(T1,T2)—MS (1,2)

= 2-1
M.(02) 2(1)e 2e > A,

which implies that T is not a generalized JS-quasi-contraction.

Remark 3.1.4. Asin [64], we obtain the following statements in a partial b-metric

space (X, pp)
(i) Let T: X — X and X € (0,1) such that
spp(Tz, Ty) < AM,(z,y) forall z,y € X.
Then T is a generalized JS-quasi-contraction with v(t) = €.
(i) Let T: X — X and ¢ : (0, +00) — (1,+00) be such that
Y(spy(Tz, Ty)) < h(pp(z,y))* for all 2,y € X with Tz # Ty, (3.1.2)
where A € (0,1). Then T is a generalized JS-quasi-contraction.
(iii) Let T: X — X and % : [0, +00) — [1, +00) be such that

Y(sps(Tz, Ty))

< Y(po(, ) P(ps(, T)) 2 b(po(y, Ty)) (2

(.’B, Ty) + pb(y’ T$) )2k4
2s
(3.1.3)

for all z,y € X, where ki, ko, k3, k4 are nonnegative numbers with k; + ko +
ks + 2ks < 1. Then T is a generalized JS-quasi-contraction with A = k; +
ks + k3 + 2k4, provided that (W1) is satisfied.
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(iv) Let T: X — X and % : [0, +00) — [1,+00) be such that

P(sps(Tz, Ty))

< P(po(, ) 9 (ps(z, T)) 2 (po(y, Ty

s Po(@, TY) + 2oy, TT) 4,
) (= )
(3.1.4)

for all z,y € X. Suppose that 7 is a nondecreasing function such that (¥4)
is satisfied. It follows that

¢(pb($>Ty) :pb(y,ch))M < d)(pb(w,Ty) ;3 pb(y>Tw))2k4

for all z,y € X,

and so (3.1.3) holds. Moreover, if (¥1) is satisfied, then it follows from (iii)
that T is a generalized JS-quasi-contraction with A = ky + kg + k3 + 2k4.
Therefore, T is a generalized JS-quasi-contraction with ¢ € ®4 or ¢ € V.

We now prove the existence of a unique fixed point for a generalized JS-quasi-
contraction.

Theorem 3.1.5. Let (X, py) be a p,-complete partial b-metric space with the coef-
ficient s > 1. Let T : X — X be a generalized JS-quasi-contraction with ¢ € ®,

and be py-continuous. Then T has a unique fized point in X.

Proof. Let zy € X. Define a sequence {z,} in X by z,, = T"x, for all n € N. If
there exists n € N such that z,, = z,1, then z, is a fixed point of T and the proof

is finished. So we may assume that for every n € N,

Tp F Tpipl- (3.1.5)

From (3.1.1), (3.1.5), and 9 is nondecreasing, we have

¢(pb(xn)$n+1)) < ¢(3Pb($m$n+1)) < Qp(Ms(wn—h:Un)))‘

for all » € N, where

M, (xn—l ) $n) = max{pb (xn—-l ) xn) ) pb(mn—la Txn—-l) y P ("Ena chn) ’

pb(mn—la Tz"n) + pb(mm Txnml) }
2s

= ma*x{pb (mn—-l y Q:n) ) pb(mn~1> mn) y Db (wm -'Bn—f-l))
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pb(mn-—l,xwkl) + pb(mn, 3771,) }
2s

S ma.x{pb(:cn_l, mn)>pb($n> $n+1)
5(pb($n~1, xn) + pb(xn, mn—l»l)) - pb(mm mn) + pb(xm mn) }
)
2s

ZTp—1yZn) + Po{Tn, T
=ma.x{pb(a:%l,a:n),pb(mn,xnﬂ),Pb( n—1)Tn) ; o(Zns n+1)}

= max{pPy(Tn—1, Tn), Po(Tns Tny1) }-

This implies that

17["(pb(:1:7n513n+1)) S 1/)(Spb($n7$n+1)) S w(max{pb(wn—hmn))pb(wnawn—}-l)}))‘ (3'16)

for all n € N. If there exists some n € N such that py(zn, Tni1) > Po(Tn—1,2n),

then

"vb(pb(mm $n+1)) < "/)(pb(xm $n+1)))\ < ¢(pb($n,$n+1)),

which is a contradiction. It follows that

pb(mn) $n+1) < pb(xn—l, :Bn)

for all n € N. So the sequence {py(zn,Zn41)} is & nonincreasing sequence of real

numbers which is bounded from below and thus there exists o > 0 such that
gg&pb(wmmn+l) =oa and pb(zn’xn+l) Z o (317)

Suppose that a > 0. From (3.1.6), (3.1.7), and 1 being nondecreasing, we obtain
that

1< ¢(a) .<_ "ab(pb(xmmn—i—l)) S "/)(pb(xn—l,wn)))\ S s ,<_ ’(/1(]3[;(1170,1‘1))'\” (318)

for all n € N. Letting n — oo in (3.1.8), we have 1 < (o) < 1, which is a

contradiction. Thus @ = 0 and this yields

lim pb($n7$n+1) =0. (319)

n—o0

Now, we show that {z,} is a py-Cauchy sequence in (X, p,) which is equivalent

to show that {z,} is a b-Cauchy sequence in (X, d,,). Suppose not, that is, there
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exist £ > 0 and two subsequences {z,, } and {z, } of {z,} such that n; is the

smallest index with ng > my > k for which

Aoy (Tmpr Try) 2 € (3.1.10)
and

dp, (Tmys Tng—1) < €. (3.1.11)
This implies that

€ < dpy (T Tny) < Sdpb(wmw Try—1) + 8dp, (Tny—1, Tny,) < € + 8dp, (Try—1, Try,)-

(3.1.12)
Taking the upper limit as k — oo in (3.1.11), we get that
£ L. | :
; < hgglf ATy TREZINS hi?igp dp, (Tmy,, Tny—1) < €. (3.1.13)
It follows from (3.1.12) that,
e < limsup d, (zm,, Tn,) < s€. (3.1.14)

k—o0

By using the triangular inequality, we have

Ay (Tmy+1 mnk) < 8dp, (Trmy+1, Tmy,) + 88, (Tony,, Tmy,)
< Sdpb(mmk+1’ wmk) + szdpb($mk’mnk“1) + szdpb(xnk*h wnk)

< 8y (Tmpt1, Trmge) + 8%€ + 82y (g1, Ty )
Taking the upper limit as k — oo in above inequality, we obtain that

- 2
lim sup dp, (Zmy+1, Tn,, ) < 7€
k—o0

Further,

dpb ("Bmk+1: wnk~1) S Sdpb(mmk-l—la 5Umk) + Sdpb(mmk,mnk—l)

