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ABSTRACT

The aim of this thesis is to introduce new solution concepts regarding the uncer-
tainty of multicriteria optimization problems. In the first approach, we concern with the
practical implementation of problems in which the solution should satisfy priority levels
in the objective function and the worst performance vector of the solution obtained by
the proposed concept is close to a reference point of the considered problem, within
an acceptable tolerance threshold. To this aim, the concept of lexicographic tolerable
robust solution is suggested. Additionally, important properties of the solution sets of
this introduced concept as well as an algorithm for finding such solutions are presented
and discussed. The second approach, we focus on the implementation of problems in
which the solution should provide the optimal choice concerning the possible maximum
criteria on the worst case scenario, at the same time a solution obtained by the proposed
concept should provide a good balance in the quality between the uncertain situation
and the undisturbed situation of the considered problem. To this aim, the lightly ro-
bust max-ordering solution is introduced. In order to support the decision maker in
understanding the trade-off between robustness and quality in undisturbed situation of

the lightly robust max-ordering solution, two measures called ‘gain in robustness’ and



‘price to be paid for robustness’ are presented. Moreover, an algorithm for finding the

proposed solution concept is presented and discussed.
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CHAPTER I

INTRODUCTION

Problem solving and decision making belong together in our lives, without mak-
ing a decision that problem cannot be solved. There are many reasons that the method in
mathematical optimization techniques often do not apply to real-world problems. This
is because problem solving in many cases must consider the problem bearing difficulties
that are included in the structure of the problem itself. The two main obstacle reasons
of these solving problem bearing difficulties are, that most real-world problems are of
multicriteria in nature, and the input data is usually not known beforehand or available
information is subject to change. The lack of available information limits our ability to
make choices that may have an impact of our daily lives. Some motivation situations
can be shown in the following examples: are considering buying a car, the purposes
of this decision are to obtain a car with highest comfort and with the lowest energy
consumption for the cheapest price; nevertheless, the car with highest comfort and the
cheapest cost value often conflicts with consumers objectives. Moreover, the decision on
whether to buy or not has to be made basically at the beginning time you considering
buying, for an individual cannot predict future product designs or price of gas changes.
Therefore, this purchasing activity, the sometime mundane task of choosing a car, is a

decision optimizing multiple objectives under uncertainty.

Another example is when a farmer, who is in the process of deciding which crops
to grow in the coming years after a short rotational period, needs to manage his crop
planting selections. If a farmer intends to cultivate a specific crop in order to obtain
the maximum harvest but is not sure of which crop should be grown, or what the
weather conditions will be in the upcoming years, farmers need to consider which crop
they should grow. Their decision must incorporate which crop will minimize the cost of
cultivation and minimizing harvesting difficulties, while maximizing the profits. There-

fore, deciding which crops to cultivate requires optimizing multiple objectives under



uncertainty.

Another example concerns of water management issues. Imagine you are a engineer
or maybe Politian etc., that has to decide which plan to choose regarding the construc-
tion of a controversial dam. The major issues that could arise can be seen in maximizing
energy consumption, minimizing construction costs, and minimizing negative effects on
population resettlement. Addtionally, individual are not able to predict the weather
or the price of purchasing energy consumption that is regulated by future government
policies. This means individuals in these circumstances face the problem of multi-goal

optimization under uncertainties.

As we pointed out above, optimizing multicriteria in the event of uncertainty is
applicable in different areas of the real world. Individual mathematical communities
have developed multicriteria optimization techniques and practices for dealing with un-
certainties concerning problem formulation. The idea of optimizing objectives in the
event of uncertainty can be effectively applied to a diverse number of issues in different
areas of the real world.

As mentioned above, many real-world optimization problems are often multifaceted
in nature and involve uncertainties in the input of data regarding a problem. As a conse-
quence, researchers are attempting to develop mathematical modelling and methods to
solve the problem. Motivated by the significance of these problems, in this thesis, we are
going to introduce new concepts of robustness for multicriteria optimization problems

under uncertainty situation.
The structure of the thesis is as follows
Chapter I. This chapter is an introduction to the research problems.

Chapter II. In this chapter, the basic concepts, notations, and solution techniques
of deterministic multicriteria optimization and uncertain multicriteria optimization will
be repeated and introduced. Also, an introduction to the various approaches that can be

found in the literature to handle uncertain data in both single objective and multicriteria



problems are recalled and presented.

Chapter III. In this chapter, we present a new concept of robustness for uncertain
multicriteria optimization problems which is a generalisation of the solution concept in
multicriteria optimization problems, which we are known as a lexicographic solution.
In section 3.2 and section 3.3, important properties and an algorithm for finding the
proposed solution are presented and discussed, respectively. In section 3.5, the im-
plementation of our proposed solution is presented to a water resource managerﬁent
problem.

Chapter 1V. In this chapter, we present a new concept of robustness for uncertain
multicriteria optimization problems with the generalisation of a solution concept based
on multicriteria optimization problems, which we are known as a max-ordering solution.
In section 4.1, we present a fundamental on the set of our proposed solution concept. In
section 4.2, we introduce the price of robustness for the proposed solution and present
the method for finding the proposed solution to assist the decision maker in making
decision process. In section 4.3, we provide a demonstration for the proposed solution

concept on the ambulance location problem with uncertainty situation.

Chapter V. We give the concluding research.



CHAPTER II

PRELIMINARIES

In this chapter, we present notations and basic concepts which will be used
throughout this work. We also give a literature review of uncertain multicriteria opti-
mization problems. Moreover, various approaches in the literature to handle uncertain

data in the problems are recall and discussed.

We now introduce the main notations and basic concepts. From now on, the
set of all natural numbers and the set of all real numbers will be denoted by N and
R, respectively. For each p € N, notations R? aﬁd I, are used to stand for a vector
space with p dimensions and the index set {1,2,...,p} C N, respectively. For vectors
z,y € R? with ¢ = (z1,2s,...,2p) and y = (Y1,%2,...,Yp), we define the relations

5, <, <, and <., as follows:
tZys xSy foralliel,
ryex; <y foralliel, and z # vy,
T <y&z <y foralliel,
T <iez ¥ & if T, < Yy, where m := min{k|zy # yx} and z; = y; for all 4 € I,_1.

Remark 2.0.1. The notations 3, <, <, and <., are used to stand for the relations on

RP and <, < are used to stand for the relations on R, respectively.



By using the inverse inequality analogy, including Z, =, >, and >.,, we define the
definition of cones with respect to each relation as follows. For each p € N, the orthants

of R? with respect to g, %, >, and >, are defined by
R? := {z € RP|z 0},
RY := {z € R?|z 3= 0},
RY := {z € R?|z > 0},

Rglem = {m € Rplx Zlem 0}'

2.1 Solution concepts for deterministic multicriteria optimization

In this section, we recall deterministic multicriteria optimization problems and

also various approaches of solution concepts for the problem.

Definition 2.1.1. A multicriteria optimization problem MP is a problem dealing with
minimizing vector-valued objective function f : R™ — R? over some constraint X C R".

That is,

(MP)  min f(z) (2.1.1)

subject to z € X.

Remark 2.1.2. Note that if p = 1, then the problem MP is called a single objective

optimization problem.

When p > 2, a solution that minimizes all objective functions simultaneously does
usually not exists. Consequently, it is necessary to define a minimum sense with regard
to the problem-solving approach. According to the above mentioned relations, various
approaches of solution concepts for the problem MP are introduced. Here, we present

some well-known solution concepts which was introduced by Vilfredo Pareto in 1896 [1].



Definition 2.1.3. [Efficiency concept] Given a multicriteria optimization problem
MP and feasible set X. A feasible solution £ € X is called an efficient solution or

Pareto solution if there is no z' € X such that

flz) < f(&). (2.1.2)

By replacing the relation < with 3 or < in the inequality (2.1.2), a feasible solution £
is called a strictly efficient solution and weakly efficient solution, respectively. The set
of all efficient solutions, strictly efficient solutions, and weakly efficient solutions of the

problem MP will be denoted by Xg, X;r , and X, g, respectively.

Remark 2.1.4. We note that the solution corresponding to the essential characteristics

of the concept of efficiency will provide a trade-off among all objectives.

Definition 2.1.5. [Lexicographically optimality concept] Given a multicriteria
optimization problem MP and feasible set X. A feasible solution £ € X is called

lexicographically optimal or a lexicographic solution if there is no 2’ € X such that

(&) < (). (2.1.3)
The set of all lexicographic solutions of the problem M7P is denoted by Xj;.

Remark 2.1.6. The lexicographic optimality in Definition 2.1.5 provides a solution
in which satisfy the priority levels in the objective function in the sense that the first
criterion f; has the highest priority, and only case of multiple optimal solutions the

criterion f; and the further criteria are considered.

Definition 2.1.7. [Max-ordering optimality concept] Given a multicriteria op-
timization problem MP and feasible set X. A feasible solution £ € X is called a

maz-odering solution if there is no ' € X such that

J 5
1;163413,(]”;6(1) < Igle%i(fk(x). (2.1.4)

The set of all max-odering solutions of the problem MP is denoted by X0



Now, we recall the technique for order preference by similarity to ideal solution
(TOPSIS) and the computational procedure for the TOPSIS method which was pro-

posed by Hwang and Yoon [2].

Definition 2.1.8. [TOPSIS] Given a multicriteria optimization problem MP and
finite feasible set X = {z1,zs,...,2n}. Let wy,wy, ..., w, be the positive weights of the
component objective functions fi, fo, ..., fp, respectively, such that E;’:l w; = 1. The

TOPSIS method for finding the solution of the considered problem is following.
Initialization. Input a multicriteria optimization problem MP.

Step 1. For each i € I,,, compute the weighted normalized value 7;; of component

function f; of each feasible solution z; by the following formulas,

Tij = wj—J—z(—?—?)—, for all j € I,.
V2 Ti(%i)
We write vector of weight normalized value of each feasible solution z; by (ri1, 7i2, - - -, Tip),

for alli € I,,.

Step 2. Determine the positive ideal solution A" and the negative ideal solution

A~ by using the formulas,

+ o (ot ot +
AT = (af,a3,...,0,) (2.1.5)
= ( maxr;,maxr;s,...,maxr;
( iel, il il 12 ) e 1p))
and
A" = (ay,03,...,0,) (2.1.6)
= minry;, minry, ..., minrg ).
(ieIn e, B Ver, P )
Step 3. Compute the distances from the normalized vector (71,749, ..., 7:p) of each

feasible solution z; to the positive ideal solution A* and A~ by using the following



formulas,
P
df = Z('f‘ij —af)? for all i € I,
=1
and
P
d; = Z(Tij —a;)? foralli € I,.
=1

Step 4. Compute the relative distance D of each feasible solution z; respecting

the positive ideal solution A* and the negative ideal solution A~ by the formula,

d; _
D: = m, for all i € In'

2 7

Step 5. Find the solution z® which is determined by

z® := argmaz D},

i€ln

Motivated by the lexicographic solution concept in Definition 2.1.5 and the max-
ordering solution concept in Definition 2.1.7, new solution concepts for uncertain multi-
criteria optimization problems will be introduced in the Chapter III and the Chapter IV,
respectively. In addition, the relations between existing solution concepts and proposed

solution concepts will be analyzed and discussed.

2.2 Solution concepts for uncertain multicriteria optimization

In this section, we recall uncertain multicriteria optimization problems and
robustness concepts which are motivated and related to our proposed solution concepts.
Definition 2.2.1. An uncertain multicriteria optimization problem MP(U) is given as

a family of {MP(s)|s € U} of deterministic multicriteria optimization problems

(MP(s)) min f(z,s) (2.2.1)

subject to x € X



with the objective function f : R™ x U — RP, feasible set X C R", and uncertainty set
U. An element s € U indicates a particular value for the uncertain parameters belonging

in an uncertainty set U.

Remark 2.2.2. When p = 1, an uncertain multicriteria optimization problem MP (i)

is an uncertain single objective optimization problem.

To decide what is a good solution for the problem MP(U) is not easy.
Some of the first research done in the area of uncertain multicriteria optimization was
the solution concept introduced by Deb and Gupta (3] in 2006. They replaced the
objective vector in a given uncertain multicriteria optimization problem with the mean
effective functions computed by averaging a representative set of neighboring solutions,
thereby removing the uncertainly and converting the problem to just a deterministic
multicriteria optimization problem. Then, an efficient solution for that deterministic
multicriteria optimization problem is considered as a robust solution for the full original

uncertain multicriteria optimization problem.

In the following subsection, we present some important concepts that will

serve to motivate our ideas.

2.2.1 Minmax robustness

Instead of using the concept of mean effective functions which were considered
in [3], Kuroiwa and Lee [4] reformulated uncertain multicriteria optimization problems
MP(U) by replacing the objective vector in the original problem with a vector con-
sisting of the worst case scenario of each respective component. Therefore, yielding a

deterministic multicriteria optimization problem with vector-valued objective function:
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(supfu(s, s)
seld

fwc(x) —_ ilelng(m’ S)

sup [o(z, 8) )
Then, an efficient solution for that determlmstlc multicriteria optimization problem
with respect to the objective function f*° is considered as a robust solution. The formal

definition of the robustness concept in [4] is following.

Definition 2.2.3. [4] [Point-based minmax robust efficiency] Given an uncertain
multicriteria optimization problem MP(U). A feasible solution £ € X is called point-

based minmaz robust efficient if there is no 2’ € X\{£} such that
foo(a) < f5(2).

Notice that by replacing the relation < in Definition 2.2.3 with 3 or <, a feasible
solution Z is called point-based minmax robust strictly efficient or point-based minmaz

robust weakly efficient, respectively.

Remark 2.2.4. When p = 1, the solution approach proposed by Kuroiwa and Lee
in Definition 2.2.3 is closely connected to the classical minmax robustness concept for
uncertain single objective optimization problems, which was firstly introduced by Soyster
[6] and subsequently extensively studied by Ben-Tal and Nemirovski [7]. Remind that a
feasible solution Z is a minmax robust solution for uncertain single objective optimization
problems if it is an optimal solution for the deterministic single objective optimization

problem

minsupf(z, s) (222)
sel

subject to z € X

with the objective function f : R® x U — R, feasible set X C R™, and uncertainty set
Uu.
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In 2014, another interpretation of Ben-Tal and Nemirovski’s robustness concept was
provided by Ehrgott et al. [8]. In this solution concept, for each feasible solution they
looked at the set of objective vectors under all scenarios and compared those sets to each
other, by using the concept of set relations to define minmax robustness for uncertain
multicriteria optimization problems. Now, we recall the formal definition of set-based
robust efficiency [8]. To do this, we will denote the set of all possible objective vectors

under all scenarios of each feasible solution z € X with the following notation:

fu(@) = {f(z,5) : s €U} C R,

Here, the set-based minmax robustness concept in [8] is recalled.

