aYA R2560C059

eee

SHENEVONVEEGTEGY

|) 9

FolA5IN1T SULUVRSUUTUT AR NIl EN I MINAE 8L 09015 US 2 ARAKUY
NALLII
DAL

di ar e = et &t
PNINTIATINS Y 19Kine

wuuidne M Ing msreuRimesiazinalulalansaumng Ay
AN URTINTIRBULTAS

=i e

= =
Wou U Masalassns

NUAWUS 2561

] . 4
UYILAUN R25

o/ s
ﬁqﬂﬂWUQUUaﬂJuim
Folasents suuuuesszuuTufinmgnisalluanimasdeyyanisysyananauy
ALY
ARSI dafim
1. #5319 29eineg A IINGINT
NTPIUBHIE L INET
ANTEUNE ADINGAERNS
UNINENFRULIAS
2. germani1ansd asdnsngquel i - A1ArInenTs
ULV Aoufialeoiiasmalulal
A15aUNe Aok INeNAEns
UM INYIAYULIAIT
3. fhgmananse nsinToedng MATINGINI

= & ef
ARURILADS Lavwnalulal
ANTEULNA ANEANYEIERS

1020 9% y LN TAYULSFHIT
RN :
RT3

Wi enfuayuley
13%0

UUsEINNS LA unTIneduusals Tauuszunm 2560

Logging System Patterns for Infrastructure
as a Service Cloud

1. Executive Summary

Thus this research provided approaches for providing spectrum of patterns for describing

how to construct logging systems with varying characteristics. For developers, when

building-alogging-system;the:knowledge-of characteristics-of-this-system-could-assistthera——————

to get the right design of the system with minimal effort and time commitments. This

project intends to define and identify logging system patterns.

2. Abstract (lng)

aw v adl - [Y o a2
HWaillfauoTmslumsinnesiifeaeguuuusssuuiuiinmpmsallumsussnanaiuy

i ¢ = & ! 1Y = L ¥ o o [! Lt 1
ngasiel 3EI5N1sIndUszneumevnianssulumsaisgluvuiingn BiEmetandnilldiae
o o3 ar 3 2 é‘
thiaeflalusniddorounihil

3. Abstract (Enelish)

Accountability is one of the keys to the mitication of risks associated with cloud security.
A logeing system is an important feature in accountability solutions to anticipate and
handle threats in the cloud. However, previous accountability with logging system
solutions have been provided without any description of the logging system in the context
of a design pattern of the system’s components. There are a number of benefits in
applying the design steps for patterns customized from the object-oriented software
design and development area., Stating a desien patiern of the logging system’s

components also facilitates the analysis of a logging system in terms of, for example, their

guality or characteristics. This can minimize the effort and time commitment necessary
for a system’s design and development. However, to define and identify a pattern needs
appropriate approach, which this paper provides. To the best of our knowtedge, the

approach have not previously been described in the literature.

& = et
a9y

1 Introduction

Leitersdorf and Schreiber [1] state that cloud security is one of five major cybersecurity
market trends which will define the cybersecurity budgets of firms for 2015, The Top
Threats to Cloud Computing Report [2] by Cloud Security Alliance (CSA) provides examples
of threats to cloud security. Accountability can be key to mitigating the risk of these
threats. Many researchers [3, 4, 5, 6] have argued, in relation to ctoud security, that cloud
behaviors are open to inspection by any party for both legitimate or illegitimate purposes.
[7, 8,9, 10, 11, 12] argue that a (ogging system is an important feature In accountability
solutions to assist in dealing with these problems and threats. [12] also states that a logging
system is composed of logging processes which focus on logeing-related tasks together

with log files used to store contents produced by these processes.

However, previous accountability with logging systems solutions [12, 13, 14, 15, 16,
17, 18, 19, 20, 7, 11] have been provided system architectures for the specific logging
system without any description of the design pattern upon which the system’s
components are based. We have identified something in the order of 90 or more such
architectures. We have also identified common components within this variety of system
architectures, leading us to develop a pattern-based approach to logeing system design.
The laaS environment is complex and complicated and each developer designs their
architecture without any example or standard to emulate; there are none. Thus, this paper
proposes pattern definitions with structures based on those now widely accepted in the
00 development environment. We state 6 activities to be used as tools to identify
appropriate patterns. Following this, we will state and publish at a later time, a set of

patterns structured according to these definitions.