< Sdpb(mmwrl’ mmk) + s8¢,

and hence

lim sup dp, (Tmy+1, Tny—1) < 8. (3.1.15)

k—o0
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By Proposition 2.1.12 and (3.1.9), we deduce that

lim sup dp, (T, Try—1)
k—roo

= lim sup(2ps(Tmy,, Tri—1) — Po(Tmyr Tmy) — Pb(Tng—1, Tny—1)) (3.1.16)

k—o0

= 2 lim sup pp(Tmy  Try—1)-
k—o0

Also, by (3.1.13) and (3.1.16), we get that

& .. . €
'é; < ll]gg)ggfpb(wmk,mnk—l) < hmsuppb(fvmk,ivnk—l) < '2—‘ (3'117)

k—o0

In analogy to (3.1.16), by (3.1.12), (3.1.14), and (3.1.15), we can prove that

4 8€
hmsuppb(mmk,xnk) < o (3.1.18)
k—oo
& .
'2_' S lim Suppb(mmk+1) mnk))
8 k—r00
A S€
lim sup pyp(Timy+1, Tng—1) < o | (3.1.19)
k—yo0

By (3.1.17), (3.1.18), and (3.1.19), we obtain that
lim sup Ms(@my, , Tny,—1)
k—r00

= max{lim sup py(Zpm, , Tny—1), LM SUP Po( Ty s Ty, )5
k—oo k—oo

Tz~ 1, LTy
Iim sup pb(xnk—b Tmnk—~1), lim sup pb(mmky Ly, 1) + pb(ZEnk 1 a:mk) }
ko0 k—o0 25

x _
< max{limsuppb(a:mk,wnkﬁl),0,0,limsuppb( mi s Tng) + PP 1’$m"‘+1)}
k—o0 k—>00 2s

-
2’20 2
We claim that Tp,41 # Tng. If Topy1 = Tn,, then dp, (Tmy41,Zp,) = 0. From
(3.1.10) and Proposition 2.1.12, we have

£ < dp, (T Tny) < 8y (Tinger Trmpe1) + 8, (Trmye1, Ty, )
= 8dp, (Tmy, Trmy+1)
= $(2P6(Trmy s Tmp+1) — Po(Trgs Ty, ) — DLyt 1s Trmge 1))
< 28P6(Timy, s Trnet1)-
Letting k — oo and using (3.1.9), we deduce that

e

P < ,}Ln; Po{ s Tmget1) = 0,
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which is a contradiction. It follows from (3.1.1) that

& . .
¢('2‘) < 'Qb('s}lmsuppb(wmk-}*l,wnk)) = hmsup"/)(spb(mmk+l’mnk))

k—o0 k—o00
. 13
< limsup ¢(M3(:Bmk,$nk—1))’\ < ¢(”2’)>\
k—o0

< w(-§~>,

which is a contradiction. Thus {z,} is a &-Cauchy in b-metric space (X, dp,). Since
(X, pb) is pp-complete, then (X, dp, ) is a b-complete b-metric space. So, there exists
z € X such that lim d,,(z,,2) = 0. By Lemma 2.1.14, we get that

n—00

lim py(2,2,) = po(2, 2). (3.1.20)

n—r00

By Proposition 2.1.12, (3.1.9), (3.1.20), and condition (ps2), we have
nli_)lgopb(z,:vn) = T}ergopb(mn,mn) = Ok (3.1.21)

Suppose that 2 # Tz implies that py(z,Tz) > 0 and d,, (2, T%) > 0. It follows from
(3.1.9) and (3.1.21) that there exists a positive integer ng such that

po(2,T'%)
3

y (2, T'%)

pb(mmz) < and pb(wmxn+1) - 3

for all n > ngy. This implies that

Ty T2) + po(2,
M“’("E"’ Z) — max{pb(mm Z)apb($n> $n+1)’pb(2, TZ), pb( ) 23pb( n—|—1)}

z, Tz 2,1z
p"(g ),pb(3 ),pb(z,Tz),pb(z,TZ)}

= pp(z,T2) (3.1.22)

< max{

for all n > ng. Since T is py-continuous and (3.1.20), we obtain that
lim py(zpi1,T2) = pp(T2,T2). (3.1.23)
n—o0

By the triangle inequality, we deduce that
Po(2,Tz) < spy(2, Tnt1) + 8P6(Tat1, T'2)

for all n € N. So by taking limit as n — co and using (3.1.23), we have

(2, T2) < s li_}m (2, Tny1) + 8 le Po(Tnr1, T2) = spp(T2,Tz).  (3.1.24)
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If there are infinitely many n € N such that z,,; = Tz, then dp, (€n41,T2) = 0.
This implies that

dp(2,T2) < 8dy, (2, Tny1) + 8dp,(Tni1, T2) = sdp,(2,Tn11)-

Letting n — 0o, we get that d,,(2,T2) < Snlglolo dp, (2, Zny1) = 0, which is a
contradiction. This implies that there exists n; € N such that z,,; # Tz for all
n > ny. Choose N = max{ngy,n1}. Thus, by (3.1.1) and (3.1.22), for each n > N,
we get that

Y(po(@nt1,T2)) < P(Mi(za,2))* < b(we(2,T2)

Letting n — oo in this inequality, using the continuity of ¥, (3.1.23), and (3.1.24),

we obtain that

Bl T2)) < Blspu(T2,T2)) = lim (sp(wns1,T2))

< 1,b(pb(z,Tz))’\ < P(ps(2,T2)),

which is a contradiction. Hence T'z = z. Thus z is a fixed point of T". Let = be
another fixed point of T" with z # 2. It follows from (3.1.1) that

Y(po(z,2)) < Y(spp(Tz, T'2))
S pb(Ms(wa Z)))‘

= yh(max{py(z, 2), ps(z, Tz), ps(2, T2), oz, Tz) ;; po(2, Tx)
(2, z);;pb(z,ﬂf)}))\
po(, 2)

_3____})/\

H?

= P(max{pu(z, 2), ps(x, T), Ps(2, 2),
= P(max{py(w, 2), po(x, ), Pe(2, 2),
< p(max{p(a, 2), pla 2) ol 2), L2y
= Y (ps(z, )
< P(po(, 2)),

which is a contradiction. So z = z. Hence T has a unique fixed point. O

We illustrate the following example for supporting our result.
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Example 3.1.6. Let X = {0,1,2} with the partial b-metric p, : X x X — R,
defined by

po(,y) = [max{z, y}]*
for all z,y € X. Obviously, (X,p,) is a py-complete partial b-metric space with
s = 2, but it is not a metric on X. To see this, let z = y = 2 then py(2,2) =
[max{2,2}]*> = 4 # 0. Define the mapping T : X — X by T0 = T1 = 0 and
T2 =1.