Definition 2.2.5. [8][Set-based minmax robust efficiency] Given an uncertain mul-
ticriteria optimization problem MP(U). A feasible solution Z € X is called set-based

minmaz robust efficient if there is no ' € X\{Z} such that
ful@) € fu(#) — RY.

Notice that by replacing the cone RY with RY or RY in Definition 2.2.5, the feasible
solution Z is called set-based minmax robust strictly efficient or set-based minmaz robust
weakly efficient, respectively.

Remark 2.2.6. Notice that the point-based minmax robust efficiency concept and the
set-based minmax robust efficiency concept are identical in the case of considering the
objective-wise uncertain multicriteria optimization problem. Here, let us recall that a
problem MP(U) is the objective-wise uncertain multicriteria optimization problem if

the uncertainties of the objective functions fi, fs,..., f, are independent of each other,

namely if I := Uy X Uy X -+ X U, and for each (sq,ss,...,8,) =8 €U,

(fl(xa 51)\

fa )= 2(“’:’82) ,

\Fo(,55)

where s, € Uy, for each k € I,. For more details one may see [8].
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A similar approach was introduced by Bokrantz and Fredriksson [9], who used set
relations following Ehrgott’s work, but replaced the set of objective vectors of a feasible
solution under all possible scenarios fy(z) by its convex hull. Other solution concepts
for uncertain multicriteria optimization problems was proposed by Giovanni et al. [10]
in 2015 who used set relations on comparing the set f;(z). We notice that the above four
concepts are concerned with minmax robustness, since they hedge against the worst case
scenario. For more details on a survey and analysis of different concepts of robustness

for uncertain multicriteria optimization, ones may see in [11].

2.2.2 Lightly robustness

As we have seen that the resulting solution of minmax robustness concepts
derived by relying on data of the worst case scenario, the decision makers may not be
willing to make decisions based on the worst possible one. Moreover, if one wants to
hedge against all scenarios from the uncertainty set may consequently come with the high
cost. From this point of view, many researchers try to look at the alternative robustness
concepts which can be reduced this conservatism of minmax robustness concept. One of
all interesting solution concepts that we would refer to is the concept of light robustness.
The idea underlying this solution concept is to find solutions that still working concerned
robustness, at the same time not too bad in an undisturbed situation from uncertainties
concurrently. For a concept of light robustness, a nominal scenario is defined. A scenario
is called nominal if it is the most typical situation or the most important one among all
scenarios in uncertainty set. The original idea of light robustness concept was proposed
by Fischetti and Monaci [12] for uncertain single objective optimization problems. In
this concept, a feasible solution is said to be a lightly robust solution if its objective
value does not differ from the optimal objective value in the nominal scenario more than
an acceptable threshold and minimize the objective function for the worst case scenario
over all feasible solutions. Now, we recall the formal definition which was introduced by

Fischetti and Monaci [12].
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Definition 2.2.7. [12]|Light robust optimality for single objective optimization
problems| Given an uncertain single objective optimization problem with nominal sce-
nario § and € > 0. Assume that 2’ is an optimal solution to the optimization problem
of the nominal scenario §. Then, a solution £ € X is called a lightly robust optimal
solution with respect to € to an uncertain single objective optimization problem , if it is

an optimal solution to

minsupf(z, s) (2.2.3)
seU

subject to f(z,8) < f(z/,8) +¢

z € X,

with the objective function f : R® x Y — R, feasible set X C R™, and uncertainty set
U.

This solution concept was extensively studied by Kuhn et al. [13] from uncertain sin-
gle objective optimization problems to uncertain bi-objective optimization problems and
then more general setting on uncertain multicriteria optimization problems by Schébel
and Ide [11]. This generalization of lightly robust concept was presented by combin-
ing the ideas underlying of the set-based minmax robust efficiency in [8] and lightly
robustness concept in [12] together. By replacing the idea of set-based minmax robust
efficiency in [8] with the point-based minmax robust efficiency in [4], another interpre-
tation of lightly robust efficiency was presented by Schobel and Zhou-Kangas [14]. We

now recall this solution concept.

Given an uncertain multicriteria optimization problem MP(U) together with a
nominal scenario § € U, let Xg(5) be the set of all efficient solutions to a deterministic
multicriteria optimization problem MP(8). For each efficient solution 2z’ € Xg(3) and
some given 0 < ¢ € R? with € := (g1, €9, ...,¢p), a subproblem LR(z', e,U) of the uncer-

tain multicriteria optimization problem MP(U) is defined as a family of deterministic
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multicriteria optimization problems, that is LR(z',e,U) := {LR(2, ¢, s)|s € U},

(LR(z',e,s))  min f(z,s) (2.2.4)
subject to fi(z,8) < fi(z',8) + &, for alli € I,

z € X.

Definition 2.2.8. [14]|Light robust efficiency] Given an uncertain multicriteria op-
timization problem MP(U) with nominal scenario § € U and some given € € RY. A
feasible solution Z € X is called lightly robust efficient for MP(U) with respect to ¢ if

it is point-based minmax robust efficient of the problem LR(z/,e,U).

In [14], the theoretical point of view on the relationships between the point-based
minmax robust efficient solution concept in [4] and the lightly robust efficient solution
concept in [14] are analyzed and compared under the nominal scenario case and the
worst case. In addition, the authors also analyzed the trade-off between nominal quality
and robustness of a single solution by introducing a measure which is called a price
of robustness. In this measure, two strategies were presented to support a decision
maker in finding the most desirable solution ‘for multicriteria problems in uncertain
situations, namely, the ‘gain in robustness’ and the ‘price to be paid for robustness’. By
applying these two strategies of the price of robustness in the decision making process,
a visualization of the implementation of the proposed solution concept was illustrated

to the problem of investment portfolio optimization in Zhou-Kangas and Miettinen [15].

Motivated by the ideas of lexicographic solution in Definition 2.1.5 and the minmax
robustness concept in Section 2.2.1, the first approach of robust solution concept for
uncertain multicriteria optimization problems will be introduced in Chapter III. Later
on, by adoping the ideas of max-odering optimality in Definition 2.1.7 and the light
robustness in Section 2.2.2, the second approach of robust solution concept will be

introduced in Chapter IV.
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2.3  Auxiliary concepts and results

To present the results on relationships between our proposed solution concept
and the set-based minmax robust efficiency in Chapter III, we recall the following sup-

plementary result.
Lemma 2.3.1. [8] Given an uncertain multicriteria optimization problem MP(U).
Then, the following statements hold.

(a) For all ',z € X,

fu(@) © fu(@) = Rl )y <= fu(@) —RE C fu(@) ~Ry ) ).

(b) For all 2,7 € X,

fu(@) —RE C fu(®) — Ry, ), <> Vs € U,3s el : f(,9)IZ 13/ <Ifz,9).
(c) Forall 2,z € X,
fule') — B2 € (&) — RE = sup fi(e', ) < sup fi(@, o),
& ~ seld s'eld
for all 7 € I,.
(d) If meazjcf,;(x, s) exists, for all z € X and ¢ € I, then for all 2/, Z € X,
fule') — RE C fu®) ~ BE = max (', ) < max (@, ),
for all 7 € I,
Before we are going to closed this Chapter, we recall the result in Kalai et al. [16]
which will be used to prove the important proposition in Chapter III. To recall this

fact, we remind the definition of ordering the values nonincreasingly which will be used

throughout this thesis.
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Definition 2.3.2. The sort function, sort(-) : R? — RP, is a function that reorders the

component of each vector on R? in a nonincreasing way. That is,

s0rt(Y) = (Yo1)s Yo(2)s - - Yolp)), for all y € RP (2.3.1)

where o is a permutation on I, such that Y,y > Yo(2) = *** 2> Yo(p)- In this case, we
will write sort(y) =: (sorti(y), sorta(y), . .., sorty(y)).

The following result was proposed by Kalai et al. [16].

Lemma 2.3.3. [16] Given an uncertain single objective optimization problem and fea-

sible solutions z, y € X. If f(z,s;) < f(y, s;), for each s; € U, then
¢i(z) < é;(y), for all j € I,

where f : R® x Y — R and the function ¢ is defined as in (3.1.2).



CHAPTER III

THE LEXICOGRAPHIC TOLERABLE ROBUSTNESS CONCEPT

In this chapter, we introduce a new robust solution concept for uncertain mul-
ticriteria optimization problems and consider the important properties of the proposed
concept. And, we present the method for finding the proposed solution. Some imple-
mentation of the solution concept of a problem of water resource management are shown

and discussed.

3.1 Lexicographic robust solutions with respect to the tolerance threshold

In this section, we introduce the concept of lexicographic tolerable robust so-

lution for an uncertain multicriteria optimization problem.

From now on, we let U = {s1, 2,..., 54} be the finite set of possible scenarios and
f :R® x U4 — RP be the considered vector-valued function. For each z € R™ and for

each i € I,, we put

c(z)(m) = (fl(xa 51)7 fz(ma 32)) ey fz(ma Sq))) (311)

where f;(z,s;) is the value of i component of the objective function for a feasible

solution x under scenario s;, for all j € I,. Subsequently, we put
&0 () == (sort1(c?(@)), sorta(cD (), . .., sorty(c?(z))), (3.1.2)

for each i € I, and z € R™. The notation é®(z) is used to stand for the sorted vector

of a vector ¢®(x). For the sake of simply, here we will write

&) (z) = (a&“ (2),89(x), ..., agi>(x)) , (3.1.3)
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for each i € I,,. Accordingly, for each j € I, and = € R", based on the above notations

(3.1.1)-(3.1.3), the worst performance vector can be determined as follows:

worst;(f(z,U)) = (ag.”(m), (@), (). (3.1.4)

Now we will introduce the concept of lexicographic robust solutions with re-
spect to a tolerance threshold set for the considered uncertain multicriteria optimization
problem. To do this, we s’gart by introducing the notation wiigflexA which is used to stand
for the infimum of a set A in RP with respect to lexicographic order. That is, for A C RP,
we let

™= inf Aifz™ <., z, forallz € A
with lex

where ™ € R? and the notation <., is defined as in Chapter IL

Here, the concept of reference point is presented.

Definition 3.1.1. The vector (é’l‘,éz, \ . . £Co

q) =: ¢* € RP*1 is called the reference point
of the problem MP () if

& = inf {worstj(f(x,u)ﬂm € X},

with lex

for each j € I,.

We now present the solution concept of lexicographic robust solutions with respect

to a tolerance threshold for uncertain multicriteria optimization problems.

Definition 3.1.2. Let MP(U) be an uncertain multicriteria optimization problem with
the reference point (&},2,... ,é:;) =: & € RP*9. For each a := (aq,03,...,04) €
[0, 00)P*4, the set of lezicographic tolerable robust solutions with respect to the tolerance

threshold «, which will be denoted by LRS(), is

q
LRS(a) == A7,
j=1
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where A7 = {93 € X|worst;(f(z,U)) € (& +a;) — Rg} for each j € 1.

Remark 3.1.3. (i) When p = 1, that is we are concerned with an uncertain single

3.2

objective optimization problem, the concept of lexicographic tolerable robust so-
lution in Definition 3.1.2 is identical to the lexicographic a—robust solution which
was introduced by Kalai et al. [16]. In [16], for each a € R, a set A(X, @) is called

a set of lexicographic a—robust solutions if

AX,a) = )43 (3.1.5)

When |U| = 1, this means that we are dealing with deterministic multicriteria
optimization problems. If « is the zero vector, then the solution concept in Def-
inition 3.1.2 is nothing but the lexicographic solution concept in Definition 2.1.5
which we mentioned in Chapter II. Notice that there is a concept so-called TOP-
SIS as defined in Definition 2.1.8 that also involved the concept of the reference
point (which is called the ideal point in Definition 2.1.8). However, the TOPSIS
method and the lexicographic tolerable robust solution method do have signifi-
cant differences in computation of the reference point. Indeed, according to the
lexicographic tolerable robust solution concept, the reference point is derived by
using the lexicographic order relation in comparing the vector in the image space.
While, the TOPSIS method, the reference point will be computed by considering
each respective component of the objective function separately by regardless the

priority levels in the objective function.

Properties of solution set

Now the important properties of the solution set of lexicographic tolerable

robust solutions will be studied and interpreted. We begin with the following fact that

is immediately followed from the Lemma, 2.3.3.
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Proposition 3.2.1. Given MP(U) be an uncertain multicriteria optimization problem
with the uncertainty set U = {s1, 3, ..., 54}. If z and y are feasible solutions in X and

satisfy the relation
D) 3 D(y), foralli € I, (3.2.1)

then
worst;(f(z,U)) 2

o~
~

worst;(f(y,U)), for all j € I,.

Proof. From the relation (3.2.1), by applying Lemma 2.3.3 to each value objective func-

tion f;, we have

&9(z) 3 9),
for all 7 € I,. This immediately implies that
worst;(f(z,U)) Z worst;(f(y,U)), for all 5 € I,
O

Property 3.2.2. [Dominance] Let o = (aj,ay, ..., 0q) € [0,00)P*? and z € LRS (o).
If y € X satisfies

Dy) 3 (z), foralli € I, (3.2.2)
then y € LRS(a).

Proof. The proof is directly followed from Proposition 3.2.1 and Definition 3.1.2. I

Interpretation 3.2.3. The Property 3.2.2 stipulates that, if there is another feasible
solution in a feasible set X which dominates a robust solution under all scenarios, then

it must be a robust solution.

In order to proof the non preference property, we present the following fact.
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Lemma 3.2.4. Let X CR*andz € X. If z  inf X, thenz= inf X.

with lex with lex
Proof. For sake of simplicity, we write y* = gllfl X. Notice that from y* is the
wi X

infimum with respect to lexicographic order relation and z € X, it imply that y* <;.; .
Suppose that = # y*. Then, there exists at least one k € I, such that z; # y;. Defining

m = min{k|zy # y;}. From z 3 y*, it would follow that
z;=y;, foralle=1,2,...,m—1and z, <y,

This implies that x <j., y*. This leads to a contradiction with the assumption that y*

being the infimum. Hence, we can conclude that z = y*. U

Next, we will consider the non preference property for the set LRS(a). To do so,
we will consider the following binary relation with respect to a vector o under cone RY..