Summary of contributions: the first contribution is a discussion of the need for
defining and identifying logging system patterns for logging system design in the laaS
context, together with an associated development environment. The second contribution
we are making is a statement of an approach to the definition and identification of the
proposed logging systemn patterns. We believe that our approach can be used to identify
and state usable and useful patterns for logging system design and development in the
laaS context. This is our future work. A further advantage envisaged is that the patterns
can be used not only to describe any particular logging system, in "standard’ terms, but

also to compare different togging systems for their similarities and differences in their

characteristics; components-and-functionatity.~This-can-be-taken-to-the-further step-of——
identifying the absence of properties considered essential or necessary, and the
advantages and disadvantages of the particular system. By applying the standards, the
quality of the system can be more easily assessed. This will facilitate the design and
development of logging systems, and minimize the effort and time commitment required

for system design and development.

2 Background.

2.1. laaS Architecture.

Fig. tillustrates the architecture of an laaS public cloud con figuration, which comes from
our previous work [12}. The provider side is any organization that publicly offers virtual
machines or VMs to the customer. The customer can rent the VMs and access them via
the Internet. A hypervisor is software that enables one computer to have more than one
VM. The dom0 is a privileged domain VM that is taunched by the hypervisor during systern
boot, where 0 indicates that this VM is physically managed and owned by the provider.
The dom0 directly accesses the hardware (hw) and manages multiple domUs. A domU is
an unprivileged domain VM that runs on top of the hypervisor, U indicates that this VM is
virtually managed and owned by a customer. A domU is a VM and laa$ product.

dom0 domil fhdomUn
.

. o N

LR N}

hypervisor Customer

hw

Provider Side Customer Side
FicurEk 1. The [aaS architecture.

2.2. Generic logging Components of laaS Cloud.

To describe the approach to defining and identifying logging system patterns for laaS cloud
configurations that exploits the generic logging components of an laaS cloud configuration,
needs an understanding of the definition of those generic components, according to [11].
[11], our previous work, provides information on these generic logging components, which

we illustrate in Fig. 2.

I'tguRre 2, The overall view of generie logging components: logging process
or Px (P1 to Pb), and log files or Uy (1 to 104),

This current paper further discusses these components which we group under two

headings or as two sets, (1) 1aaS components and (2) critical components.

The first set of laaS components are shown as white boxes in Fig. 2. This set
inctudes the hypervisor, dom0, domU, hw0, hwt, disk0, diskU, mem0, memU, app0, and
appU. The first four components have atready been discussed above. (Note that hwO is
hw in the previous discussion.) HwU is domU’s hardware and physically located inside
hwO (which is owned by dom0) although it is virtually owned by domU. Disk0 is a physical
disk of the hw0, and diskU is a virtual disk of a domU. Mem0 is the main memory of the
hw0, and memU is the virtual main memory of domU. App0 is an application that runs

inside dom0 and similarly appU is applications that runs the domu user level,

The elements of the second set are the critical components in the logging

processes(Px, x=1,...,5) and log file components (Fy, y=1,..dXshaded boxes). The logging
processes P1 to P5 perform logging-related tasks, and the log files F1 to F4 are used for
storing the data produced by P1 to P5. Full details of P1 and P2 and P3 to PS5 were fully
described in our previous publications [12] and [11]. All the generic logging components,
including and especially the critical components, will be referred to In the following
sections in this paper in our descriptions of our approach to defining and identifying logging

system patterns for laas.
2.3, The needs for defining and identifying Logging System Patterns for laaS,

Gamma et al [21] discuss a number of benefits of design patterns, stating that "design
patterns make it easier to reuse successful designs and architectures”. By expressing
proven techniques as design patterns makes them more accessible to developers of new
systems and enables correct designs to be immediately produced. Design patterns help
developers choose design alternatives promoting system and component reusability. As
well, desien patterns can improve documentation correctness and standardisation and
reduce the maintenance cost and effort of existing systems by fumishing an expticit
specifications of class and cbject interactions and their underlying intent. "Put simply,

design patterns help a designer get a design right faster”.

It is suggested here that design patterns in the logging context can bring the same
benefits as enthusiastically discussed by Gamma et al, particularly promoting the
reusability of designs and standardizing the development of togging systems. Our ultimate
intention is to provide logging design patterns and make them more accessible to

developers of new logging systems, thereby enabling these designers to better choose

between design alternatives, as well as the other benefits of standard, and complete,

documentation and support for the on-going maintenance function.