We will show that T is a generalized JS-quasi-contraction with ¢(t) = e, In
fact, it suffices to prove that there exists A € (0,1) such that, for all z,y € X with
Tz #Ty,

20(Tz, Ty) 2o (T, Ty)—Ma(w,y) -
M,(z,y) B
Let z,y € X with T'z # Ty. Therefore, z = 0,y = 2 or ¢ = 1,y = 2. For both
cases, we get py(10,72) = pp(T1,T2) = 1 and M,(0,2) = M,(1,2) = 4. This
implies that

2pb(T0, T2)e2pb(T0,T2)——Ms(0,2) 2pb(T1> Tz)eZpb(Tl,TZ)—Ma(l,z) 2
M,(0,2) B M,(1,2)

o
5

i

This shows that 7" is a generalized JS-quasi-contraction with 1(¢) = € and \ €

-2
[32—, 1). By Example 2.1.17, we know that et¢’ € ®,. Therefore, the conclusion
immediately follows from Theorem 3.1.5 to obtain that 7" has a unique fixed point

which is z = 0.

Theorem 3.1.7. Let (X, py) be a py-complete partial b-metric space with the coef-
ficient s > 1. Let T : X — X be a py-continuous mapping. Assume that there ezist
a function v € ®3 and nonnegative numbers ky, ko, kg, ka with ky+ka+ks+2ks < 1
such that (3.1.3) is satisfied. Then T has a unique fized point in X.

Proof. From Remark 3.1.4 (iii), we get that T is a generalized JS-quasi-contraction
with X\ = k; + ko + k3 + 2k4. In case of 0 < A < 1, by Theorem 3.1.5, the proof is
completed. In case of A = 0, by (3.1.3) we have

P(spp(Tz, Ty))

< Do, )b oul, T) Yo (o, T)) ooy (P LU 2ol 1)

2s
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< P(My(z,y))° =1, foralzyelX.

Further, by (¥1) we deduce that py(Tz, T'y) = 0 for all z,y € X. Thus, fory = Tz,
we have py(Tz, T(Tz)) = 0. It follows that y = Tz is a fixed point of T'. Let 2 be
another fixed point of 7. Then

(Y, 2) = po(Ty, T2) = 0.

Therefore, ¥y = z and so T has a unique fixed point. O

By applying Theorem 3.1.5 and Remark 3.1.4 (ii), we get the following result.

Corollary 3.1.8. Let (X, p,) be a py-complete partial b-metric space with the co-
efficient s > 1 and T : X — X be a pp-continuous mapping. Assume that there
exist 1 € ®y and nonnegative real numbers ki, ka, ks, ks with ky + ko + ks +2ks < 1
such that (3.1.2) is satisfied. Then T has a unique fized point in X.

By applying Theorem 3.1.7 and Remark 3.1.4, we get the following results.

Corollary 3.1.9. Let (X,p,) be a p,-complete partial b-metric space with the co-
efficient s > 1 and T : X — X be a py-continuous mapping. Assume that there
exist ¥ € 4 and nonnegative real numbers ky, kg, ks, kg with ky + ko + ks +2k4 < 1
such that (3.1.4) is satisfied. Then T has a unique fized point in X.

Corollary 3.1.10. Let (X,py) be a pp-complete partial b-metric space with the
coefficient s > 1, and T : X — X be py-continuous. Assume that there exist a > 0
and nonnegative numbers ky, ky, k3, kqa with ky + ko + ks + 2k4 < 1 such that

(spe(Tz, Ty))* < kaps(2,y)* + kapo(z, Tz)* + kaps(y, Ty)*

z, Ty) + pb(y> T.’E)

+ 2k4(p”( -

) (3.1.25)

forallz,y € X. Then T has a unique fized point in X.

Proof. From Example 2.1.18, we have 9(t) = '* € ®3, and so (3.1.3) immediately
follows from (3.1.25). Thus, by Theorem 3.1.7, T has a unique fixed point. O

By applying Corollary 3.1.10, we get the following result.
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Corollary 3.1.11. Let (X,p;) be a py-complete partial b-metric space with the
coefficient s > 1, and T' : X — X be py-continuous. Assume that there exist

nonnegative numbers ky, ka, k3, kg with ky + ka2 + k3 + 2kq < 1 such that

(spo(T'z, Ty))* < kapp(z,y)* + kapu(z, Tx)® + kapo(y, Ty)*

T T
+k4(pb(x) y)l’pb(% m))a

(3.1.26)

for all z,y € X, where a = =. Then T has o unique fized point in X.

St

Proof. For each a € (0, 1], we obtain that

(pb(w’Ty) :’pb(yaTm) )a < 2(pb($>Ty);;pb(y’Tm) )a.

Then (8.1.26) implies (3.1.25). Thus, Corollary 3.1.11 immediately follows from
Corollary 3.1.10. This implies that T has a unique fixed point. O



CHAPTER IV

VARIATIONAL INEQUALITY PROBLEMS AND
RELATED PROBLEMS

In this chapter, we propose the iteration algorithms and use the suitable
conditions for establish convergence theorems for solving the variational inequality
problems and the related problems in the setting of Hilbert spaces. We have divided

into two sections as the following;:

4.1 Algorithms for the common solution of the split varia-
tional inequality and fixed point problems with appli-

cations

Our aim in this section is to consider an iterative method by combining
Nadezhkina and Takahashi’s modified extragradient method and Xu’s algorithm.
The mentioned iterative algorithm presents the common solution of the split vari-
ational inequality problems and fixed point problems. We show that the sequence
produced by our algorithm is weak convergent. Finally, we give some applications

of the main results.

Throughout this section, unless otherwise is stated, we assume that C' and @
are nonempty closed convex subsets of real Hilbert spaces H; and Hj, respectively.
Suppose that A : Hy — H, is a nonzero bounded linear operator, f : C — Hj is
a monotone and k-Lipschitz continuous mapping and ¢ : Hy — H; is a é-inverse
strongly monotone mapping. Suppose that T': Hy — Hy and S : C — C are
nonexpansive. Let {u,}, {an} C (0,1),{w} C [a,b] for some a,b € (0, I-Iﬁﬂg) and
{A} C [e, d] for some ¢,d € (0, %).