Let z and 2’ be vectors in R?, and o € R, the relation <, on R? is defined as follows:
7 - a
z23p 2 &7 —a€z+RY

Proposition 3.2.5. [Non Preference] Let a = (a4, a2,...,0,) € [0,00)P*9. If z €

LRS(a) and z ¢ LRS(a), then for each j € I, we have

worst;(f(z,U)) g;& worst;(f(z,U)). (3.2.3)

Proof. Let j € 1,. Clearly, if worst;(f(z,U)) and worst;(f(z,U)) are not comparable,

then the conclusion is obtained.

Now, we consider the case that worst;(f(z,U)) and worst;(f(z,U)) are comparable.
Supposing on the contrary that
worst;(f(z,U)) §°‘é worst;(f(z,U)).
Thus, by the definition of <37, we would get

—RP
R?

worst;(f(z,U)) < worst;(f(z,U)) — a; and worst;(f(z,U)) # worst;(f(z,U) — o
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Subsequently, since z € LRS(«), we see that

worst;(f(z,U)) < worst;(f(z,U)) — o; Z (& + ;) — oy = &. (3.2.4)

Then, from the equation (3.2.4) together with the definition of the reference point &

and Lemma 3.2.4, we could get
worst;(f(z,U)) = &. (3.2.5)

In view of (3.2.4) and (3.2.5), we obtain that
worst;(f(z,U)) = worst;(f(z,U)) — &,
which leads to a contradiction with the assumption that
worst;(f(z,U)) # worst;(f(z,U) — ;.
Therefore,
worst;(f(z,U)) ;‘E;’; worst;(f(z,U)) for all j € I,
this completes the proof. 0

Interpretation 3.2.6. The non preference property by Proposition 3.2.5 means that
there is no preferable solution being outside the set LR.S(a) with respect to the operator
worst;(f(-,U)), for each j € I; and tolerance threshold o € RY.

The following proposition will be concerned with the stability of the solution set
LRS(c).
Proposition 3.2.7. [Stability] For any z,z’ € LRS(a) where o := (a1, g, ...,a,) €
[0, 00)P*4, we have
worst;(f(z',U)) ;‘é_;’; worst;(f(z,U))
and

worst;(f(z,U)) %;’5 worst;(f(z',U))

for all j € I,
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Proof. Let j € I, be fixed. Suppose on the contrary that
worst;(f(z',U)) S;:Z, worst;(f(z,U))
or
worst;(f(z,U)) S;Z, worst;(f(z',U)).
We may assume that worst;(f(z',U)) _<_Ri. worst;(f(z,U)). From the definition of
notation < _Rp , we see that

worst;(f(z',U)) < worst;(f(z,U)) —

Consequently, since z € LRS(a), we get that
worst;(f(z',U)) < worst;(f(z,U)) — a; 5 (& + ;) — oy = &. (3.2.6)

But (3.2.6) means that worst;(f(z',U)) is less than or equal to ¢ in every component
and there is at least one component of worst;(f(s',1/)) which is strictly less than ¢;. This
is a contradiction to the definition of &; being the infimum of set {worst;(f(z,U))|z €

X}. Therefore, we have
worst;(f(z',U)) 7{_;’,; worst;(f(z,U)).
We can obtain the conclusion for the case worst;(f(z,U)) <qp worst;(f(z',U)) by
following anologeously the proof of case worst;(f(z',U)) _;p worst;(f(z,U)). O

Interpretation 3.2.8. Proposition 3.2.7 shows that there is no preferable solution
among elements in the set LRS(a) via considering the preference defined by the order
relation §1?x‘; on RY.

3.3 The solution method

In this section, we are going to introduce the method which will be used for

finding the proposed solutions.
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3.3.1 The Nonemptyness of solution set

We begin this subsection with results on the tolerance threshold, results have
been obtained to help decision makers in finding acceptable threshold to guarantee the
nonemptyness of the solution set. In doing so, for the sake of simplicity, we use the

following notations:

max(z) := max{z1,Z2,...,%n},
and
z+e:=(T1+€Ta+¢€, ..., +E),
where © = (21,%3,...,2,) € R", and ¢ € R.

Next, we provides a threshold vector « such that the solution set LRS(«) is
nonempty. Before we are going to the Theorem of Nonemptyness, we show an im-

portant tool.

Proposition 3.3.1. Let U = {s1,52,...,54} and f : R® x Y — R be a single objective
function such that f(:,s;) : R® — R is lower-semicontinuous on X, for each j € I,.

Then, for each j € I, the function &;(-) : R® — R is lower-semicontinuous on X.

Proof. We will prove by induction. The result is true for the case ¢ = 2, since ¢ (-) =

max{f (-, 51), f(-, s2)}, and &(") = min{f(;, s1), F (-, 52)}-

Next, we assume that f(,s1), f(:,82),..., f(:,sk) are also lower-semicontinuous on
R™ such that their corresponding sorting functions, & (-),é(:),...,é&(:), are also lower-

semicontinuous. Now, let f(:,sx+1) be a lower-semicontinuous function on R™.

Let us define the function g; : R® — R by
91(-) = max{& (), f(-, sk1)} and g;() = max{&("), min{&i—1("), f(", sk+1)}},
for each 1 € {2,3,...,k} and

Gr+1 (") = min{&(-), (-, sx+1)}-
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Observe that we have

91(z) > ga(z) 2 -+ 2> g(2) > grta(2),

for all z € R™. This means {g1(-), 92(*),- -, 9k(:), gr1(:)} is the set of sort functions
for f(-,81), f(*,82), -, F(*sSk), f(, Sk+1). Moreover, from the induction hypothesis to-
gether with the property of lower-semicontinuous of f(:, sx+1), we have g; is a lower-

semicontinuous function for all ¢ € {1,2,...,k,k + 1}. This completes the proof. O

Proposition 3.3.2. Let X be a feasible set and MP(U) an uncertain multicriteria
optimization problem with the corresponding reference point (é{,é;, e ,é;) =: ¢* €
RP*. Let o := (a,0n,...,0,) € RPX? where a; = (o™, a™, ..., a™) € R?, for all

j € I, such that

inf .
a™ = ;g)f( max (A;), (3.3.1)

worst:(f(z,U)) — &

worsty(f(z,U)) — &
and A, = z(f( ) =& € R,

worsty(f(z,U)) — &

Then, for each € > 0, we have

(i) LRS(a+¢€) # 0, and

(i) LRS(a—¢) = 0.

Proof. (i) Let € > 0 be given. By the definition of o™, there exists z. € X such that

o™ < max(A,,) < o™ + €.

For each j € Iy, we write & = (éj(l), é;@), ... ,é;(p)). It follows that,

max{ ég-i)(:ce) - é;(i)} <o e

i€l,
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for each j € I,. Subsequently, for each j € I;, we have

& (ze) — &Y < o t ¢, for all i € I,

This implies that,

worst;(f(ze,U)) 3 & + (o +¢), forall j € .

This shows that, z. € LRS(a + €), and the item (i) is proved.

(ii) Let = € X be arbitrary but fixed. By definition of /™, we know that

o™ < ég-i) (z) — é;f(i), for some j € I, and i € I,

Thus, for each € > 0, we must have
e G i
a™—e< cg-z) (z) — c;f(z),

for some j € I, and ¢ € I,. This implies that © ¢ LRS(a — €). Since z is an arbitary

element of X, we can conclude that the item (ii) is proved. O
Remark 3.3.3. If we define a function A : R® — R by
h(z) := max(A,), for each z € R",

then under the assumption f;(-,s1), fi(:, s2), .. ., fi(, 84) are continuous functions on X,
for all i € I, we can show that h is a continuous function on X. Indeed, for each fixed

j € I, let us consider a function g; : R® — R which is defined by

gi(z) = max{6§i) (z) — ¢}, for each z € R™.
i€l,

Note that, by applying the Proposition 3.3.1, we have égz)() is continuous on X, for
each ¢ € I,. This implies that g; is a continuous function. Thus, under the continuity
assumption on f;, we may observe that the compactness property of the feasible set X

is a sufficient condition for the well-defindness of the vector & € RP!, when we are in

the situation that X is an in finite set.
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The following theorem gives the sufficient conditions for the nonemptyness of solu-

tion set.

Theorem 3.3.4. [Nonemptyness| Let MP(U) be an uncertain multicriteria opti-

mization problem with the corresponding reference point (&, &,...,¢&;) = &* € RPX9,
and f;(-,s1), fi(*,82), ..., fi(, 84) be lower-semicontinuous functions on X, for all i € I,.
Let o := (o, 0,...,q,) € RP*? where a; = (o™, o™, ..., o) € R?, for all j € I,

such that a threshold value o/™ is defined as (3.3.1). If X is a compact set then LRS(a)

is nonempty.

Proof. Let n € N be fixed. By choosing a threshold valued o™ as (3.3.1), we can find

" € X such that

: - 1
o™ < max(Agn) < o™ + =
n

For each j € I, we write ¢; = (é;(l), 6;(2), . ,6;(:") ) It follows that,

A(4) A% (d) D A
e #6759 < L

for each j € I,;. Accordingly, for each j € I, we have

é§z)(mn) _ 61'() < o 4 = for all i € I, (3.3.2)

This means that,

1
worst;(f(z™,U)) Z & + (a; + ;l—), for all j € I,.

It follows that,
a™ € LRS(o™ + 1), for all n € N.
n

Moreover, since X is compact and {z"} C X, we let Z € X and a subsequence {z"™} of

{z"} be such that z™ — Z, as k — oo.
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Since, for each ¢ € I, we have f;(-, 1), fi(*, 52), - . ., fi(*, s¢) are lower-semicontinuous,

we know that égz)() is also lower-semicontinuous function, for each j € I,. These imply,
& (z) — &7(z) as k — oo, (3.3.3)

for all 7 € I, and j € I,. Using this one together with the continuity of maximum

function, in view of (3.3.2), we have

max max {é(.’) (z™) — é"f(l)} — o™, as k — co.
jely i€l 7 1

Thus by (3.3.3), we obtain that

max max {é(-z) (Z) — é;f(z)} = o™,
FTARTA

This guarantees that Z € LRS(«). This completes the proof. O

3.3.2 The Algorithm for finding solution set

By considering the Propdsition 3.3.2 and Theorem 3.3.4, one can see that
the tolerance threshold which is defined by (3.3.1) will be used to compute the best
choice among the feasible solutions for the solution concept in Definition 3.1.2. In other
words, the solution set due to Definition 3.1.2, for the considered uncertain multicriteria
optimization problem M7P(U), is the set LRS(a) when « is computed by (3.3.1). The
following Theorem 3.3.5 will lead to a method for computing an element in the such set
LRS(a).

Theorem 3.3.5. Let MP(U) be an uncertain multicriteria optimization problem with
the corresponding reference point (&,&5,...,¢;) = &* € RP*9, where ¢} := (éj(l),é;(z), e ,é;(p)) €
RP, forall j € I,. Let a := (au,...,0q) € [0,00)P*? be such that a; = (ag-l), a§-2), . ,ag-p)) €
R? for all j € I;. Then, we have
() Ly S LRS(a),

(B9 elpxIy
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where L; ) = {m € Xlégz)(m) < é;(i) + ag-i)} for all ¢ € I, and j € I,.

Proof. Let z € () Ly,;). This means that,

(t,9)elpxIy

z€{z¢€ Xlégz)(z) < é;(i) + ozg-i)}, for alli € I, and j € I,
This implies that,
z € {z € X|worst;(f(z,U)) 3 & + a;}, forall j € I,.
Thus, it follows directly that z € LRS(a) and the theorem is proved. O

Based on Theorem 3.3.5, we now suggest a method for finding a solution to the

problem MP(U) in the set LRS(a).

Algorithm 1: Finding a lexicographic tolerable robust solution of MP(U)

Input: Uncertain multicriteria optimization problem MP(U).

Step.1: For each fixed j € I, find the reference point ¢;.

Step.2: Compute a tolerance threshold valued o™ of the problem MP(U) as
defined in the Equation (3.3.1) of Proposition 3.3.2.

Step.3: For each fixed i € I, and j € I, compute the level set L; ;y by

Ly = {fv € X|&(z) < &% + ai"f} , (3.3.4)
where & := (é;(l), é;f(z), ce, é;(p)).

Step.4: Find an element z* in the set
N L
()€lpx1q
Output: z* is an element of LRS(a), where o := (o, g, . .., q) € RP*9, such

that a; = (oM™, o™, ..., o) € RP, for all j € I,.
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Remark 3.3.6. (i) For each j € I, the vector ¢ € R? is found by finding the
value of lexicographic optimization of the deterministic multicriteria mapping
worst;(f(-,U)) : R* - RP. For information on methods for finding the reference

point as in Definition 3.1.1, one may see [18].

(i) Observe that the computation of value '™ is finding the infimum of subset of real
numbers. Thus, we can apply many elementary existing methods of finding this

value.

(iii) Under the assumptions of f;(-,s;) being continuous for all i € I, and j € I,
together with an assumption that the feasible set X is compact, by applying
Proposition 3.3.1, we have éy)() is also continuous for all i € I, and j € I,. Thus,
since égz)() is continous, we have that the level set L;;) as defined by (3.3.4) is
also a closed set. Thus, in order to finding a point in formulation (3.3.5) and
complete Step 4, we can apply many existing algorithms, we refer the reader to

[19, 20, 21].

3.3.3 Ranking of solution

In practice, the pfocess of selecting a final solution for the considered problem
usually involves multiple decision makers. Furthermore, there may occur the situation
that some decision makers are not satisfied with the solution found by the lexicographic
tolerable robust solution concept. Consequently, we may need to find more desirable
solutions to offer those decision makers. Reasonably, in order to update the solution for
fitting the preference or requirements of those decision makers, the monotonicity of the
solution set is a vital property that the presented solution concept must satisfy. The

following statement describes the monotonicity property of the solution set LRS(c).

Property 3.3.7. [Monotonicity] The set LRS(«) is monotonic in the tolerance thresh-

old set. That is, for o := (au,...,a), 8 = (B1,...,B,) € RP*? such that oy 3 B, for
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all j € I, we have
LRS(a) € LRS(f).

Proof. The proof directly follows from Definition 3.1.2. O
Remark 3.3.8. Property 3.3.7 means that once the tolerance threshold set haé been
adjusted using small tolerance threshold values it will also function correctly with larger
tolerance threshold values. In other words, a lexicographic robust solution correctly
adjusted with low tolerance threshold values will remain a lexicographic robust solution

even when the tolerance threshold values are high.