Ouwr design patterns will provide explicit specifications of the critical logging
components {Px and Fy) with their locations in any [aa$ infrastructure and describe the
underlying intent of each component, especially the logging processes or P1 to P5 and
log files or F1 to F4 which are the critical components of any logging system. Our perceived

outcome is "building correct systems faster, the first time”.

Learning from the object-oriented area, design patterns have also been applied in

other—environments={22)—this-extension=ef-the-concept=and=use-of-design-patterns———o -

encouraged our work to apply the design pattern concept to logging systems’ design and

development in laaS as well, which we elaborate in the next section.

3. The Approach to Define and Identify Logging System Patterns for laaS Cloud.

The previous section discussed the need for defining and identifying logging system
patterns for faaS. This section discusses our approach to defining and identifying these
logging system patterns. This approach has three steps which are discussed below in sub-
sections 3.1 to 3.3. The first step was to identify and define the general concept of design
patterns, and more specifically as they are known in object-oriented software design. We
then consider our view of the well-found linkage between object-oriented software design
patterns and the application of the concepts in logging system design and development,
which is the second step described in sub-section 3.2. Finally, Step 3, elaborated in sub-
section 3.3 includes the six activities to be used as tools to identify the patterns for logging

system design and development in laaS.
3.1. Design Patterns in general and in object-oriented software design.

A design pattern is generally described in [22] as "a documented best practice or core of

a solution that has been applied successfully in multiple environments to solve a problem

that recurs in a specific set of situations.”Based on simple and elegant solutions to specific
problems, a significant number of design patterns for object-oriented software design were
created and published by {21). Specific design patterns were alt so discussed in [23] and
termed software design patterns, and defined as: descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular context.
[22] states that patterns typically have the attributes of Name, Purpose, Description of
when and why to apply the pattern, Structural diagrams, Examples of use, and Discussion

of interactions with other patterns.

3.2, Defining a pattern in logging system design and development environment.

This section discusses what we consider to be a well-founded linkage between patterns
in object-oriented software design and in logging design and development. For simplicity,
we refer to a design pattern for logeing system design an development in laaS simply as a
‘pattern’. In this sub-section we will define the definition of a pattern based on well-
known design patterns in object-oriented software design and development created by

Gamma et al [21], whose definition of design patterns, as previously cited, is:

descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

For further discussions, and based on the generic logging components, our general

definition pattern in logging system design and development environment is:

descriptions of participating critical components (Px and Fy) and their locations
that are customized (the components can be appropriately located in laaS components
including domu, dom0, and hypervisor) to solve a general design problem in a particular
context. Note that participating critical components are Px and Fy that are used to form a
logging system. From the generic logging components in Fig. 2, the logging processes P1

to P5 and log files F1 to F4 are critical components of a logging system.

We believe that our patterns can be defined based on the definition discussed
above. For example, Fig. 3. is an architecture of a logging system. Based on our
investigation in [11], this architecture is only one of the 93 possible logging system
architectures we have previously identified, and which we discussed in [11]. The patterns
can be used as a blueprint to create a concrete software architecture before building the
software. In the logging system context, a concrete logging system architecture, which can
be any one of the 93, can be derived from a pattern as well. The created patterns can
then be used as tools to describe and model a logging systemn and to compare between

logging system models in terms of the systems’ characteristics and advantages and

~disadvantages. This-shoutdTacilitate the-design-and-devetopment-of thesystems——————————

hypervisor

hwU
disku memb

hwQ

i

disko memo

Fraure 3. A logging system architecture deploying 1, 173, and ™4

3.3. The activities to identifying patterns for logging system design and development.

This section discusses six activities to be undertaken to identify the pattemns, Heer and
Agrawala {23] identify software design patterns for information visualization based upon a
review of existing frameworks and their own experiences building visualization software.
We have followed their approach for our purposes. In our future work we will also identify

specific patterns for laaS logging environments based on our own experience of building
logging systems particularty.