Firstly, we present an algorithm for solving the variational inequality problems

and split common fixed point problems, that is, finding a point z* such that

e VI(C, f)NF(S) and Az* e F(T). (4.1.1)
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Theorem 4.1.1. Setting © = {z € VI(C, f)NF(S) : Az € F(T)} and assume
that © # 0. Let the sequences {z.}, {yn} and {2,} be generated by z; =z € C

and
Yn = pnZn + (1 = pn) Po(@n — 1A (I — T)Az,),
2n = Po(yn — Mnf (¥n)), (4.1.2)
Tni1 = Al + (1 = @n)SPo(yn — Mnf(2n)),

for each n € N. Then the sequence {x,} converges weakly to a point z € ©, where

2z = lim Psz,.
71— 00

Proof. Tt follows form Lemma 2.0.1 and Lemma 2.0.4 that Po(I — vy, A*(I —T)A)
is }—“tl"zﬂﬂﬁ-averaged. From Lemma 2.0.5, we obtain that p,I + (1 — p,)Pe(I —
Y A* (I —T)A) is pn + (1 — un)lijﬂzlwﬁ—averaged. So, ¥, can be rewritten as

Yn = (1 = B)zn + BnVaZn, (4.1.3)

where 8, = p, + (1 — un)lﬂ'-‘é”—éﬁz and V,, is a nonexpansive mapping for each
n € N.

Let u € ©, we get that
ln = ll® = (1 = Ba)(@n —u) + fu(Vazn — u)|?

= (1-B)lz. — “”2 + BullVazn — 'U'”2
—Bn(1 — Ba)llwn — Vnmnnz

S Hx‘n - ullz - /Bn(l - ﬁn)”mn - V;za:n”2
<l —uf®. (4.1.4)
Thus
Ba(1 = Bu)llzn — Vazall? < llon — ull® — [lyn — ul)®. (4.1.5)

Setting t, = Po(Yn — Anf2s) for all n > 0. It follows from Lemma 2.2.1 that

th - 'u’”2 S ”yn - )\nf(zn) - UHZ - “yn - )‘nf(zn) - tnnz
< iy = ull? = 19n = tall® + 22 (f (20), 1 — tn)



39

= |lyn = ull® = llyn = tall* + 20 ({f (2n) = f(u),w — 2n)
+(F (W), u = z0) + (f(2n), 20 — tn)

< Ny = ull? = llgn — tall® + 22a(f (20), 20 — tn)

= lyn — ull® = lgn — 2all® = 20y — 20, 20 = ta) = 120 — tal®
+2M(f (2n), 20 — tn)

= |lyn —ull® = llyn — 2zal® = 120 — tall®

+2(yn = Anf (Zn) — 2Zny tn = 20).
Using Lemma 2.2.1 again, this yields:

(U = M (20) = 20sta = 22) = (Y — Anf(Un) = Znstn — 2n)
+(Anf (Yn) = Mnf (2n)s tn — 2n)
< nf@Yn) — At (20)s tn — 2n)
< Mkllyn — zalllltn — zall,

and so
Nen — u||2 < My — u”2 ~ |y — an|2 — |l2n — tnllz + 22Xk [Yn — 2|l It — 2nl]-

For each n € N, we obtain that

0 < (ltn = 2all = Ankllyn — zal))?
= |lta = 2all® — 2Xklltn ~ zallllyn — 2zall + N2Elyn — 2all”.

That is,
2X\nkltn — Zalllltn — 2nll < It — anlz + )\ikzllyn - znnz'

So,

ltn —ull® < llgw — ull® =l — 2all® = llza = tall® + lItn — 2al®
FXK? [y — 2
= |lyn — ull® + (NGK* = Dllyn — 2nll?
< Ny —ull®. \ (4.1.6)
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By the convexity of the norm and (4.1.6), we have

|Zn1 —ull® = Jlemgn + (1 — @a)S(ta) — ul?
= lan(yn — ) + (1 — ) (S(ta) — )|I”
= anllyn — ul* + (1 — an) IS (tn) — ull®
—0(1 = @) llyn — u — (S(ta) — w)|*

< onllyn — ull® + (1 — an)||S(tn) — S(w)|f?
< agllyn = ull® + (1= o) lta — |
< omllgn =l + (1 = ) [llyn — ull?
+(N3K = Dllyn — 2al|’]
= [lgm — ull® + (1 = @) V2K = Dlya — 2l
< Nyn—ull® < llzn —ul. (4.1.7)

Hence, there exists ¢ > 0 such that
i oo —ull = ¢, (4.18)

and then {z,} is bounded. This implies that {y,} and {¢,} are also bounded.
From (4.1.5) and (4.1.7), we deduce that

Bu(1 = Bu)llzn = Vazia|l? < llzn — ull® = lwnss — ull®.
Therefore, it follows from (4.1.8) that
Tp — Vaxy — 0, as n — oo.
By (4.1.3), we get that
Ty — Yp = Bu(Tn — Vnzn) = 0, as n — oo. (4.1.9)

The relation (4.1.7) implies
(1= o)L = AF) g = 2all® < My — ull” = llnsa — ull?,

and so

Yn — 20 — 0, as n — oo, (4.1.10)
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Moreover, by the definition of z,, we have

lzn —tal? = 1Po(yn — Mnf(¥n)) — Po(yn — Mnf(z)II?
< “(yn - )\nf(yn)) - (yn - )\nf(zn))uz
= [Anf(20) = Mnf(wa)lI®
< ARz —
Hence
Zp —t, — 0, as n — oco. (4.1.11)

Using the triangle inequality, we see that
l9n = tall <l — 2all + ll2n — tall,
and
20 = 2all < 12 = yall + Ny — 2all.
This implies that
Yo —tn — 0 and z, — 2, > 0, as n — o0. (4.1.12)
The definition of y,, implies
(1 = pn)(@n — Po(@n — 1A (I — T)Azp)) = Tn = Yn.
Thus
Tp — Po(zn — A (I — T)Az,) — 0, as n — oo. (4.1.13)

Let z € wy(w,). Then there exists a subsequence {z,,} of {z,} which converges
weakly to z. We obtain that {A*(I — T')Az,,} is bounded because A*(I —T)A is
-zwlmz-—inverse strongly monotone. Without loss of generality, we may assume that

Yoi = ¥ € (0, uTluf) By the nonexpansiveness of Pc, we see that

IPo(I = ynA*(I = T)A)zn, — Po(I = YA(I = T)A)zn,||
< o =A™ = T) Ay, |,
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and so
Po(I =4, A*(I ~T)A)xp, — Po(I —4A*(I = T)A)zy, = 0, i — o0, (4.1.14)
From (4.1.13), (4.1.14) and
€0, — Po(I — YA (I = T)A)zn,||

< “mn: - PC(I - ,Y‘niA*(I - T)A)"an”
HIPo(I — A = T)A)zn, — Po(I — YA*(I = T)A)zn,|),

we have
T, — Po(I — 3A*(I — T)A)xp, =0, as i — oo. (4.1.15)
By the demiclosedness principle, Lemma 2.2.7, we have
z € F(Po(I —4A*(I —T)A)).
Corollary 2.2.6, this yields:
z€ CNATF(T). (4.1.16)

Next, we claim that z € VI(C, f). From (4.1.9), (4.1.10) and (4.1.11), we know
that yn, — 2, 2,, = # and t,, — 2. Define the set-valued mapping B : H = H by

f(@)+ Ngv, ifved,
0, ifvéedC.