Continuing from above discussion, in order to update the solution sets, the ranking
concept needs to be considered. Here, we consider the common natural idea for the
ranking of different sets as we shall begin with computing the smallest tolerance thresh-
old such that the set LRS(a) is nonempty (see Theorem 3.3.4) and define it to be a
tolerance threshold set of the first ranking of solution set. After that, the next ranking
of the solution set can be computed by removing all elements that belong to the first
ranking of solution set from the feasible set. This mentioned idea is encouraged by the
following Theorem 3.3.9, which we present in the suitation that the feasible solution set

X is finite.

Theorem 3.3.9. Let X be a finite set and for each m € {2,3,..., ¢}, let @™ defined by

o™= min max(A;), (3.3.5)
z€X\LRS((a™1,..,a™1),..,(a™1,...,am—1))

where a! = mi)r(l max(A;). Then, for any 8 € [a™,a™"), we have
TE

LRS((B,...,B),-..,(B,-..,B)) = LRS((&™, ...,a™), ..., (a™,...,a™).

Proof. By the monotonicity of a solution set, the “2” inclusion is obvious. So, we need
?

to show that

LRS((B,...,B),.--,(B,..,B)) € LRS((&™,...,a™),... (a™,...,a™).
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Suppose on the contrary, there is T € LRS((8,...,8),...,(B,...,5)), but

T ¢ LRS((a™,...,a™),..., (@™, ...,a™)).

It means that 7 € X\LRS((a™,...,a™),...,(a™,...,a™)) and by the definition

m-1
of o™,

™ < max(4;). (3.3.6)

This implies that, there are j, € I, and 4y € I, such that

max(Az) = é§i°)(:i)—-éj§i°).

Since Z € LRS((B,...,B),---,(B,-.-,B)),

worsty, (f(@U)) € &, + (B,B,..., ) — R

By the definition of R, it follows that,

worsty(f(@U)) Z &, + (8.5, .. B)

This implies that, for any i € I,,

@) < &Y + .

So, for fixed 4y € I,

&) < &+ p. (3.3.7)

Jo
From Equations (3.3.6) and (3.3.7), it follows that

o™t < 8l (z) — &) < g,

= o jo
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Which leads to a contradiction with the definition of 5. Therefore, we obtain the

inclusion and so

LRS((B,...,B),...,(B,...,B)) = LRS((&™, ...,a™),..., (@™, ...,a™)).

(]

It should be noted that the lexicographic tolerable robust solution depending on the
choice of tolerance threshold @. Theorem 3.3.9 provides a sufficient condition on how
to choose the effective tolerance threshold for classifying the ranking on the solution
set. The resulting solution set will remain the same set as the previous ranking of
the solution set if a tolerance threshold does not reach to at least a value which was
computed by (3.3.5). For more understanding on Theorem 3.3.9, we illustrate with the

remark 3.5.2 in Section 3.5.

3.3.4 Refinement of the tolerance threshold

It is worth to remind that the lexicographic robust solutions sets depend on the
considered tolerance threshold. Moreover, by Theorem 3.3.9, it has been asserted that
there is no solution set that properly lies between the LRS(a') and LRS(a**) when
these o' are computed by the method presented in the formulation 3.3.5. Indeed, by
choice of tolerance threshold o* which is computed by Theorem 3.3.9 could be obtained
new members in LRS(c?) more than one element, one may wonder whether these new
members are really in the same rank (we illustrate this observation with the remark
3.5.2 in Section 3.5). Here, we consider the idea to sharpen the ranking of the solution
and the computation of tolerance threshold to determine a sub-rank among elements in
the ™ ranking of the solution set is presented. The first sub-rank of the i** ranking can

be determined by computing the following formulation of the tolerance threshold:

o= inf {(af(2),08(),. ., 0f (+)) € R™I|z € LRS(a") \ LRS(a* )},

with lex
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where

ozj-l (z) = (ma,x{c(l)( ) — &;f(l), O},max{é§2)(m) - é;(z),()}, e ,max{égp)(w) - a;(p)’ 0}) €R?,

_7 3 ] )

and ¢} := (“f(l) AL “*(p )) € RP, for all j € I,. The resulting solution set LRS(c)
corresponding to a tolerance threshold o is considered as a robust solution in the first

sub-rank of the i** ranking of the solution set.

The process of computing a tolerance threshold to determine the second sub-rank
of the 7" ranking of the solution set will be continued if the remaining solution set
LRS(a?) \ {LRS(c) U LRS(a'™*)} is nonempty. Consequently, the second sub-rank
of the i** ranking of the solution set can be determined by computing the following

formulation of the tolerance threshold:

o = int {(af(0),08(2), .., (@) € Rz € LRS(a) \ {LRS (o) ULRS (o)}

with lex

where
ozj? (z) = (ma,x{ég-l) (z) — a;f(l), 0},ma.x{&§2) (z) — 6;(2),0}a ma,x{c(p)( ) — é;(p)7 0}> € R?,

where j € I;,. The resulting solution set LRS(a*?) corresponding to the tolerance
threshold o/? is considered as a robust solution in the second sub-rank of the i ranking

of the solution set.

We will continue this process of computing the third sub-rank if LRS(a)\{LRS(a"*)U
LRS(o?) U LRS(a/1)} is nonempty. The third sub-rank of the i** ranking of the so-

lution set is determined by the following tolerance threshold:

o= it { (ab(@),0(),. .., o (x)) RV
z € LRS(af) \ {LRS(a""Y) U LRS(a™*) U LRS(aiz)}},

where

0(x) = (max{e () - 5,0}, max{e(@) - 5,0}, .., max{e () - &,0}) € R,
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where j € I,. We do continue the process of computing the next sub-rank until there is

m € N such that

LRS(o) = LRS(a/*) U LRS(a) U - - U LRS(a'™).

In general, the above formulation of computing the tolerance threshold to determine
the k" sub-rank of the i** ranking can be expressed as follows:

o’ ;= inf { (¥ (), ot (), ..., 0 (z)) € RP*I| (3.3.8)

with lex

z € LRS(a%) \ {LRS(c*"*) ULRS(a™) U --- U LRS(ai""l)}}

where
ot (z) = (max{ag.”(x) —&W, 0}, max{e? () — &®,0},..., max{&? (z) — &, 0}) e R?,
where k € Nand j € [,

It is noteworthy that there is a situation that even we refine the tolerance threshold
by the formulation (3.3.8), the corresponding sub-rank of solution sets with respect to
the updating tolerance threshold may not be singleton sets. The following example will

provide an affirmative conclusion for this observation.

Example 3.3.10. Let X = {z!,z% 2%}, and the vector-valued function f under two
possible scenarios s; and sy of each feasible solution z* be presented as Table 1. The
sort function of each component function f; and the jth worst performance vector of

k

each feasible solution z"* are provided in Table 2.

According to Theorem 3.3.9, the first ranking of the solution set and the second
ranking of the solution set are LRS(a!) = {z'}, and LRS(a?) = {«?,z*}, where o :=
((0,0),(0,0)) and o2 := ((4,4), (4,4)). To refine the tolerance threshold a?, we can now
apply the formulation (3.3.8) and so the tolerance threshold for determining the first

sub-rank of the 2* ranking of the solution set is:

o = ((1,0), (1,4)).
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Notice that
worsty (f(z*,U)) € (& + (1,0)) + RE and worsty(f(2*,U)) € (& + (1,4)) + R,
and

worst; (f(z,U)) € (& + (1,0)) + ]Rzg and worsty(f(z*,U)) € (& + (1,4)) + Ré.

This mean that the first sub-rank of the 2*¢ ranking of the solution set is the set
LRS(a®) = {«?,1}. Therefore, we can conclude that by using the tolerance thresh-
old which is computed by the formulation (3.3.8), cannot guarantee the corresponding

singleton solution set of the sub-rank.

Objective Function
Alternatives f;(:, ;1) Ji(+5 82) F2(+581) fa(s, 82)

xt 5 6 11 2
z? i 6 8 6
z® 6 7 6 7

Table 1: The objective function f = (fi, fo) for each feasible solution z* under all

scenarios s; of Example 3.3.10.

Alternatives éM () é® () worsti(f(-,U)) worsty(f(-,U))

! 6,5 (11,2) (6,11) (5,2)
22 (7,6)  (8,6) (7,8) (6,6)
z3 (7,6) (7,6) (7,7) (6,6)
& & = (6,11) &= (5,2)

Table 2: The function &9(.) and worst;(f(-,U)) of Example 3.3.10

The observation from Example 3.3.10 is that even we refine the tolerance threshold

by using the formulation (3.3.8), the corresponding solution set with respect to such
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tolerance threshold can sometime be not singleton set. Indeed, the robust solutions
which belong to the k** sub-rank of the i** ranking of the solution set are indifferent
because the quality of these robust solutions which are computed by the lexicographic
tolerable robust solution concept are same, mean that the worst performance vectors of
these robust solutions are located in an acceptable area corresponding to the tolerance

threshold a*.

Remark 3.3.11. Notice that by choice of of and the formulation (3.3.8), of computing

k" sub-rank of the i ranking, we can see that o’ 3 .

3.4  Lexicographic tolerable robust solution and the set-based minmax

robust efficiency

In this section, we consider the links between the lexicographic tolerable robust
solution and the set-based minmax robust efficiency, which was introduced by Ehrgott
et al. [8]. The following result presents the technique for finding the set-based robust

efficiency via the lexicographic tolerable robust solution idea.

Theorem 3.4.1. Let MP(U) be an uncertain multicriteria optimization problem with
the reference point (6’{,6;, y ,&Z) —: &* € RP*? and 0 the zero vector in RP. If £ € A?
and A? is defined as in Definition 3.1.2, then & is a set-based robust weakly eflicient

solution for the problem MP(Uf).
Proof. Since # € AY, we have that

worsty(f(Z,U)) 2 & (3.4.1)
By the definition of reference point & together with Lemma 3.2.4, it follows that

worst: (f(z,U)) = &. (3.4.2)
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Suppose that & is not a set-based weakly robust efficient solution. Then, there exists

r € X \ {2} such that
fu(z) C fu(@) —REL. (3.4.3)
By applying the items (a) and (d) of Lemma 2.3.1, we have that

max fi(z,s) < max fi(%,s), for all i € I, (3.4.4)

By the definition of éy)() and definition of worsty(f(-,U)), it imply that
worsty (f(z,U)) < worsty(f(2,U)) = &]. (3.4.5)

This leads to a contradiction with & being the infimum of set {worst,(f(z,U))|z € X}.

Therefore # is a set-based robust weakly efficient solution for the problem MP(Uf). O

The following result provides a sufficient condition on a technique for finding the

set-based robust strictly efficient solution for the problem MP(U).

Theorem 3.4.2. Let MP(U) be an uncertain multicriteria optimization problem to-

gether with reference point (é{,é;, D . ,&;) =: & € RP, Let a; = (@,,...,0) € ]Rg

If A% = {4} and A" is defined as in Definition 3.1.2, then £ is a set-based minmax

robust strictly efficient solution for the problem MP ().

Proof. From % € A7*, it follows that
worst1(f(2,U)) € (& + o) — RE.

This means that,
worsty(f(Z,U)) 3 &+ a. (3.4.6)

For each j € I, we write & = (6;(1), é;(z), e ,é;(p)>. It follows that,

&(2) < &9 1 q, foralli € I,
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Suppose on the contrary, that £ is not set-based minmax robust strictly eflicient for

the problem MP(U). By the Definition 2.2.5, there is z € X \ {2} such that
ful@) € ful@) ~ RL.

By the items (a), (b) and (c) of Lamma 2.3.1, we obtain that

fi < (2 ' . 4.
max fi(z,s) < max fi(Z,s), foralli € I, (3.4.7)

We note that for each i € I,, by the definition of &9(.), we have that

&) = max fi(z,s), for all z € X. (3.4.8)

S€E

From the equations (3.4.7) and (3.4.8), it follow that
worsty(f(z,U)) Z worsty(f(2,U)). (3.4.9)

Thus, from the equations (3.4.6) and (3.4.9), we must have that z is an another element
in A¥. This leads to a contradiction with the assumption that £ being the unique

element in A%, Therefore, # is a set-based minmax robust strictly efficient solution for

the problem MP(Uf). O

Remark 3.4.3. To find a threshold a; that the set A$* is a singleton, is not so difficult.
This is because, if we start with tolerance threshold a, then one can be refined to obtain
the desirable singleton set A'lx?ew, where the updating tolerance threshold of*” can be
computed via the method which was presented in Section 3.3. Nevertheless, there is
only one situation that even we refine the tolerance threshold a;, the corresponding set
Ai‘?aw still not singleton, that is there are several feasible solutions providing the same

worst performance vector worsty(f(-,U)).

The following example shows a situation that A* is not a singleton set for any

choice of a;.
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Example 3.4.4. Let X = {x;,z,, 23,74} be the considered feasible set. The informa-
tion about vector-valued function f for each feasible solution z; estimated under two
possible scenarios s; and s, are shown in Table 3. Consequently, the sort function e ()
of each component function f; and also the j®* worst performance vector of each feasible
solution z; are provided in Table 4. Thus, it follows that Af* = {z3,2s,z4}, for all

ar = (a,a) € RL.

Moreover, according to the Definition 2.2.5, we can check that the set-based minmax
robust efficient solution set is {z1,24}. This means, for any choice of ay, the set A7" is
not a subset of set-based minmax robust efficient solution set. Furthermore, by applying
the method of computing the smallest tolerance threshold which can be guaranteed the
nonemptyness of the lexicographic tolerable robust solution concept in Definition 3.1.2,
we found that the such solution set is LRS(a*) = {z3} with a* := ((1,1),(1,1)). This
shows that the solution sets of those related to lexicographic tolerable robust solution
concept and set-based minmax robust efficiency solution concept can be (extremely)

different.

Table 3: The objective function f = (fi, f2) for each feasible solution z; under all

scenarios s; of Example 3.4.4

Objective Function
Alternatives fi(+,81) fi(,82) f2(ey81) fa(-, 82)

x) 4 11 14 4
T2 10 10 11 7
T3 10 9 11 4

T4 10 6 7 11
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Alternatives éW () é®@(.) worsty(f(-,U)) worsty(f(-,U))

1 (11,4) (14,4) (11,14) (4,4)
s (10,10) (11,7) (10,11) (10,7)
3 (10,5) (11,4) (10, 11) (5,4)
T4 (10,6) (11,7 (10,11) (6,7)
& & = (10,11) & = (4,4)

J

Table 4: The function é® () and worst;(f(-,U)) of Example 3.4.4

3.5 Case study: A water resources management

In this study we consider data from [22] and solve the problem by using the

lexicographic tolerlable robust solution concept.