The first activity was to base the patterns on our own experience, that is, a
retrospective analysis of our ’experience’ from which Fig. 2 is derived, showing the generic
logging components identified by us. We are leveraging on our own experience in building
a prototype of logging systems. We also draw on the spamming case study from [12]. For
mitigating risks associated with threats of malicious activities performed in consumers’
virtual machines/VMs which can affect the security of both consumers and providers we
cite [13], and in logging solutions to mitigate risks associated with security issues in platform
as a service cloud models we have followed the discussion in [10]. Other experiences

involving many aspects of logging systems such as the systems’ performance [8, 9],

especiatly-the=systemstquatity-{7}-the=systems=architectures-[{4}-alt-of-which-saverus=

better understanding of logeging systems in terms of the variety of architectures and the

perceived and measurable quality of the various logging systems.

The second activity was to investicate and evaluate all possible forms of
distribution of Px and Fy to form a logging system architecture, into either or both the

customer side structure and the provider side structure.

Then we investigated and evaluated the distributions of Px and Fy In system
architectures of the related work concerning logging systems, as the third activity in this

pattern development process.

The fourth activity was to define the meaning and purpose of the logging data,
The common abilities of logging systems to capture and store necessary logging data, will
be expressed in the patterns we will define. We define the meaning and purpose of this
logging data as, first, illustrating and recording the behavior or activities of a process or
processes in domU Examples of which are discussed in [12] (the spamming case study).
Alternatively, we consider the necessity of the data record of the domU files’ life cycles.
Examples and discussion of a domU file’s life cycle from creation, through accessing and

updating, and ultimately destruction of the files, are found in in [16) and in [14].

The fifth activity is the identification of a pattern which is based on the idea that
we need a logging system that can be developed with in the shortest time possible and
with minimal efforts. Simplicity and cost are two factors of importance in this regard.
Secondly, the pattern must be designed in such a way as to ensure the reliahility of Px

and Fy, and includes the system’s ability to facilitate the self-enforcement of its internal

security policies. Last, but equally important, is the capability of capturing as much of the
necessary logging data as possible, primarily as evidentiary data in any legal proceedings

that may eventuate.

In the object oriented software development area, [21] describe their well-known
design patterns using a consistent format. The final activity in our process is to emulate
this approach in describing our patterns. The elements of the format of patterns described
in [21] are: pattern name, intent, motivation, applicability, structure, participants,
collaborations, consequences, iImplementation, known uses, and retated patterns. Using

this format for our patterns results in a clear and complete description of any pattern.

These six activities in the process of developing the patterns will result in useful
and applicable logging system patterns for the laaS environment, bringing with it an
essential level of standardization, and understanding. In following this process, and
carrying out these activities fully and in order, we believe that we can identify appropriate
patterns for logging system desien and development. The actual development of these

patterns will be the subject of our future work.
4. Conclusions.

There are a number of benefits of this pattern based approach will deliver the same
benefits for (ogging system design as have been experienced in object oriented software
design and development. To achieve these benefits, this paper discusses the need for
defining and identifying logging system patterns, and describes an approach to defining
and identifying these logging system patterns, as an essential precursor to the actual
definition of the patterns. We have drawn on what we might term the Reference Discipline
of the pattern-based approach to object-oriented software design, and our own

experience in developing logging systems in the laaS environment.

We are confident that this approach can result in appropriate and well-defined
patterns which can provide guidance and standardization for the future development of
propriety logging systems, and the basis for analyzing the completeness of any such
system. It will further provide the ability to analyze and identify the advantages and

disadvantages inherent in any particular logging system design. This is our future work.

5. ANARLIN
A, UVATIEMTUNSRIBUNS

i, ffviiaaundd f :Wongthai , W, van Moorsel , A, (2018). An Approach to
Defining and Identifying Logeing System Patterns for Infrastructure as a
Service Cloud ICIC Express Letters. Vol.12, NoAsnssuiitiardasiumsihaa
nlasanyslulgdsslamn

b, myamaSsuiieuingusvasd fanssuiimeld wasianssufiduiunisunuassafitdsy

maanlAsINig

o] 2
Aonssufinngld

= d‘ [Y & v
Aanssudiadunysulazaailasunasn
Tasens

1. To investigate design patterns in
object-oriented software design

and development area.

obtained investigated design patterns in
object-oriented software design and
development area

2. To the
architectures

analyze possible

obtained analyze the possible

architectures

3. To map 1 and 2 to define logging
system patterns for logging systemn
design and development area

proposed definition of logging system
patterns for logging system design and
development area

4. To identify and propose logging
system patterns for logeing system
design and development area

Obtained an approach to identify and
propose
logging system design and development

logging system patterns for

area

5. To discuss the proposed logging
system patterns

discussed the proposed logging system
patterns

6. Publishing the project’s results in
a journal which is appeared in
Scopus database

The paper was published.