By =

From Lemma 2.2.4, we obtain that B is maximal monotone and we have 0 € Bv iff
v e VI(C, f). If (v,w) € G(B), thenw € Bv = f(v)+N¢v and so w— f(v) € Ngv.
Thus, for any p € C, we get

{(v—p,w— f(v)) >0. (4.1.17)
Since v € C, it follows from the definition of z, and Lemma 2.2.1 that
(Un — AnSYn — 2y 20 — ) > 0.

Consequently

Zn — Yn
( ™

+ f(yn)av - zn) Z 0.
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By using (4.1.17) with {zy,, }, we obtain
(w— f(v),v—2y,) =0.
Thus

<’LU,’U - zni) 2 <f('l)),’U — 2y

)
> (f(0),v — 2,) - <—;—y— + W)y 0 = Zay)
5 (f(’l)) - f(zni)>v - Zﬂi) + <f(znz) - f(yni)"v - 'z’ﬂi)

Zny = Yng
(X TR,

Zn; — Y
= (f(znz) - f(yni)’v - zni> N (’—;\—.ﬂ’v S zni)'
By taking ¢ — oo in the above inequality, we deduce
(w,v—2) >0

.

By the maximal monotonicity of B, we get 0 € Bz and so z € VI(C, f). Now,
we will show that z € F(S). Since S is nonexpansive, it follows from (4.1.4) and
(4.1.6) that

[15@n) = ull = [1S(ts) = S| < lItn —ufl < llgn = ull < llon — ull,
and by taking limit superior in the above inequalities and using (4.1.8), we obtain

limsup ||S(,) —ul| <¢ and limsup |ly, —ull < e
n—3r00 n—roo

Further,
T}}_I)I(}o ot (yn — u) + (1 — an)(Stn) —w)ll = TP—I)Xolo llotnyn + (1 — o) S(tn) — ull

= lim ||lzn4 —
n—00

= C,
and so, by Lemma 2.2.8 implies
lim ||S(t,) — ya|l = 0. (4.1.18)
n—oeo

From (4.1.12), (4.1.18) and
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1S@Wn) = wnll = [1S(yn) — S(ta) + S(ta) — wnll
< 1SWn) = SE + [1S(En) — wall
< ”yn - tn” + ”S(tn) - yn”;

we have

lim ([ (yn) — vnl = 0.

This implies that

Jim 1 = )yl = Jm e, = 5ol =0,

Now, by the demiclosedness principle, Lemma 2.2.7, we have z € F(S). Conse-
quently wy,(z,) C ©. By Lemma 2.2.9, the sequence {x,} is weakly convergent to

a point z in ©.

Setting u, = Pox,. We will show that z = lim u,. By Lemma 2.2,1 and
n—oo

z € O, we get that

(T, — Up,Up — 2) 2 0

It follows from Lemma 2.2.10 that {u,} converges strongly to some 2z, € ©. Thus
<Z-~Zo,20 —Z) Z 0.

Hence z = zg, this implies that z = lim Poz,. O
n—>00

Remark 4.1.2. We can obtain the following cases:

i) If f=0,T = Py and S = I, then the problem (4.1.1) coincides with the
( ) ) Q p
SFP, and if a,, = 0, we obtain that the algorithm (4.1.2) reduces to algorithm
(2.2.5) for solving the SFP.

(i1) If T = I, then the problem (4.1.1) coincides with the VIP and FPP, and the
algorithm (4.1.2) reduces to algorithm (2.2.11) for solving the VIP and FPP.

(¢41) If S = I, then the problem (4.1.1) coincides with the problem 3.1 in [51] and
if o, ptn = 0, we obtain that the algorithm (4.1.2) reduces to algorithm 3.2
in [51).
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The following result provides suitable conditions in order to guarantee the
existence of a common solution of the split variational inequality problems and

fixed point problems, that is finding a point z* such that

e VI(C, f)NF(S) and Az* € VI(Q,g). (4.1.19)

Theorem 4.1.3. Setting © = {z € VI(C, f)NF(S): Az € VI(Q, g)} and assume
that © # 0. Let the sequences {z,}, {yn} and {2} be generated by z; = x € C

and

Yn = pinTn + (1 — pin) Po(Tn — 1A (I — Po(I — 0g))Az,),
Zp = PC(yn 7 /\nf(yn))a (4'1'20)
Tpt1 = nYn + (1 — @n)SPo(yn — Mf(2n)),

for eachn € N, where § € (0,20). Then the sequence {z,,} converges weakly to a

point z € O, where z = lim Poz,.
N300

Proof. 1t is clear that from d-inverse strongly monotonicity of g that it is %-
Lipschitz continuous and, for § € (0,268), we obtain that I — fg is nonexpan-
sive. Since Py is nonexpansive, then Po(I — fg) is nonexpansive. By taking
T = Po(I — 6g) in Theorem 4.1.1, we obtain z € VI(C, f) N F(S) and Az €
F(Po(I — f0g)). It follows from Az = Fu(I — 0g)Az and Lemma 2.2.1 that
Az € VI(Q, g). This completes the proof. |

Remark 4.1.4. We can obtain the following cases:

(1) If f =0, g =0and S = I, then the problem (4.1.19) coincides with the SFP,
and if o, = 0, we obtain that the algorithm (4.1.20) reduces to algorithm
(2.2.5) for solving the SFP.

(#) If g = 0 and @ = Hay, then the problem (4.1.19) coincides with the VIP and
FPP, and the algorithm (4.1.20) reduces to algorithm (2.2.11) for solving the
VIP and FPP.

(#43) If S = I, then the problem (4.1.19) coincides with the SVIP, and if o, ptr, = 0,
then the algorithm (4.1.20) reduces to algorithm (2.2.12).
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4.1.1 Applications

In this section, by using the main results, we present we give some applications
to the weak convergence of the produced algorithms for the equilibrium problem,

zero point problem and convex minimization problem.

The following result is related to the equilibrium problems by applying Theo-
rem 4.1.1.

Theorem 4.1.5. Let F : C' x C — R be a bifunction satisfying conditions (Al)-
(Ad). Setting © = {z € VI(C,f)NF(S) : Az € EP(C,F)} and suppose that
© # O. Let the sequences {z,}, {yn} and {z,} be generated by £, =z € C and

Yn = PnTp + (1 - Un)PC($n S A= Tr)Axn))
Rp = PC’(yn il )\nf(yn))) (4121)
Tnt1 = OpYn + (1 S an)SPC(yn = )\nf(zn))>

for each n € N, where T, is a resolvent of F' for r > 0. Then the sequence {x,}

converges weakly to a point z € ©, where z = lim Pgxy,.
n—o0

Proof. Since T, is nonexpansive, the proof follows from Theorem 4.1.1 by taking
T=T,. O

The following results are the application of Theorem 4.1.1 to the zero point

problem.