3.5.1 Problem statement

The original problem of Water Resources Master Plan for Serbia (WRMS) is to
find a suitable plan for balancing water demands and available water resources. This

problem is concerned with the six feasible solutions and eight objectives as follows:

Decision factors:

o The need for municipal water supply (d;)
o The need for industrial water supply (ds)
o Irrigation needs (ds)

« Hydropower generation (ds)

« Flood protection (ds)

« Water quality control (dg)



42
Objectives:

o Regional political interest (fi)

o Local interest (communities) (f3)

o Negative effects on the resettlement of people (f3)

+ System reliability (f1)

o Positive environmental effects (fs)

« Positive effects of alternative plans on water quality (fs)
« Total cost (fr)

« Energy consumption (f3)

The modelling techniques of feasible solution and the measurement of the objective
function, we refer the readers to see more details in Chapter 10 of [22]. Here, six feasible
solutions were created by considering the above specific factors in the planning process
for the WRMS problem. Thus, the decision space is X = {z!,22, 23, 2% 2° 28} C R®

where z* := (d¥, d&, d%, d%, d¥, d%) for each k € I;.

Looking at the above eight objectives, one can see that the five objectives f1, fa, f4, f5,
and fg, relate to positive outcomes that the group of decision makers naturally wants
to maximize. Meanwhile, the three objectives fs, f7, and fs relate to negative outcomes
that they naturally want to minimize. Notice that the first six objectives are qualitative,
while the remaining two are quantitative. The quality level of the first six objectives
are divided by the relative scale into five levels from being bad to being excellent as 1

to 5.

In the solution selection process, the preferences of the decision makers were col-

lected through a set of public meetings. Since the decision makers were not able or
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willing to express their preferences, the planning team have to generate a number of
different sets of weights to cover a broad range of decision-making positions in accor-
dance with the relative importance of the various objectives. Since the generation of
weight sets in the WRMS is obtained from ranges of decision maker’s preferences, it
means that the weight sets are imprecise data. Hence, these imprecise data can be seen
as an uncertainty in the WRMS. So, it is reasonable to consider a robustness concept
for the WRMS that is quite sensitive to preference changes of the decision makers. Six
different weight sets had been presented in the WRMS, and here these six weight sets

will be considered as scenarios. That is, the uncertainty set is:

U = {s1,52,...,5} C R®

Therefore, the WRMS problem is formulated as an uncertain multicriteria opti-
mization problem MP(U) where MP(U) is given as a family of {MP(s;)|s; € U} of

deterministic multicriteria optimization problems:

(MP(s;))  min  f(z",sy) (3.5.1)

subject to z* € X

where f: X x U — R8, X = {z!,2? 1% 2% 25 25}, and U = {s1, 52, 53, 54, S5, ¢} The
primary data of the outcome for each feasible solution z* in the WRMS over all scenarios

are shown in Table 6.
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The Ordered Objective Groups The LRS(a) Solution

(Gh, Gs,G3) 3
(G1,Gs,G3) z5
(Gs, Gy, Gs) 8
(G2, Gs,Gh) z8
(Gs, Gy, Gy) !
(Gs, G2, Gh) !

Table 5: The LRS(c) solution set for the WRMS problem in each ordered objective

roup where o := (04, s, ..., a5) and a; = (o™, o™ ... o™) e R® for all j € I,.
g D ’ ) ] ) ) ) q

3.5.2 Result analysis

We will classify the above eight objectives into three groups. Group 1 concerns
people (G1 := (f1, f2, f3)); Group 2 concerns the environment (G = (/fa, f5, f6)); Group
3 concerns financial matters (Gs := (f7, fs)). In each group, we will also consider
the priority of the objectives in the group, for example in the group G, the regional
interest (fy) is considered as the most important one, the local interest (communities)
(f2) is considered as the second most important one, and the negative effects on the
resettlement of people (f3) is considered as the least important one of the group G;. In
this problem, we show the computation of the objective group (G1, Gs, Gs). By applying
Algorithm 1, we can obtain a lexicographic tolerable robust solution for the WRMS.
Table 7 shows the information of function &) (z*) of each feasible solution z* which is
obtained from sorting the vector of component function c® (z*) in nonincreasing way
over all scenarios s;, for each 4 € I,,. Table 8 presents the jth worst performance vector
of all feasible solutions and the reference point of this problem is (¢}, 85, ..., &) € R8%S.
According to Theorem 3.3.4, we obtain the tolerance threshold o™ = 0. Therefore, the

resulting set of lexicographic robust solutions with respect to « := (o, @, . . ., ag) is:

LRS(a) = {=*},
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where a; = (o™, o™, ... ™) € R®, for all j € I,

3.5.3 Solution sets with different objective priorities

In Table 5, the solution sets of the problem which are corresponding to each
group of the ordered objective function are presented. One may observe that, different

values for the priorities yield different solution sets.

Remark 3.5.1. (i) An important point to note is that by using the most robust
compromise solution concept which was discussed in [22], the solution will be
25, This means that the output from the lexicographic tolerable robust solution
and the output from the most robust compromise solution concept can be quite
different. Furthermore, note that the solution set derived from the most robust
compromise concept will remain the same, regardless of the permutations of the

components of the objective function.

(ii) Another solution concept is the robust efficiency, which was introduced by Ehrgott
et al. [8]. Based on the data, which are considered in the WRMS problem, and
following the conéept of the robust efficiency concept we can see that the solution
set is {z!, 22 2%, 2%,2°, 2%}=S. In fact, in [8], each element of the solution set S
can be found by applying the weighted sum scalarization method:

8
(MPU)), min max > w fi(zk,s;) (3.5.2)

JE{1,2,.8) =

subject to zF € X,

where w; 1= (wl(l), 'wl(z), . ,wl(g)) € R}. One may use the following weight sets to
consider the above single objective optimization problem (MP(U))w,:
w; = (691.0782,458.1161, 165.2403, 249.0968, 91.5001, 221.3457, 484.6561, 455.7014),

wy = (831.0456,43.0179, 48.2109, 258.1919, 29.4128, 526.5054, 264.536, 716.3191),
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ws = (224.5293,605.5699, 649.4945, 864.5647, 341.5705, 106.62, 8.2109, 291.8441),
wy = (299.4271,397.7614, 868.3355, 286.74, 781.3634, 129.4872, 9.4937, 891.1759),
ws = (952.469, 440.2029, 336.5277, 328.4372, 902.203, 627.7193, 22.8332, 125.6362),

wg = (733.3956,693.8117,796.0924, 198.2816, 8.0612, 979.1434, 37.3021, 228.8411),

and find that the corresponding solutions of weights w1, wa, w3, wy, ws, and ws

2 4

are ', x2, 23, 2%, 2%, and z%, respectively.

Remark 3.5.1 indicated that the solution sets corresponding to different approaches
could provide different solution sets. The following remark shows that more desirable
solutions for fitting with the decision maker’s preferences can be found by using the
method in Theorem 3.3.9 when there is the situation that the group of decision makers

do not satisfy with the solution z3.

Remark 3.5.2. Considering again the data of the WRMS problem and suppose the
situation that the solution choice 23 does not satisfy the group of decision makers. Note
that the feasible solution z° is considered as the first ranking of solution set. The other

rankings of solution set are presented in the Table 9.

We now describe the computations for obtaining the results which are presented
in Table 9. The value of the tolerance threshold for each ranking of solution set is
computed according to Theorem 3.3.9. The tolerance threshold o} (5 € {1,2,...,6})

for computing the second ranking is
oz? =(1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3) € R®, for all j € {1,2,...,6}.
Subsequently, the solution set that is associated to the tolerance threshold o?, where

o? = (a?,03,...,a) € R®¥*% is {«? 2%}, Thus, as discussed above, we will say that the

solution set of the second ranking is {z°}.
Next, using again the Theorem 3.3.9, we can found that

o =(2,2,2,2,2,2,2,2) e R®, forall j € {1,2,...,6}.
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Furthermore, the corresponding solution set of this tolerance threshold is {22, z*, z°, 2%}
So, we say that the third ranking of solution set is {z*, z°}. By continuing this idea, the

rest of rankings of solution set can be computed and obtained as showing in Table 9.

As we can see in Remark 3.5.2, the corresponding solution set of the third ranking is
{z*, 2%}, which was shown in Table 9. By applying the idea of sharpening the tolerance
threshold in the subsection 3.3.4, the sub-rank of the third ranking can be found.

Remark 3.5.3. Observe that in Remark 3.5.2 by taking a tolerance threshold, oz? =
(2,2,2,2,2,2,2,2), for all j € I,, there are two members in the third ranking of solution
set that are 2 and z°. By applying the formulation (3.3.8) to refine the tolerance
threshold for classifying the sub-rank between z* and z°, we obtain the corresponding

sub-rank of the 3" ranking of the solution set as follows:
LRS(a*) = {z°}

and

LRS(a®) = {z*}.

5

These imply that the feasible solution z° is considered as a robust solution in the

4 is considered as a robust solution in the second

first sub-rank and the feasible solution z
sub-rank of the third ranking of the solution set, respectively. This means that z° is

more desirable than z*.



CHAPTER 1V

THE LIGHTLY ROBUST MAX-ORDERING SOLUTIONS

This chapter motivated by the concepts of max-ordering optimality in Definition
2.1.7 and lightly robust optimality in Definition 2.2.7 from Chapter II. Based on these
ideas, we propose a new robust concept by relying on both features of those two solution

concepts for uncertain multicriteria optimization problems.

To do this, we begin with introducing the notaion MP(5) which is used to
stand for the nominal problem of uncertain multicriteria optimization problems MP(U).
That is, for an uncertain multicriteria optimization problem MP(U) together with
a nominal scenario § € U, the nominal problem MP(35) is given as a deternimistic

multicriteria optimization problem:

(MP(8))  min f(, ) (4.0.3)

subject to z € X

with the objective function f: R™ x {§} — R?.

4.1 The lightly robust max-ordering solution concept

To introduce a new solution concept of this chapter, we now give some important
notations that are relevant to our solution concept. According to Definition 2.1.7, the
set of max-ordering solutions for the nominal problem MP(§) can be founded by solving

the following optimization problem:

gg)r(lrzréz}i(fl(x,s) (4.1.1)

We denote the set of max-ordering solutions to the nominal problem MP(8) by Xp0(3).
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For any fixed non-negative value €, we define the robust counterpart of an uncertain
multicriteria optimization problem MP(U) as following

(LRMOP(3,e))  minmaxmax fi(z, s) (4.1.2)

sel il

subject to = € X rMmoP(5,6)

where X pmopise) = {2 € X|né§xfi(x, §) < ma},xfi(a:’, 8) + €}, for some z’ € Xp0(3).
i€lp 1€lp
We now present the solution concept which is the main aim of this Chapter.

Definition 4.1.1. Given an uncertain multicriteria optimization problem MP(Uf) with
a nominal scenario 5. Let € > 0 be given. Then, a feasible solution z* is called a lightly
robust maz-ordering solution for the problem MP(U) with respect to the relaxation
¢ on the nominal scenario § if it is an optimal solution for the optimization problem

LRMOP(3,e). The set of all lightly robust max-ordering solutions is denoted by
XERMOP(s )"

Remark 4.1.2. When considering the relaxation € = 0, the feasible set of the problem
LRMOP(3,0) is a set {z € X|1}éz}icfi(m,§) < rzr‘lgz}chz(a:’,@} This means that all ele-
ments in the feasible set of the problem LRMOP(3,0) being max-ordering solutions
for the nominal problem MP(8). Ones can see that the corresponding solutions to
LRMOP(5,0) provide solutions which are prioritized a normal circumstance as the

most important situation.

The following remark is the observations on the concept of solution in Definition

4.1.1 in the special cases.

Remark 4.1.3. (i) Note that when || = 1, it follows that MP(8) = MP. Then,
the solution concept in Definition 4.1.1 is nothing but the concept of max-ordering

optimality in Definition 2.1.7 with respect to € = 0.

(i) When p = 1, the solution concept in Definition 4.1.1 coincides with the concept

of lightly optimality in Definition 2.2.7.
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(iil) Notice that the optimal value according to the Definition 4.1.1 is greater than
or equal to the optimal value of the nominal problem MP(3) in the uncertain

environments.

In the next section, we present a measurement that shows a visualization

of the performance of the proposed solution with respect to the relaxation level.

4.2 The price of robustness

As the solution set according to the problem LRMOP(3, €) in Definition 4.1.1
is depending on the relaxation £, making decision by only relying on this information
may not enough for the decision makers. In order to know a trade-off between the
robustness of a solution and the quality of a solution with respect to nominal scenario,
we provide some additional information which can be used to help decision makers to
know how much nominal quality has to be sacrificed to obtain more desirable robust
solution. In doing so, we present two measures that can serve as strategies for finding
the most desirable solution, which we called the gain in robustness and the price to
be paid for robustness. The underlying idea of the first measure approach is used
to interpret robustness of the lightly robust max-ordering solution compare with max-
ordering solution of nominal problem in the worst case, and the second measure approach
is used to explain the price to be paid for robustness in nominal scenario. In lightly

robust max-ordering solution method, we calculate the gain in robustness as

. (maxlight) 2y ._ : . _ { o-(max,light)
quin(ad™ 0 8) = e W T ) g e 9
(4.2.1)
where 249" i¢ 5 lightly robust max-ordering solution with respect to the relaxation

e for the problem MP(U). Observe that the value of gain(z{™H9M 5y is expressed a

visualization of the robustness that z&***¥™ is better than max-ordering solutions on

the worst case scenario. Analogously, we also calculate the price to be paid for robustness
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. (max,light) ay ._ ~ /oA
Ticel\L S = max max f;lx,8) —max f;|T,8
pricee™ 1940, ) = e (0, 8) ~ mgx il )

(4.2.2)

for some @' € Xpo(5). The value of price(z{™¥™ 3) interpret that how much the

quality of a lightly robust max-ordering solution g@exbight) i losing compare to 2 in
the nominal problem. The explanation of these measures is that how much nominal
quality is lost when we want more robustness of a solution regarding to each relaxation.

By considering the ratio of those two measures, the decision makers can make informed

decision according to preferences in both aspects.

In practitioner point of view, it is good to choose a solution which works
well in both respects is that in the worst case scenario and nominal scenario. Based on
the equation (4.2.1) and (4.2.2), we now suggest a method for finding a lightly robust
max-ordering solution to the problem. To do so, the steps of finding lightly robust

max-ordering solutions are the following:
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Algorithm 2: Finding lightly robust max-ordering solutions and its price and

gain

Input: Uncertain multicriteria optimization problem MP(U).