2 Qi
Y
Q4%
AL

16 2085

7. Writing the project summary | wrote the project sumfnary report

report

c. Acknowledement
Many thanks to Mr. Roy Morien of the Naresuan University Language Center for his

editing assistance and advice on English expression in this document,

d. References

|1]-¥-Leitersdort-ana Tr-5cnreiber: (2014) Cybersecurity hindsight-and-a-look-ahead-at-Z2015:
TechCrunch. [Online]. Available: http://techcrunch.com/2014/12/28/ cybar-security-hindsight-2020-
and-a-lock-ahead-at-2015/

[2] CSA, “The notorious nine: Cloud computing top threats in 2013,” The Cloud Security Alliance (CSA),
Tech. Rep., 2013

[31 M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, L.
Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, Apr.
2010.

[4] A. Haeberlen, “A case for the accountable cloud,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 5257,
Apr. 2010,

{5] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud computing,” in Proceedings of
the 2009 conference on Hot topics in cloud computing, 2009,

{6] J. Lyle and A. Martin, “Trusted computing and provenance: better together,” in Proceedings of the
2nd conference on Theory and practice of provenance, 2010,

{7] W. Wongthai and A. van Moorsel, “Quality analysis of logging system components in the cloud,”
Lecture Notes in Electrical Engineering, 2016. [8] W. Wongthai and A. Van Moorsel, “Performance
measurement of logging systems in infrastructure as a service cloud,” ICIC Express Letters, 2016. {9] P,
Chan-In and W. Wongthai, “Performance improvement considerations of cloud logging systems,” ICIC
Express Letters, 2017,

[10] ——, “Logging solutions to mitigate risks associated with security issues in platform as a service
cloud models,” Information {Japan), 2016.

[11] W. Wongthai and A. Van Moorsel, “Logging system architectures for infrastructure as a service
cloud,” Journal of Telecommunication, Electronic and Computer Engineering {(JTEC), 2017. [Online}.
Available:

{12] W. Wongthai, F. L. Rocha, and A. van Moorsel, “A generic logging template for infrastructure as a
service cloud,” in Proceedings of the 2013 27th International Conference on Advanced Information
Networking and Applications Workshops. IEEE Computer Society, 2013,

[13} W. Wongthai, F. Rocha, and A. v. Moorsel, “Logging solutions to mitigate risks associated with
threats in Infrastructure as a service cloud,” in Proceedings of the 2013 International Conference on
Cloud Computing and Big Data, ser. CLOUDCOM-ASIA "13. |[EEE Computer Society, 2013,

[14] R. K. Ko, P. Jagadpramana, M. Mowbray, $. Pearson, M. Kirchberg, Q. Liang, and B. S. Lee,
“Trustcloud: A framewaork for accountability and trust in cloud computing,” IEEE Congress on Services,
pp. 584-588, 2011.

[15] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Accountable virtual machines,” in
Proceedings of the 9th USENIX conference on Operating systems design and implementation, 2010.

[16] P. Macko, M. Chiarini, and M. Seltzer, “Collecting provenance via the Xen hypervisor,” in 3rd
Workshop on the Theory and Practice of Provenance, June 2011,

{17])-B:Delan:GavitB:Payne;and W:Lee; “Leveragingforensictoolsfarvirtualmachineintrospection; 2

Georgia Institute of Technology, Tech. Rep., 2011.

[18] B. Payne, M. de Carbone, and W. Lee, “Secure and flexible monitoring of virtual machines,” in
Annual Computer Security Applications Conference, 2007.

[19] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture for secure active monitoring
using virtualization,” in |EEE Symposium on Security and Privacy, 2008,

[20] S. Sundareswaran, A, C. Squicciarini, and D. Lin, “Ensuring distributed accountability for data sharing
in the cloud,” IEEE Transactions on Dependable and Secure Computing, 2012.

[21] E. Gamma, R. Helm, R, Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
ObjectOriented Software. Addison-Wesley Professional, 1994.

[22] P. Kuchana, Software Architecture Design Patterns in Java. Boston, MA, USA: Auerbach Publications,
2004,

[23] J. Heer and M. Agrawala, “Software design patterns for information visualization,” IEEE Transactions
on Visualization and Computer Graphics, 2006.