Theorem 4.1.6. Let B : Hy = H, be a mazimal monotone mapping with D(B) #
0. Setting © = {z € VI(C, f{)N F(S) : Az € B0} and assume that © # 0. Let
the sequences {z,}, {yn} and {2,} be generated by z; =z € C and

Yn = Pny + (1 — Hn)PC(mn — Y A (I — 'L')Amn)’
Zp = PC(yn - )\nf(yn))) (4'1'22)
Tpt1 = On¥n + (1 — an)SPe(yn — /\nf(zn))a

for each n € N, where J, is a resolvent of B for v > 0. Then the sequence {z,}

converges weakly to o point z € ©, where z = lim Pgx,.
n—o0
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Proof. Since J, is nonexpansive and F(J,.) = B~10, the proof follows from Theorem

4.1.1 by taking T' = J,. O

Theorem 4.1.7. Let B : H, =3 H, be a mazimal monotone mapping with D(B) #
0 and Fs : Hy — H, be a §-inverse strongly monotone mapping. Setting © = {z €
VI(C, fYNF(S): Az € (B + F5)7'0,}, and assume that © # 0. Let the sequences
{zn}, {yn} and {2,} be generated by z; =« € C and

Yn = PnTn + (1 = ) Po(zy — A (I — J.(I — 7F5))Axy),
Zp = PC(yn - /\nf(yn)); (4‘1'23)
Tpy1 = QplYp + (1 > an)SPC(yn - /\nf(zn))a

for each n € N, where J, is a resolvent of B for r € (0,28). Then the sequence

{z,} converges weakly to a point z € ©, where z = lgn Poz,.
00

Proof. Since Fj is d-inverse strongly monotone, then I — rFjy is nonexpansive. By
the nonexpansiveness of J,, we obtain that J.(I — rFj) is also nonexpansive. We
know that 2z € (B + F5)~*0 if and only if z = J,.(I — rFy)z. Thus the proof follows
from Theorem 4.1.1 by taking T' = J,.(I — rFs). O

By applying Theorem 4.1.3 and Lemma 2.2.13, we get the following result,

which is related to constrained convex minimization problem.

Theorem 4.1.8. Let ¢ : Hy — R be a differentiable convez function and suppose
that V¢ a d-inverse strongly monotone mapping. Setting © = {2z € VI(C, f) N
F(S) : Az € argmingeq ¢(y)} and assume that © # 0. Let the sequences {z,},
{yn} and {z,} be generated by v1 =z € C and

Yn = HnTn + (1 - ,un)PC(mn - 'YnA*([ - PQ(I - 9V¢))Amn)a
z2n = Po(yn = Mnf (yn)), (4.1.24)
Tpi1l = Qp¥Yn + (1 - an)SPC(yn - Anf(zn)))

for each n € N, where 0 € (0,28). Then the sequence {x,} converges weakly to a

point in ©, where z = lim Pox,.
00
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Proof. By Lemma 2.2,13 and taking g = V¢, the proof follows from Theorem
4.1.3. (|

We obtain the following result for solving the split minimization problems and

fixed point problems by applying Theorem 4.1.3 and Lemma 2.2.13.

Theorem 4.1.9. Let ¢y : Hy — R and ¢5 : Hy — R be differentiable convex
functions. Suppose that V¢, is a k-Lipschitz continuous mapping and V¢, is d-
inverse strongly monotone. Setting © = {z € argmingec ¢1(x) N F(S) : Az €
arg minyeq ¢2(y)} and assume that © # 0. Let the sequences {x,}, {yn} and {z,}
be generated by x; = x € C and

Yn = pnTn + (1 = pin) Po(zn — 1 A* (L — Po(I — 0V ¢2)) Azy),
20 = Po(¥n — MnVé1(¥n)), (4.1.25)
Tat1 = Yo+ (1 = ) SPo(Yn — AnVi(2n)),

for each n € N, where 0 € (0,26). Then the sequence {x,} converges weakly to a

point in ©, where z = lim Pgx,.
n—00

Proof. Since ¢ is convex, for each z,y € C, we have
d(z + XMz —z)) < (1 = N)é(z) + Ad(2), for all X € (0,1).

It follows that (Veé(z), z—2z) > ¢(z)—¢(2) = (Vé(2),z—%). Thus V¢ is monotone.
The result follows from Lemma. 2.2.13 by taking f = V¢; and g = V¢, in Theorem
4.1.3. O

4.2 Convergence theorems for the variational inequality

problems

In this section, we consider the following iterative algorithm by combining Ya-
mada’s hybrid steepest descent method [53] and Wang’s algorithm [54] for solving
the problem (2.3.1):

UYn = (1 - an)mn + an(I - tn:u‘f)Txm
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Tni1 = (I — taptf)TYn, (4.2.1)
where T = Pc(I - ")’A*(I - PQ)A)

Throughout this section, unless otherwise is stated, we assume that H; and
H, are two real Hilbert spaces and A : H; — Hj is a linear bounded mapping.
Let f be an n-strongly monotone and k-Lipschitz continuous mapping on H; with

some positive constants 7 and k. Assume that u € (0,27/k?) is a fixed number.

Theorem 4.2.1. Let C and Q be two closed convex subsets in Hy and H,, re-
spectively. Then, asn — oo, the sequence {z,} defined by (4.2.1), {t.} and {on}
satisfy conditions (C1) and (C2), respectively, converges strongly to the solution
of (2.3.1).

Proof. From Lemma 2.0.4, we have I — yA*(I — Pg)A is v||A||*-averaged. Since
T = Po(I — vA*(I — Pg)A) and Lemma 2.0.1 (i), we get that T is A-averaged
where )\ = li'lgé“—z—. Moreover, we obtain that z € I" if and only if z € F(T). It
follows from Definition of A-averaged mapping T' that 7' = (1 — A\)I + AS, where S

is nonexpansive. Then, the iterative algorithm (4.2.1) can be rewritten as follows:
Tpp1 = (I = topf)TTz,, (4.2.2)

where T = (1 — ap)I + (I — touf)T and T = (1 — A)I + AS. By Lemma
2.0.6, we obtain that I — t,uf is contractive. Since (1 —A)I + AS and I —t,pf
are nonexpansive, then (I — t,uf)T is also nonexpansive. Therefore, the strong

convergence of (4.2.1) to the element z* in (2.3.1) is followed by Theorem 2.3.2. [J

In [75], Miao and Li showed the convergence results of the sequence {zn},

which is generated by the following algorithm:

Un = (1 — @) Tn + 0 (L — topf) T2y,
Tpt1 = (1 - ﬁn)mn + ,Bn(I - tn,uff)Tym (4'2'3)

where {t,} C [0,1) satisfies condition (C3) Y o>, t, < 4o0o. Next, we will show
the strong convergence for (4.2.3) with {¢,} satisfies the condition (C1).
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Theorem 4.2.2. Let C and Q be two closed conver subsets in Hy and Hy, re-
spectively. Then, as n — oo, the sequence {z,} defined by (4.2.3), {t,} satisfies
condition (C1), {B.} and {an} satisfy condition (C2), converges strongly to the
solution of (2.3.1).