Step.1: Choose the nominal scenario §. Solve the deterministic multicriteria

optimization problem M7P(3) to find a set of max-ordering solutions X0 (3).

Step.2: For the relaxation € > 0 on the nominal scenario §, compute the

solution set X7z 11op(se Of the problem LRMOP(S, ).

Step.3: Compute the gain in robustness gain(:cgma‘x’“ght), §) and the price to be
paid for robustness price(m&max’“ght), §) as the formulations of equations

(4.2.1) and (4.2.2), respectively.
(max,light)

Output: Lightly robust max-ordering solutions z¢ and the gain in
robustness gam(xé‘“"“”ig ht), 8) and the price to be paid for robustness

price(s

(max,light) 4
,8).

Remark 4.2.1. (i) In step 1, by applying the algorithm of solving max-ordering

(i)

(iii)

optimization problem in [17], we can obtain a max-ordering solution for the de-

terministic multicriteria optimization problem LRMOP(3,¢).

Observe that the computation of value ¢ is finding the infimum of subset of real
numbers. Thus, we can apply many elementary existing methods of finding this

value.

Notice that in step 2, solving the problem LRMOP(S,¢) is closely connected
with solving a max-ordering scalarization method in [25]. That is, for a given
weight vector A € RY and reference point r € R?, the corresponding max-ordering
optimization problem is

(P ~maz(r,A))  minmaxmax Xi(fi(z,s) - i),

where A = (A1, Mg, ..., Ap) and 7 = (71,79,...,7p). By setting all weighted A\; = 1
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and the reference point ; = 0, for all ¢ € I,,, we may apply many existing method

of solving such problem in [25] and reference therein.

Based on Algorithm 2, the corresponding solution achieved by this method was
just solutions for selecting a relaxation e. In other words, the degree of protection of the
obtained solution for uncertainty data is correlated with the choice of such relaxation .
So, making decision by relying only this information may not enough for decision makers.
To find more desirable solutions, the method of calculating the effective relaxation e will

be presented and discussed in the next subsection.

4.2.1 The threshold degradation

This section will be discuss with a relaxation ¢ for determining a feasible set of
the problem LRMOP(5,¢). It should be noted that the lightly robust max-ordering
solution depending on the choice of relaxation . If there is a situation that decision
makers need more robustness on a solution, the method on how to choose the effective
relaxation € for classifying the level of robustness of the solution set is considered. Here,
we consider the idea of classifying the level of robustness of solution set for the proposed
solution concept. In doing so, we begin by computing the relaxation for determining the
first level of robustness of solution set by taking from the minimal value of the deviation
between the maximum value among all objectives of each feasible solution and of optimal
solutions in the nominal scenario. After that, the next level of robustness of solution set
can be computed by removing all elements that belong to the first level of robustness
of solution set from the feasible set. This mentioned idea is presented below in the

situation that the feasible solution set X is finite.

Theorem 4.2.2. Let X C R” be a feasible set and function f : R® x { — RP. For each
m € {2,3,...}, let €™ be defined by

"= . (2, 8) = (', 8 4.2,
£ mEX\Xz,,:IAl:SP(é,qu){I’%;}i(fz(w’S) max fi(z', §)}, (42.3)
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where ! = 0. If X is a finite set, then for any B € [¢™, ™), we have

XZRM@P(g,sm) = XZRMOP(ﬁ,ﬂ)' (4.2.4)

Proof. We note that the solution set X7 viop(s,emy @0d X7r pop(s,p) 2T€ results of the
same objective function that concern with the feasible sets X srpmop(s em) and Xrrmor(,p)s

respectively. Thus, we only need to show that

XerMOPGem) = XLRMOP(,6)-

We firstly show that X rmop@em) © Xermor(s,p)- Let z* € X rmop(sem)- This

means that
_ef},xf,-(m*, 8) < néa}xfi(x’, 8) + €™, for all, 7' € Xpo0(3). (4.2.5)
telp elp

Thus, by €™ £ S, it follows that

max fi(z*, 8) < maxfi(z',8) + B, for all, ' € Xpo(8). (4.2.6)
icl, iel,

This implies that z* € XgRM@'p(g,ﬂ) and so XC'R,MO’P(.@,em) - XLRM(’)’P(&,/B)-

Next, we will show Xzrmors,s) S Xcrmorem)- Let % € Xermop(s,p)- Suppose
on the contrary that z* ¢ X rmop(sem). Thus, by the definition of e™*l it would

follow that

5m+1 < ma‘xfz(z*’ §) - ma‘xfi(x,) '§) (427)
ielp ielp

Note that since * € X rmop,8), We have

max fi(z*, 8) < I%?Txfi(f, 8) +B. (4.2.8)

i€l,

Thus, from the equations (4.2.7) and (4.2.8), we get

g™t < max f;(z*, §) — maxf;(z, §) < B. (4.2.9)
i€lp i€lp
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Which leads to a contradiction with the choice of 8. Therefore, we obtain the remaining

inclusion and the proof is completed. O

Remark 4.2.3. Notice that for each m € N, by choice of computing the relaxation €™

as in formulation (4.2.3), we can see that €™ < ™!, for each m € N.

The method for finding the relaxation in Theorem 4.2.2 will leads us to
determine the level of robustness of solution set. By applying this method together with
the measures of the gain in robustness and the price to be paid for robustness of each
solution set, the most desirable solution according to the decision maker’s preference

can be found.

4.3 Case study: The ambulance location optimization problem

ALD

Al4

Figure 1: Ambulance candidate locations and potential demand sites

In this section, we focus on applying the lightly robust max-ordering so-

lution concept to the ambulance location problem in the emergency medical services
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system. This demonstration shows that the proposed solution concept can help decision
makers to find the optimal location patterns for ambulance car parking stations that
could reach to the accident potential demand sites effectively. Based on this approach,
a solution provides a minimum value of the maximum distance that covers all demand
points. Moreover, by considering the measures of the gain in robustness and price to be
paid for robustness, the decision makers can see how much they have to scarify on the
nominal quality for obtaining a robustness on lightly robust max-ordering solutions in

each level of robustness of solution set.

Suppose that we want to find the suitable stand-by ambulance cars parking pat-
terns for placing 5 ambulances among all 15 possible candidate locations such that the
longest distance covering over all 10 demand sites and its closest ambulance is mini-
mal. In Figure 1, the orange one and the blue one are used to indicate the candidate
ambulance locations and the potential demand sites in this emergency medical services

system, respectively. Here are the notations which will be used throughout this problem.

Notations:

o Let I;p be the index set of emergency demand sites

o Let Ji5 be the index set of ambulance candidate locations

o Let Hj be the index set of the considered ambulances

+ D, represents the emergency demand site 4, where i € I1o (the blue one)

o d; represents the weight of emergency demand site D;, where i € I; (the details

on each value of d; can be found on Table 10)
s A; represents the ambulance candidate location j, where j € I;5 (the orange one)

o ay, = {a},a?,a},at,a}} denoting the k** location pattern for the considered 5

ambulances.
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Looking at the above problem setting of emergency demand sites, we then have
the objective function is f := (f1, f2, f3, fa, f5: fe, f7, fs, fo, f10). As the propose of this
problem is to find the most effective location patterns from 15 potential candidate
locations for placing 5 ambulances, the possible alternative candidate location patterns

of this problem are computed from the following formula:

1o __1s 3,003
5] GBYas=5)! T
Here, these patterns are feasible solutions and so the feasible set is X := {ax|k €

FEs003} C R, where Fj3g3 is the index set of indice k of each possible alternative

candidate location pattern.

In order to achieve a reliable ambulance location pattern for rescue operations in
the emergency medical services system, the problems of where to locate the ambulance
facilities have become the focus of attention. Here we consider the problem of locating
the ambulance where the situation of unavailability of the ambulance may be occurred.
This study, we assume that all ambulances are same conditions. We consider all the
possible events with ambulances simultaneously unavailable. So, all possible events of

the considered problem are:

Possible events:

There is no unavailable ambulance (o)

There is one ambulance unavailability (14 )

There are two ambulances simultaneously unavailable (s)

There are three ambulances simultaneously unavailable (Ifs)

There are four ambulances simultaneously unavailable (Uy)



58

Since there are 5 ambulances to allocate in this system, for each P € {0,1,2, 3,4} a set
Up of each event is composed of sub-events itself. Here, a sub-event in the set Up is
considered as scenario. According to the above possible events in this problem, for each
candidate location pattern a; € X and P € {1, 2, 3,4}, the number of scenarios in each

UgF can be computed by the following formula:

5 51
G| = =— 4.3.1
where the notation P in the formulation (4.3.1) is denoted to the number of ambulances

which are simultaneously unavailable. Hence, for each a; € X, the possible scenarios

according to the mentioned five events are:

5 5 5 5
ol + [l +egge - ] = 1 ) D]+
1 2 3 4
= 31 (4.3.2)

To present more clearly, we denote each scenario of ambulance’s unavailability in this

system with respect to each candidate location pattern a; by the following notations:

Z/{O = {8{0}}

U = {5y Stap Sap Sap Sy

Up* = {8'{3,2}, 3?1,3}> Sl{cu}’ 3?1,5}’ 5'{“2,3}’ 5’?2,4}’ Slfz,S}’ 5’{“&4}7 3’53,5}’ 5’54,5}}

ap k k k k k k k k k k
Us* = {s{123p 51,24y STr2sp S{13.40 S{13,50 {1,450 S{2,3,4p (2,350 S{2.45p Sisa5)

ap k k k k k
Us* = {s{1234p 5{1,2,35) ST1,3.45) S{1,2,45) 82,3451

Note that each scenario subscription refers to the unavailable ambulance labels. For
example, the notation sg) refers to there is no unavailable ambulance in this system,

the notation s’{cl} refers to the 1% label of ambulance is unavailable with respect to the
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location pattern ag, and the notation 3?1,2} refers to the 1% label and the 27 label of

ambulances are unavailable with respect to the location pattern ay in this system.

As the possible candidate location patterns in this problem are 3,003 patterns, the

number of all possible scenarios according to the formulation (4.3.2) is
15 a a, a, a
iUo| + [|u1k| (US| + US| + |u4'°|] — 14 (3,003 x 30) = 90, 091.
5

For convinence, we donote the set of all possible scenarios for this problem by

- o)

Here, the ambulance location problem is formulated as an uncertaiﬁ multicriteria
optimization problem MP(U), where MP(U) is given as a family of {MP(s)|s € U}

of deterministic multicriteria optimization problem as

(MP(s))  min f(ax,s) (4.3.3)

subject to ax € X,

and for each i € Iy, the component function f; : X X U — R is defined as

fi(a'k7 5{0}) = ’{2}2 di““ﬁ N Di“a (4'3‘4)
and
_ min  d;||a} — Dy}, if k=j,
il sh) = { hecomaled (435)
0, if k#7.

where comp(sf,) = Hs\O and ||-|| is a norm on R?. This means f;(ax, s§) is defined as the

shortest distance of ambulance pattern ay to demand site D; under scenario sf;. We note
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that the objective function values of the formulations (4.3.4) and (4.3.5) were generated
and computed according to the problem setting as Figure 1 and the measurement unit

for this example is kilometer.

Here, the robust counterpart LRMOP(3,¢) as in the formulation (4.1.2) of the
ambulance location problem (4.3.3) with respect to the relaxation € is expressed as

follows:

(LRMOP(3,€))  minmaxmax f;(ax, s) (4.3.6)

sel i€l

subject to ar € XrrMmoPrG,e)s

where Xormop(se) = {ax € Xlrrellaxfi(ak, 5) < m?xfi(aﬁc, 8) + €} and § is the nominal
EL10 1e€l1o

scenario. Note that the notations a} and f;(a}, §) are indicated for the optimal location

pattern in the nominal problem and the longest distance covering all demands sites in

nominal scenario.

We will assume that the nominal scenario of this system is s(py because this should
be considered as a typical situation (In fact, another scenario can be seen as a nominal
scenario depending on which situation we would like to define it as the most important
event or the frequent event) and consider the distance in R? by computing the Euclidean
norm. According to Definition 2.1.7 of max-ordering solutions, we obtain | Xao(s(0})| =
757 and

{161%)0( fi(ak, sqoy) = 193.24, for all a;, € Xpo(s0y)-

4.3.1 Solution Discussions

We now describe the computations of the results which are presented in Table
11. As we can see from Table 11, the results on solution sets depend upon a selection of
different relaxations &,,, where m € [0.00, 303.25]. For choice of the relaxation g = 0.00,

there are 757 feasible solutions in a feasible set Xcraop(s().e0) whereas all of them
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are optimal location patterns for the nominal problem MP(s(). Considering the
unavailability of ambulances in the system, we can now apply the Definition 4.1.1 to
identify optimal location patterns to manage this situation. According to the Definition
4.1.1, we obtain that there are 56 optimal location patterns in which the longest travel
distances concerning unavailability of ambulances of these optimal location patterns are
496.49 kilometers in the worst, case scenario (for more details on elements in the set
of 56 location patterns, one can see in the solution set X7, MOP(s(0y.0) from Table.12).
Note that all solutions in the set X7, MOP(s(o) o) 218 considered as solutions in the first

level of robustness.

By applying the method of computing the relaxation in Theorem 4.2.2, the
next level of robustness of solution set is determined by the relaxation e; = 11.15.
According to this relaxation, the corresponding optimal location patterns are 56 patterns
and the longest travel distance of these location patterns are 496.49 kilometers in the
worst case scenario, while the longest travel distances of these optimal location patterns
are not more than 204.39 kilometers in nominal situation under &; reiaxation. Here, the
solution set corresponding to e; = 11.15 is considered as the second level of robustness.
We note that the solution set for the second level of robustness is more robust than the

solution set for the first level of robustness.

Subsequently, by applying again Theorem 4.2.2, the solution set of next level
of robustness is associated to the relaxation value e, = 32.30. According to this re-
laxation €5, the number of optimal location patterns and the longest distance of these
location patterns are providing the same results as the previous level of robustness of
solution set, that are, 56 optimal location patterns and 496.49 kilometers for the longest
travel distances in the worst case scenario. But the longest travel distances of these op-
timal location patterns are not more than 225.54 kilometers in nominal situation under
€, relaxation. We say that the solution set according to the relaxation value €3 = 32.30

is the third level of robustness.



62

Following the above idea, we get the relaxation to determine the fourth level
of robustness of the solution is €5 = 49.23. Here, the corresponding optimal location
patterns of this level of robustness are 20 patterns and the longest travel distances
of these optimal location patterns are 471.60 kilometers in the worst case scenario,
while the longest travel distances of these optimal location patterns are not more than
242.47 kilometers in nominal situation. We observe that in the situation of there are
unavailable ambulances take place in the system, the solutions of the fourth level of
robustness provide better results on the longest travel distances than the solutions of

the third level of robustness in the worst case scenario.

By continuing this idea, the rest of level of robustness of solution set can be
obtained by applying the method on the computing the relaxation in Theorem 4.2.2 as

showing in Table 11.
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Figure 2: The ratios <}5> of the gain in robustness and the price to be paid

for robustness corresponding to different relaxations e, € [00.00,303.25].

Based on the above discussion and the information in Table 11, the question could
be arised to decision malkers is which relaxation should be chosen. A direction that
can be used for obtaining the answer is considering the trade-off between the gain in
robustness and the price to be paid for robustness. Here, the ratios which are indicated
in Figure 2 can be a useful tool to consider a trade-off in each level of robustness of
solution set. Rationally speaking on the ratio of the gain in robustness and the price to
be paid for robustness means that the benefits in robustness of solutions which we get,

while the nominal quality of solutions we are losing.

From Figure 2, we see that the highest ratio value of trade-off is 1.52 which is
obtained from solutions in the fifth level of robustness of the solution set X7, MOP(s(0y4)’

where €, = 55.43. This means that solutions in the fifth level of robustness can be

considered as the desirable than solutions in another level of robustness.

Remark 4.3.1. (i) An important point to note is that if we choose the optimal loca-

tion pattern relying on just data on the nominal problem MP(s(p) and ignored
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the uncertainty of unavailable ambulances, it is possible that the network compo-
nents of location pattern could lose functions when a disaster or crisis occurs in
practice. In fact, for example by choice of location pattern {A1, A2, A3, A4, A12}
which is an optimal solution in the nominal problem (there is neither disaster nor
crisis), the longest distance covering all demand sites with respect to this location
pattern is 193.24 kilometers. However, if there is the unavailability of ambulances
once a vehicle is dispatched to a call, then the longest distance covering all demand
sites with respect to this location pattern {A1, A2, A3, A4, A12} in the worst case
scenario become 644.92 kilometers. Note that this number of the longest distance
covering all demand sites by the location pattern {A1, A2, A3, A4, A12} is worse
than all optimal location patterns which are computed by the concept of lightly
robust max-ordering solution in the worst case scenario (more information see in
Table 11). This means that the benefits of a solution obtained by 6ur proposed
solution concept are ensuring a high performance in serving the longest distance

covering all demand sites in the uncertain environments.

In the general setting on n candidate locations to locate r ambulances, we can
calculate all possible scenarios of simultaneously unavailable ambulances by the

formula:



'CHAPTER V

CONCLUSION

This chapter is all the results of this thesis including lemmas and theorems. We

conclude again that what we get from the results.

5.1 The lexicographic tolerable robustness concept

This research has extended the concept of lexicographic a-robustness proposed
by Kalai et al. [16] from its original use for uncertain single objective optimization
problems to new uses for uncertain multicriteria optimization problems. This new con-
cept of lexicographic robust solution works in situations of uncertainty in which the
uncertainty is modelled on a discrete set of scenarios. This new approach is introduced
to overcome drawbacks of the minmax robustness approach in the sense of limiting the
degree of conservatism of the minmax robustness approach by introducing a tolerance
threshold a := (oy,az, .. .,0y). Accordingly, the resulting solution set is obtained from
the proposed approach can be guaranteed the immunization of the solution when the
decision-making facing of uncertainty and also each performance vector is close to the
reference point within the acceptable tolerance threshold. After introducing the fun-
damentals of this new concept, properties of the solution set and also an algorithm
for finding this new kind of solution were presented. The new concept will then be
demonstrated on a problem of multicriteria optimization of water resources planning
with an uncertainty situation. This water resources planning problem has been selected
as an example because the problem’s structure is such that each of the multiple objec-
tives carry a different priority. By supposing that some control conditions hold, three

Propositions, five Theorems, and two Properties were presented.



66

Property 5.1.1. [Dominance] Let z € LRS(a). If y € X satisfies
c(i)(y) = c(i)(:v), for all ¢ € I, (5.1.1)

then y € LRS(«).
Property 5.1.2. [Monotonicity] The set LRS(c) is monotonic in the tolerance thresh-
old set. That is, for & := (u,...,0), 8 = (B1,.-.,B,) € RP*? such that o; 3 B;, for
all j € I, we have

LRS(a) € LRS(B).
Proposition 5.1.3. [Non Preference| Let o := (ay,0,...,0,) € [0,00)P*%. If z €

LRS(a) and z ¢ LRS(«), then for each j € I, we have

worst; (f(z,U)) i;’; worst; (f(z,U)). (5.1.2)

Proposition 5.1.4. [Stability] For any z,z’ € LRS() where a := (04, s, ...,04) €
[0, 00)P*4, we have

worst;(f(z',U)) i;’; worst;(f(z,U))
and

worst;(f(z,U)) ;{_;’; worst;(f(z',U))
for all j € I,.
Proposition 5.1.5. Let X be a feasible set and MP(U) an uncertain multicriteria
optimization problem with the corresponding reference point (é{, Chyo ,é;) =: ¢* €
RP*2. Let o == (o, 00,...,0,) € RP*? where o = (o™, o™, ..., a™) € RP, for all

j € 1, such that

inf ,__
a™ = m12)1:‘(1’na,x (Az), (5.1.3)

worsty (f(z,U)) — &

worst JU)) — ¢
and A, = o 2(f(m )-8 € RP4,

_worstq(f(a:,u)) - ¢
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Then, for each € > 0, we have

(i) LRS(a+¢€) # 0, and

(ii) LRS(a—¢) = 0.
Theorem 5.1.6. (Nonemptyness) Let MP(U) be an uncertain multicriteria optimiza-
tion problem with the corresponding reference point (¢f,&;, .. .,é;) = ¢ € RP*9
and f;(+,81), fi(-, 82), - .., fi(-;84) be continuous functions, for all i € I,. Let a =
(0n,0,...,0,) € RP*? where a; = (o™, ai™, ... o) € RP, for all j € I, such that
a threshold value o/ is defined as (5.1.3). If X is a compact set then LRS(a) is

nonempty.

Theorem 5.1.7. Let MP(U) be an uncertain multicriteria optimization problem with

the corresponding reference point (&f,¢3, . . ., &) := &* € RP*?, where &} := (é;(l), é;f(z), - ,é;(p)) €
R?, forall j € I,. Let & := (aq,...,a,) € [0,00)P*? be such that c; := (a§1), a§2)’ . ,ag.p)) €

R? for all j € I,. Then, we have
N L € LRS(@)
(i.9)ElpxIq

where L ;) = {m € X|6§’)(m) < é;(i) ~+= ag-i)} for all ¢ € I, and j € 1.

Theorem 5.1.8. Let X be a finite set and fi(:, 1), fi(*, 82), - - -, fi(*, Sq) be continuous
functions for all ¢ € I,. For each m € {2,3,...,q}, let o™ defined by

o™= min max(A,), (5.1.4)

T 2eX\LRS((@™1,..,am—1),... (am1 ... am=1))

where a! = min max(A;). Then, for any § € [a™, o™ 1), we have
z€

LRS((B,...,B)s..,(B,...,B)) = LRS((a™, ..., &™), ..., (@™, ...,a™)).

Theorem 5.1.9. Let MP(U) be an uncertain multicriteria optimization problem with

the reference point (é{, Gy ,é;) =: & € RP*? and 0 the zero vector in RP, If £ € AJ

and AY is defined as in Definition 3.1.2, then £ is a set-based robust weakly efficient

solution for the problem MP(U).
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Theorem 5.1.10. Let MP(U) be an uncertain multicriteria optimization problem
together with reference point (&},85,... ,é;) =: ¢ € RP*9. Let oy = (o, 00,..., ) € RY.
If A$* = {£} and A" is defined as in Definition 3.1.2, then & is a set-based minmax

robust strictly efficient solution for the problem MPU).
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5.2 Lightly robust max-ordering solutions

For this section, the new notion of robustness concept called the lightly robust
max-ordering solution for uncertain multicriteria optimization problems was proposed.
This new robust solution concept is appropriate for decision makers who are interesting
in a balancing of the robustness and the nominal quality of robust solutions. The
balancing of those two qualities of the proposed solution is interpreted as the measures
which are in the formulations of the gain in robustness and the price to be paid for
robustness. By introducing these two measures, the decision makers can choose the most
desirable robust solution which is satisfied with their own satisfactory. By supposing

that some control conditions hold, one Theorem was presented.

Theorem 5.2.1. Let X C R™ be a feasible set and a function f : R® x i — RP. For
each m € {2,3,...}, let €™ defined by

X . (2,8) — max fi(a', 8 5.2.1
€ xeX\nggp(g’em_l){%%z(fz(fE,5) I’L,Ig}i(fz(x,s)}, ( )

where e! = 0. If X is a finite set, then for any 8 € [¢™,e™"1), we have

XZrMOP(Eem) = XLRMOP(,5): (5.2.2)

We note that Theorem 5.2.1 provided the method of computing the relaxation which
can be used to classify the level of robustness of set of the proposed solution concept. By
applying this method together with the measures of the gain in robustness and the price
to be paid for robustness in Section 4.2, the most desirable solution with a good trade-
off between a performance of a solution in the uncertainty environment and nominal

situation can be obtained.
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Table 6: The objective function f of each feasible solution z* under all scenarios s; for

the WRMS problem.
f(y81) f(82) F(yss) FC s4) f(-,85) f(:)56)

™ -0.70 ] -0.80 ] [ .1.00 ] [ .1.40 ] [ -0.70 " -0.70
-1.40 -1.00 -2.00 -2.60 -1.40 -1.40
-1.50 -0.90 -3.00 -3.00 -1.50 -1.50
f(:l:l ) -3.60 -2.40 -2.00 -2.40 -2.20 -3.60
! -5.50 -6.50 -5.00 -1.50 -9.00 -5.50
-3.00 -2.40 -3.00 -2.10 -3.00 -3.00
369.12 461,40 307.60 307.60 369.12 307.60
| 19.30 | 28.95 | | 19.30 | | 19.30 ] | 19.30 | 23.16
[ -1.40 ] [ -1.60 ] [ .2.00 ] [ .2.80 ] " .1.40 ] [ -1.40 7]
-1.40 -1.00 -2.00 -2.60 -1.40 -1.40
-2.00 -1.20 -4.00 -4.00 -2.00 -2,00
f(:l:2, ) -3.60 -2.40 -2.00 -2.40 -2.20 -3.60
-5.50 -6.50 -5.00 -1.50 -9.00 -5.50
-3.00 -2.40 -3.00 -2.10 -3.00 -3.00
376.20 470.25 313.50 313.50 376.20 313.50
| 17.60 ] | 26.40 | | 17.60 | | 17.60 ] | 17.60 ] | 21.12
[ .3.50 ] [ -4.00 ] ™ -5.00 ™ 7.00 ] [ -3.50 ] | .3.50
-2.80 -2.00 -4.00 -5.20 -2.80 -2.80
-2.50 -1.50 -5.00 -5.00 -2.50 -2.50
f(mg ) -9.00 -6.00 -5.00 -6.00 -5.50 -9.00
) -3.30 -3.90 -3.00 -0.90 -5.40 -3.30
-4.00 -3.20 -4.00 -2.80 -4.00 -4.00
475.08 593.85 395.90 395.90 475.08 395.90
| 14.50 | 21.75 | | 14.50 | | 14.50 | | 14.50 | | 17.40 ]
" -3.50 ] [ -4.00 ] [ -5.00 ] " .7.00 ] [~ .3.50 | [ .3.50 ]
-2.10 -1.50 -3.00 -3.90 -2,10 -2.10
-2.50 -1.50 -5.00 -5.00 -2.50 -2.50
f (:E4 ) -7.20 -4.80 -4,00 -4.80 -4.40 -7.20
) -4.40 -5.20 -4.00 -1.20 -7.20 -4.40
-2.00 -1.60 -2,00 -1.40 -2.00 -2.00
454.80 568.50 349.00 379.00 454.80 379.00
| 13.70 ] | 20.55 ] | 13.70 | | 13.70 | | 13.70 ] | 16.44
" -3.50 ] [ -4.00 ] [ -5.00 ] [ -7.00 ] [ -3.50 ] [ -3.50 ]
-2.80 -2.00 -2.00 -5.20 -2.80 -2.80
-2.50 -1.50 -5.00 -5.00 -2.50 -2.50
f (iL'5 ) -7.20 -4.80 -4.00 -4.80 -4.40 -7.20
) -4.40 -5.20 -4.00 -1.20 -7.20 -4.40
-2.00 -1.60 -2.00 -1.40 -2.00 -2.00
446.16 557.70 371.80 371.80 446.16 371.80
| 14.00 ] | 21.00 | | 14.00 | | 14.00 | | 14.00 ] | 16.80 ]
" -3.50 ] [ -4.00 ] [ 5,00 ] [ .7.00 ] " -3.50 ] " -3.50 ]
-2.10 -1.50 -1.50 -3.90 -2.10 -2.10
-2.50 -1.50 -5.00 -5.00 -2.50 -2.50
f(.'l:6 ) -9.00 -6.00 -5.00 -6.00 -5.50 -9.00
’ -3.30 -3.90 -3.00 -0.90 -5.40 -3.30
-5.00 -4.00 -5.00 -3.50 -5.00 -5.00
471.72 589.65 393,10 393.10 471,72 393.10
| 14.70 ] | 22.05 | | 14.70 | | 14.70 ] | 14.70 | 17.64 ]




Table 7: The sorted vector, &9 (.), of vector ¢®)(-) for the WRMS problem.