Proof. In the proof of Theorem 4.2.1, one can rewrite the iterative algorithm (4.2.3)

as follows:

Tnt1 = (1 - ﬂn)xn + /Bn(I ~ tnlflf)TTxm (424)

where T' = (1 — o) + an(I —topuf)T and T = (1 — A)I +AS. Since (I —t,uf)T is
nonexpansive, then the strong convergence of (4.2.3) to the element z* in (2.3.1)
is followed by Theorem 2.3.1. O

Moreover, we obtain the following results which are solving the common so-
lution of variational inequality problem and multiple-sets split feasibility problem,

i.e., find a point
z* e Q: (fz*,x—2*) >0, forall z € , (4.2.5)

where §2 is solution set of (2.2.1), and f : H; — Hj is an n-strongly monotone and

k-Lipschitz continuous mapping. This problem has been studied in [52].

Theorem 4.2.3. Let {Ci}Y, and {Q;};%; be two finite families of closed convez
subsets in Hy and Hy, respectively. Assume that v € (0,1/]|Al?), {t»} and {a,}
satisfy conditions (C1) and (C2), respectively, and the parameters {6,} and {(,}

satisfy the following conditions:
(a) 6; >0 for 1 <i < N such that Zf;l 6 =1;
(b) ¢ >0 for 1 <j < M such that Yy G = 1.

Then, as n — 0o, the sequence {z,}, defined by
Un = (1 = o) + (I — touf)Pi(I — yA(I — Py)A)zy,
Tp1 = (I — tupu fYPL(I — YA(I — Py) A)yn, (4.2.6)

with one of the following cases:
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(Al) Pr=PFg, - Poy and Py = Pq, -+ - Pou;
(A2) P = }:il 6 Fc, and P, = Zgﬂil GiPoys
(A3) P, = Pg, -+ P, and Py =312, (;Po,;

(A4) P, =N 6,Pc, and P, = Py, -+ Pa,,,
converges to the element z* in the solution of (4.2.5).

Proof. Let T = Pi(I — yA*(I — P»)A). We will show that T is averaged.

In the case of (Al), that is P, = Pg, -+ Pgy and P, = Py, +-- Fy,,. Since
P, is %-averaged foralli=1,...,N, by Proposition 2.0.2, we get that P; is A;-
averaged, where \; = N/(N +1). Similary, we have P, is also averaged and so Py
is nonexpansive. By using Lemma 2.0.4, we deduce that [ — yA*(I — P3)A is Ae-
averaged, where Ay = v||A||2. It follows from Lemma 2.0.1 (i) that T" is A-averaged
with A = N/(N +1) + v A|> — (N/(N + D)yl A]*

In the case of (A2), that is P, = Y~ | 6;Pc, and P, = Z;‘il (;Pg,. By using
Proposition 2.0.3 and condition (a), we obtain that P; is %~averaged. From condi-
tion (b) and Py, is nonexpansive, for all j = 1,..., M, we have P, is also nonex-
pansive. It follows from Lemma 2.0.4 that I — yA*(I — P;)A is || A||*-averaged.

Thus T is M-averaged with X = (1 + v||4]|?)/2.

The cases (A3) and (A4) are similar. This implies that T := (1 — X\)I + AS,
where S is nonexpansive. Moerover, by Lemma 2.0.1, we get that
F(T) = F(P) N F(I —yA*(I — B)A) = F(P) N A7 F(P)
=N, NATH(NLL,Q)) = Q.

Then, the iterative algorithm (4.2.6) can be rewritten as follows:
Tpt1 = (I - tnﬂf)TTmm (427)

where T = (1 — )] + an(I ~ touf)T and T = (1 — A)I + AS. By Lemma 2.0.6,
we obtain that I — t,uf is contractive. Since (1 — X\)I + AS and I — t,uf are
nonexpansive, then (I — t,uf)T is nonexpansive. Thus, the strong convergence of

(4.2.8) to the element z* in (4.2.5) is followed by Theorem 2.3.2. O
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Theorem 4.2.4. Let {Ci}L,, {Q;}5L1,7, {ta}, {0n} and {¢a} be as in Theorem
4.2.8. Then, as n — oo, the sequence {z,}, defined by

Yn = (1 - Ofn)xn + an(I - tn:“’f)Pl(I - ’YA(I - P2)A)$na
Tt = (1= Bo)@n + Bl — tapf) Pl — YA(I — P2)A)yn, (4.2.8)

with one of the cases (A1)-(Ad), converges strongly to (4.2.5).

Proof. In the proof of Theorem 4.2.3, one can rewrite the iterative algorithm (4.2.8)

as follows:

Tnt1 = (1 = Bp)n + Bull — tnﬂf)TTl"na (4.2.9)

where T = (1 — )l + o (I — touf)T and T = (1 = \)I + AS. Since (I — touf)T
is nonexpansive, the strong convergence of (4.2.8) to the element z* in (4.2.5) is

followed by Theorem 2.3.1. O

4.2.1 Numerical example

In this section, we give the numerical example comparing the algorithm (2.3.3)
which is given by Buong [52] and algorithm (4.2.1) (New method) to solve the
following test problem in [52): Find an element z* € Q = N, C; N A~ NI, Q;
such that

©(z*) = min, (4.2.10)

T€)
where ¢ is a convex function. Then, the derivative ¢'(x) is Lipschitz continuous

and strongly monotone on the Euclidian space E", where
Ci={z € E": diwy + ayzo + - - - + a}zn < by}, (42.11)

ai,b; € (—oo,+00), for 1 <k <nand1<i<N,

m
Q, = {y EE™: > (w—a])’ < R?} ,R; >0, (4.2.12)