Oty  aO@?)  eO@®) et  a(®) &)
[-0.70] [-1.40] [-3.50] [-3.50] [-3.50] [-3.50]
-0.70 -1.40 -3.50 -3.50 -3.50 -3.50
KOS -0.70 -1.40 -3.50 -3.50 -3.50 -3.50
-0.80 -1.60 -4.00 -4.00 -4.00 -4.00
-1.00 -2.00 -5.00 -5.00 -5.00 -5.00
-1.40] -2.80] -7.00] -7.00] |-7.00] |-7.00]
-1.00] [1.00] [-2.00] -1.50] [-2.00 [-1.50]
-1.40 -1.40 -2.80 -2.10 -2.80 -2.10
@, -1.40 -1.40 -2.80 -2.10 -2.80 2,10
-1.40 -1.40 -2.80 -2.10 -2.80 -2.10
-2.00 -2.00 -4.00 -3.00 -4.00 -3.00
|-2.60] -2.60] -5.20] -3.90] |-5.20] -3.90]
[-0.90] -1.20] -1.50] .1.50] [-1.50] [-1.50]
-1.50 -2.00 -2.50 -2.50 -2.50 -2.50
@) -1.50 2,00 -2.50 -2.50 -2.50 -2.50
.1.50 -2.00 -2.50 -2.50 -2.50 -2.50
-3.00 -4.00 -5.00 -5.00 -5.00 -5.00
-3.00 |-4.00] |-5.00] |-5.00] -5.00] |-5.00]
[-2.00] [-2.00] [-5.00] [-4.00] [.4.00] [-5.00]
-2.20 -2.20 -5.50 -4.40 -4.40 -5.50
@) -2.40 -2.40 -6.00 -4.80 -4.80 -6.00
-2.40 -2.40 -6.00 -4.80 -4.80 -6.00
-3.60 -3.60 -9.00 -7.20 -7.20 -9.00
-3.60] -3.60, -9.00] -7.20] -7.20] -9.00]
(.1.50] [-1.50] [-0.90] [-1.20] _1.20] -0.90]
-5.00 -5.00 -3.00 -4.00 -4.00 -3.00
ROTH -5.50 -5.50 -3.30 -4.40 -4.40 -3.30
-5.50 -5.50 -3.30 -4,40 -4.40 -3.30
-6.50 -6.50 -3.90 -5.20 -5.20 -3.90
1-9.00 -9.00] -5.40] |-7.20] -7.20] |-5.40]
[-2.10] 2.10] -2.80] [-1.40] -1.40] [-3.50]
2.40 -2.40 -3.20 -1.60 -1.60 -4.00
) -3.00 -3.00 -4.00 -2.00 -2.00 -5.001.
-3.00 -3.00 -4.00 -2.00 -2.00 -5.00
-3.00 -3.00 -4.00 -2.00 -2.00 -5.00
|-3.00] |-3.00] |-4.00] |-2.00] |-2.00] |-5.00]
[461.40) [470.25] [593.85] [568.50] [557.70] (589.65]
369.12 376.20 475.08 454.80 446.16 47172
M0 369.12 376.20 475.08 454.80 446.16 471.72
307.60 313.50 395.90 379.00 371.80 393,10
307.60 313.50 395.90 379.00 371.80 393.10
|3807.60 |313.50 395.90 | 379.00 |371.80 |393.10
28.95 [26.40] [21.75] [20.55] [21.00] [22.05]
23.16 21.12 17.40 16.44 16.80 17.64
) 19.30 17.60 14.50 13.70 14.00 14.70
19.30 17.60 14.50 13.70 14.00 14.70
19.30 17.60 14.50 13.70 14.00 14.70
19.30] |17.60] | 14.50] [ 13.70] | 14.00] 14.70
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Table 8 The jth worst performance vector of each feasible solution z* and the reference

point & for the WRMS problem.

worsty (F(+, U))

worstz (F(+,U))

worsty (f(+, U))

worsta(£(-,U))

worsts (£(+, U))

worstg (F (-, U))

[ -0.70 ] [ -0.70 ] " .0.70 7] [ -0.80 ] [ -1.00 ] [ .1.40 ]
-1.00 -1.40 -1.40 -1.40 -2.00 -2.60
-0.90 -1.50 -1.50 -1.50 -3.00 -3.00
-2.00 -2.20 -2.40 -2.40 -3.60 -3.60
worst()(f(=", 1)) -1.50 -5.00 -5.50 -5.50 6.50 -9.00
-2.10 -2.40 -3.00 -3.00 -3.00 -3.00
461.40 369.12 369.12 307.60 307.60 307.60
| 28.95 | | 23.16 ] | 19.30 | 19.30 L 19.30 | | 19.30 |
[ -1.40 ] [ -1.40 ] [ .1.40 ] ™ _1.60 ] [ -2.00 ] " -2.80 ]
-1.00 -1.40 -1.40 -1.40 -2.00 -2.60
-1.20 -2.00 -2.00 -2.00 -4.00 -4.00
-2.20 -2.20 -2.40 -2.40 -3.60 -3.60
worst()(f(=*,U)) -1.50 -5.00 -5.50 -5.50 -6.50 -9.00
-2.10 -2.40 -3.00 -3.00 -3.00 -3.00
470.25 376.20 376.20 313.50 313.50 313.50
| 26.40 | Lr{.ao~ | 17.60 ] | 17.60 ] | 17.60 | | 17.60 |
[ -3.50 ] [ .3.50 W [ .3.50 ] " -4.00 ] ™ 5,00 ] " 7.00 W
-2.00 -2.80 -2.80 -2.80 -4.00 -5.20
-1.50 -2.50 -2.50 -2.50 -5.00 -5.00
-5.00 -5.50 -6.00 -6.00 -9.00 -9.00
worst() (f(=%,U) -0.90 -3.00 -3.30 -3.30 -3.90 -5.40
-2.80 -3.20 -4.00 -4.00 -4.00 -4.00
593.85 475.08 475.08 395.90 395.90 395.90
L 21.75 | | 17.40 ] | 14.50 | | 14.50 ] | 14.50 } | 14.50
[ -3.50 ™ .3.50 | ™ -3.50 ] [ -4.00 ] " -5.00 ] [ -7.00 ]
-1.50 -2.10 -2.10 -2.10 -3.00 -3.90
-1.50 -2.50 -2.50 -2.50 -5.00 -5.00
-4.00 4,40 -4.80 -4.80 -7.20 -7.20
worst( (f(=*, 1)) -1.20 -4.00 -4.40 -4.40 -5.20 7.20
-1.40 -1.60 -2.00 -2.00 -2.00 -2.00
568.50 454.80 454.80 379.00 379.00 379.00
| 20.55 | 16.44 ] | 13.70 | | 13.70 | | 13.70 ] L13.7o_
" -3.50 ] [ -3.50 ] [ .3.50 1 [ -4.00 ] " .5.00 ] [ -7.00 ]
-2.00 2,80 -2.80 -2.80 -4.00 -5.20
-1.50 -2.50 -2.50 2,50 -5.00 -5.00
-4.00 -4.40 -4.80 -4.80 -7.20 -7.20
worst()(f(a%,1) -1.20 -4.00 -4.40 -4.40 -5.20 -7.20
-1.40 -1.60 -2.00 -2.00 -2.00 -2.00
557.70 444.16 446.16 371.80 371.80 371.80
| 21.00 | 16.80 ] L 14.00 | | 14.00 | | 14.00 | | 14.00
" .3.50 | [ -3.50 ] [ .3.50 ] [ -4.00 ] " -5.00 7] " -7.00 7]
-1.50 -2.10 -2.10 2,10 -3.00 -3.90
-1.50 -2.50 -2.50 -2.50 -5.00 -5.00
-5.00 -5.50 -6.00 -6.00 -9.00 -9.00
worat() (f(=,U) -0.90 -3.00 -3.30 -3.30 -3.90 -5.40
-3.50 -4.00 -5.00 -5.00 -5.00 -5.00
589.65 471.72 471.72 393.10 393.10 393.10
| 22.05 | | 17.64 | 14.70 | 14.70 ] | 14.70 | 14.70 ]
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worsty (f(+,U)) worsta(F(-,U)) worstg (f(-,U)) worsta(F(-,U)) worstg(f(-,U)) woratg(f(:,U))

[ .3.50 ] [ .3.50 ] ™ -3.50 ] [ -4.00 ] [ -5.00 ] I~ -7.00 ]
.2.00 -2.80 -2.80 -2.80 -4.00 -5.20
1.50 -2.50 -2.50 -2.50 -5.00 -5.00
o -5.00 -5.50 -6.00 -6.00 -9.00 -9.00
J -0.90 -3.00 -3.30 -3.30 -3.90 -5.40
-2.80 -3.20 -4.00 -4.00 -4.00 -4.00
593.85 475.08 475.08 395.90 395.90 395.90
21.75 | 17.40 ] | 14.50 ] | 14.50 | 14.50 | 14.50 |

Table 9: The set LRS(a!) for the (G1, G, G3) objective group with respect to different

tolerence threshold sets where of := (af, a3, ..., ¢f).

Tolerence Threshold Set LRS(a%)
{ad =(0,0,0,0,0,0,0,0)|¥j =1,...,6} {=°}
{02 =(13,1.3,1.3,1.3,1.3,1.3,1.3,1.3)|Vj = 1,...,6} {z°} U {=z%}
{a? = (2) 27 27 2) 2a 2) 27 2)|V] = 1’ e ’6} {:E?’} U {xs} U {$4’ 3;5}

{af =(5.4,5.4,5.4,54,5.4,5.4,5.4,54)|Vj =1,...,6} {3} U {8} U {24, %} U {z?}
{af =(72,72,72,72,7.2,72,7.2,72)Vj = 1,...,6} {z°}U {28} U {z*, 25} U {z*} U {z'}
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Table 10: Weight of Demand site D; for 4 € I3, of the ambulance location problem

Demand Sites

Weight of Demand site D;

dio

27.21040801
4.10474611
18.31712008
42.5425252
20.31375215
1.36011829
12.35886195
3.35721854
49.69260057
48.52901567
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Table 11: Computational experiments of the problem LRMOP(s0},Em) Where em €

[0.00, 303.25]

Information Trade-off
Relaxation | XcrmoP(spem) | | XErMOP(s(0p.m) | Opt. values Gain Price Ratio
@ @ (%)
go = 00.00 757 56 496.49 0 0 0
g1 = 11.16 776 56 496.49 0 0 0
€9 = 32.30 791 56 496.49 0 0 0
g3 = 49.21 875 20 471.60 2490 49.21 0.5
€4 = 5543 1395 4 412.07 84.42 5543  1.52
g5 = 68.44 1486 5 412.07 84.42 68.44 1.23
€g = 78.74 1542 5 412.07 84.42 68.44  1.23
g7 = 96.45 1987 1 376.69 119.80 96.45 1.24
eg = 98.10 2052 1 376.69 119.80 96.45  1.24
g9 = 303.25 3003 1 376.69 119.80 96.45 1.24




Table 12: Optimal location patterns with different relaxations

Thresholds

*
Xﬁ’RM(’)'P(S{O) Em)

€0, €1, €2 € [00.00, 32.30]

{A1, A2, A5, A6, A12}
(A1, A2, A5, A7, A12}
{Al, A2, A5, A8, A12}
{Al, A2, A5, A9, A12}
{A1, A2, A5, Al1, A12}
(AL, A2, A5, A12, A13}
(A1, A5, A6, AT, A12}
(A1, A5, A6, A8, A12}
(A1, A5, A6, A9, A12}
{Al, A5, A6, A1, A12}
{Al, A5, A6, A12, A13}
(A1, A5, AT, A8, A12}
{A1, A5, AT, A9, A12}
{A1, A5, A7, Al1, A12}
{Al, A5, AT, A12, A13}
(A1, A5, A8, A9, A12}
{A1, A5, A8, Al1, A12}
{AL1, A5, A8, A12, A13}
{Al, A5, A9, A11, A12}
{Al, A5, A9, A12, A13}

{A1, A5, A1, A12, A13}

{A2, A5, A6, AT, A12}
{A2, A5, A6, A8, A12}
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Thresholds

*
XL:RMOP(S{O) ,Em)

£€0,€1,€2 S [0000, 3230]

{A2, A5, A6, A9, A12}
{A2, A5, A6, Al1, A12}
{A2, A5, A6, A12, A13}
{A2, A5, AT, A8, A12}
{A2, A5, AT, A9, A12}
{A2, A5, AT, A11, A12}
{A2, A5, A7, A12, A13}
{A2, A5, A8, A9, A12}
{A2, A5, A8, Al1, A12}
({A2, A5, A8, A12, A13}
{A2, A5, A9, A11, A12}
{A2, A5, A9, A12, A13}
{A2, A5, Al1, A12, A13}
{A5, A6, A7, A8, A12}
{A5, A6, A7, A9, A12}
{A5, A6, A7, Al1, A12}
{A5, A6, AT, A12, A13}
{A5, A6, A8, A9, A12}
{A5, A6, A8, Al1, A12}
{ A5, A6, A8, A12, A13}
{ A5, A6, A9, A11, A12}
{45, A6, A9, A12, A13}
{A5, A6, A11, A12, A13}
{A5, A7, A8, A9, A12}
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Thresholds

*
X[,'RMOP(S(O) Em)

€0, €1, €2 € [00.00, 32.30]

{A5, A7, A8, Al1, A12}
{A5, A7, A8, A12, A13}
{A5, A7, A9, A11, A12}
{A5, A7, A9, A12, A13}
{A5, A7, A11, A12, A13}
{ A5, A8, A9, A11, A12}
{A5, A8, A9, A12, A13}
{A5, A8, Al1, A12, A13}
{A5, A9, A11, A12, A13}

€3 =49.21

(A1, A2, A, A8, A12}
[Al, A2, A7, A8, A12}
{Al, A2, A8, A9, A12)}
{A1, A2, A8, A12, A13}
{A1, A6, A7, A8, A12}
{Al, A6, A8, A9, A12}
{A1, A6, A8, A12, A13}
{A1, A7, A8, A9, A12}
(A1, A7, A8, A12, A13}
{Al, A8, A9, A12, A13}
{A2, A6, AT, A8, A12}
{A2, A6, A8, A9, A12}
{A2, A6, A8, A12, A13}
{A2, A7, A8, A9, A12}
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Thresholds

*
XCRMOP(S(Q} ,Em)

€3 = 49.21

{A2, A7, A8, A12, A13}
{A2, A8, A9, A12, A13}
{A6, A7, A8, A9, A12}
{A6, A7, A8, A12, A13}
{A6, A8, A9, A12, A13}
{A7, A8, A9, A12, A13}

Eq = 55.43

{Al, A6, AT, A8, A9}
{A1, A6, A7, A8, A13}
{Al, A8, A8, A9, A13)
{A1, A7, A8, A9, A13)

€5, €6 € [68.44,78.74]

{A1, A6, A7, A8, A9}
{A1, A6, AT, A8, A13}
{Al, A6, AT, A9, A13)}
{Al, A6, A8, A9, A13)}
{A1, A7, A8, A9, A13}

Eq = 96.45

(A6, A7, A8, A9, A13}

£g = 98.10

{A6, A7, A8, A9, A13)}

€9 = 303.25

{A6, A7, A8, A9, A13}
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