=1
a{ € (—o00,+), for 1 <l <mand 1< j < M, and A is an upper triangular
n X m-matrix. By the same argument as in the proof of Theorem 4.2.3, we obtain
that T' is M-averaged where A = mg—’—ﬂﬁ and T = Py(I —yA*(I — P;)A). Moreover,
we also obtain that F(T) = NY,C; N A™(NY,Q;) = Q. Thus Q # 0.
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Example 4.2.5. We consider the test problem (4.2.10), where N = M = 1,
n=m =2, p(x) = (1 — a)||z||?/2 for some fixed a € (0,1), and

1 -1
0 2

A=

So, we have f := ¢/ = (1—a)[ is a k-Lipschitz continuous and n-strongly monotone
mapping with k = 5 = (1 — a). For each algorithm, we set a* = (1/4,—1),b; = 0,
for all i = 1,...,N, and o/ = (1/4,0),R; = 1, for all j = 1,..., M. Taking
a = 0.5, = 0.3 and the stopping criterion is defined by E, = |[Tn1 — Zn|| < ¢
where € = 107 and 107, The numerical results are listed in Table 1 with different
initial points z!, where n is the number of iterations and s is the CPU time in
seconds. In Figures 1 and 2, we plot the stopping criterion with respect to the
number of iterations for both methods follow by Table 1 with the different initial

points.

Table 1: Computational results for Example 4.2.5 with different meth-
ods.

107 10-¢

Initial point n S n s

Buong method 29461 0.364595 2946204 31.362283
(—2,1) New method 11784 0.241371 1178481 23.411679

Buong method 30632 0.565431 3063343 33.468210
(1,3) New method 12252 0.324808 12256336 25.570356
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Figure 1: The convergence behavior of E, for Example 4.2.5 with the

intial point (—2,1).
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Figure 2: The convergence behavior of E, for Example 4.2.5 with the
intial point (1, 3).

Remark 4.2.6. By the numerical analysis of our results in Table 1 with Fig. 1 and
2, we get that the algorithm (4.2.1) (new method) has lesser number of iterations
and faster convergence than algorithm (2.3.3) (Buong method).

Example 4.2.7. In this example, we consider the alogorithm (4.2.8) for solving
the test problem (4.2.10), where N = 5 and M = 4. Setting {Ci}\.,, {Q;})1, ¢, a
and A be as in Example 4.2.5. In the numerical experiment, we took the stopping
criterion E, < 107*. The numerical results are listed in Table 2 with different
cases of P, and P,. In Figures 3 and 4, we plot the stopping criterion with respect
to the number of iterations for all cases of P; and P, follow by Table 2 with the
different initial points. Moreover, Table 3 shows that the effect of different choices

of 7.
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Table 2: Computational results for Example 4.2.7 with different meth-

ods.

Initial point Al A2 A3 A4
n 28577 24264 28577 24264
(—2,1) s 1491225 1.355074 1.534414 1.282528
n 33407 31438 33407 31438
(1,3) s 1.746868 1.693069 1.816897 1.690618
107 7 T i T T T ¥ T
\ —— (A1)
\ &
\ i
\\\
N
N,
w \\%: i
\% . -
;\%\ }
R s i s R s 4

No. of iterations x10*

Figure 3: The convergence behavior of E, for Example 4.2.7 with the
intial point (—2,1).
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Figure 4: The convergence behavior of E, for Example 4.2.7 with the
intial point (1, 3).
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Table 3: Computational results for Example 4.2.7 with different .

v 0.1 0.2 0.3

n 9675 19200 28577
(—-2,1) s 0.669508 1.245136 1.666702

n 11311 22447 33407
(1,3) s 0.764536 1.372600 1.958486

Remark 4.2.8. We observe from the numerical analysis of Table 2 that the algo-
rithm (4.2.8) has the fastest convergence when P; and P, satisfy A4 and the slowest
convergence when P; and P satisfy A3. Moreover, form Table 3 we require less
iteration steps and CPU times for convergence when 7 is chosen very small and

closed to zero.



CHAPTER V

CONCLUSION

In this thesis, we introduce the generalized iteration processes and general-
ized contractive mappings in the setting of partial b-metric spaces and Hilbert
spaces. Furthermore, we illustrate weak and strong convergence theorems for the
variational inequality problems, fixed point problems and the related problems.
Moreover, we present some numerical examples to demonstrate the capability of

our iteration processes.

5.1 Fixed point theorems for generalized JS-quasi-contrac-

tions in complete partial b-metric spaces

In this section, we begin with considering fixed point theorem of the JS-quasi-
contractions mapping in complete metric spaces and focused on the convergence
theorems on partial b-metric spaces. First, we present the generalized JS-quasi-
contractions and prove the convergence theorems of such mapping in the setting
of py-complete partial b-metric spaces. Our space is a partial b-metric space which
is a natural generalization of a metric space. Since our mappings are more general
than mappings of Li and Jiang [64]. The obtained results improve and extend those
results that have been presented in previous literature. In addition, an example
is given to illustrate and support our main result, which is showed that our main

result only works when the space is p,-complete partial b-metric spaces.

5.2 Algorithms for the common solution of the split varia-
tional inequality and fixed point problems with appli-

cations

In this section, we begin with considering an iterative method which was intro-

duced by Tian and Jiang [51], by combining Korpelevich’s extragradient method
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with Byrne’s CQ algorithm, for finding an element to solve a class of split varia-
tional inequality problems and get a weak convergence theorem. First, we present
the an iterative method by combining Nadezhkina and Takahashi’s modified extra-
gradient method and Xu’s algorithm. The mentioned iterative algorithm presents
the common solution of the split variational inequality problems and fixed point
problems. We show that the sequence produced by our algorithm is weak con-
vergent. Since our algorithm is more general than iterative method in Tian and
Jiang [51], our results improve results in Tian and Jiang [51]. Finally, by using the
main results, we give some applications to the weak convergence of the produced
algorithms for the equilibrium problem, zero point problem and convex minimiza-

tion problem.

5.3 Convergence theorems for the variational inequality

problems

In this section, we begin with considering the algorithms in [52], which is first
proposed in [53] and [54], for solving the common solution of variational inequal-
ity problem and split feasibility problem. Moreover, Buong [62] considered the
sequence which is weakly convergent to a solution of multiple-sets split feasibility
problems. First, we establish an iterative algorithm by combining Yamada’s hybrid
steepest descent method and Wang’s algorithm for finding the common solutions
of variational inequality problems and split feasibility problems. The convergence
of the sequence generated by our suggested iterative algorithm to such a common
solution is proved in the setting of Hilbert spaces under some suitable assumptions
imposed on the parameters. Moreover, we propose iterative algorithms for find-
ing the common solutions of variational inequality problems and multiple-sets split
feasibility problems. Finally, the numerical example for supporting our main result
is also presented. By the numerical analysis of our results, we get that the algo-
rithm (4.2.1) has lesser number of iterations and faster convergence than algorithm

(2.3.3), our result improves result of Buong [52].
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