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In this paper, we study existence and uniqueness of solutions for system of
Hilfer-Hadamard sequential fractional differential equations, via standard fixed
point theorems. The existence is proved by using Leray-Schauder alternative,
while the existence and uniqueness by Banach contraction mapping principle.

{llustrative examples are also discussed
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CHAPTER 1

INTRODUCTION

Fractional differential equations have been applied in many fields such as physics,
chemistry, biology, engineering and so on. Fractional differential equations have
several kinds of fractional derivatives, such as, Riemann-Liouville fractional deriva-
tive, Caputo fractional derivative, Grunwald-Letnikov fractional derivative, Hadamard
fractional derivative etc. The reader interested in the subject of fractional calculus
is referred to the books Kilbas et al. [1], Podlubny {2], Samko et al. [3], Miller and
Ross [4], Dietheln [5]. A generalization of derivatives of both Riemann-Liouville
and Caputo was given by R. Hilfer in [6] when he studied fractional time evolution
in physical phenomena. He named it as generalized fractional derivative of order
x € (0,1) and a type B € [0,1] which can be reduced to the Riemann-Liouville
and Caputo fractional derivatives when B = 0and B = 1, respectively. Many
authors call it the Hilfer fractional derivative. Such derivative interpolates hetween
the Riemann-Liouville and Caputo derivative. For other current definitions of frac-

tional derivatives see [7]-[11].

Fractional-order boundary value problems have been extensively studied by
many rescarchers. In particular, coupled systems of fractional-order differential
equations have attracted special attention in view of their occurence in the mathe-
matical modeling of physical phenomena like chaos synchronization [12], anomalous
diffusion [13], ecological effects [14], disease models [15], etc. Additionally, fixed
point theory can be used to develop the existence theory for the coupled systems
of fractional differential equations. For some recent theoretical results on coupled

systemns of fractional-order differential equations, for example, see 116]-[30].

Alsaedi et al. [23] studied the existence of solutions for a Riemann-Liouville



coupled system of nonlinear fractional integro-differential equations given by

Du(t) = f(£, u(t), v(t), (1) (£), (g0} (1), € {0, 7],
DPo(t) = g(t, u(t), v(t), (g21) (1), ($20)(1)), 1<, B <2,
subject to coupled Ricinann-Liouville integro-differential boundary conditions
D*=2u(0%) =0, D*u(0r) =vI*lu(y), 0 <y <T,
DE-25(0*) =0, DP1o(0%) = ulf~lu(e), 0<o <T,
where D), I0) denote the Riemann-Liouville derivatives and integral of fractional
order (.), respectively, f,¢ 1[0, T] X R* - 5 IR are given continnous functions, v, i
are real constants and
@)= [ nsutslis, @) = [l snis)ds
(p)e) = | A ) / C5at,5)0(s)ds,
with 7; and d; (i = 1,2) being continuous function on [0, T] x [0, T).
Alsulami et al. {24] studied a new system of coupled Caputo type fractional
differential equations
Du(t) = f(t,u(s),0()), te0,T), 1<a<2,
Dyt = g(t, u(t),v(f), tc[0,T], 1<B<2,
subject to the following non-separated coupled boundary conditions
u(0) = Au(T), #'(0) = Av'(T),
v(0) = u(T), ¥'(0) = ' (T),
where D%, ¢DP denote the Caputo fractional derivatives of order & and B, respec-

tively, f,g : [0, T] X R x R — R are appropriately chosen functions and A;, i

i =1,2 are real constants with A;p; # 1,7 =1,2.

Ahmad et al. [25] studied the existence and uniqueness of solutions for

the following boundary value problem of nonlinear Caputo seguential fractional



differential equations

(‘D + k1D Nu(t) = f(tu(t),v(f), 1<a<2, te(0,T),
(*DP + kot DFDo(t) = g(t, u(t),v(t)), 1< p<2, tec(0,T),

supplemented with coupled boundary conditions

u(0) = av(T), 1'(0) = a0/ (T),
v(0) = lhu(T), o'(0) = b (T},
where D%, D# denotes the Caputo fractional derivative of order & and B, respec-

tively, ki, Jo € IR, T >0, f,2: [0, 7] x R x R — IR are given continuous func-

tions and a1, a2, by and by are real constants with ajhy # 1, and (19~ T HkT) # 1.

Aljoudi et al. [29] studied a coupled system of Hadamard type sequential

fractional differential equations with coupled strip conditions given by

’

(DY +kD¥NYu(t) = f(t,u(t),v(t), D*(t)), k>0, 1<g<2 O0<a<l,
(DY +kDP=Ho(t) = g(t, u(t), v(t), Du(r)), 1<p<2, 0<5<1,

u(1) =0, ufe) =Iv(y) = % flu(logg)?”l@d& v>0, 1<y<e

o1 =0, o) = 17(g) = %ﬁ)]f(log%)ﬁ‘l@ds, B0, 1<i<e

where D) and () denote the Hadamard fractional derivative and Hadamard frac-
tlonal integral, respectively and f,¢ @ [1,¢] x R® — IR are given continuous

functions.

Motivated by the research going on in this direction, in this paper, we
study existence and uniqueness of solutions for for a new class of system of Hilfer-

Hadamard sequential fractional differential equations

(HDTL\"BI JrkmD‘l‘}_l’ﬁ‘)u(f) = f(t,u(t),v(f), 1<a; <2, te(le, w)

(HDT%”BZ +k2HD‘1‘f‘1lﬁl)y(f) =g(tu(®),v(h), 1<ar <2, te(le,



with two point boundary conditions

u(1) =0, ule) = Ay, (1.2)

(1) =0, vie) = Ay,
where yD%Fi is the Hilfer-Hadamard fractional derivative of order a; € (1,2] and
type B; € [0,1] for i € {1,2}, k1, k2, A1, Az € Ry and f,g: [L,e] x Rx R — R

are given continuous functions.

To the best of our knowledge this is the first paper dealing with system
containing Hilfer-Hadamard fractional derivative of order a; € (1, 2),i = 1,2. For
some recent results on coupled systems of Hilfer-Hadamard fractional derivative of

order a; € (0,1],i = 1,2 we refer to [31), [32] and references cited therein.

The paper is organized as follows. In Section 2, we present some preliminary
concepts of fractional calculus. Section 3 contains the main results. The frst
result, Theorem 2.2, is proved by using Leray-Schauder’s alternative and the second
result of existence and uniqueness, Theorem 2.3, by Banach’s contraction mapping
principle. Iinally, Section 4 provides some examples for the illustration of the main
results. We emphasize that our results are new and contribute significantly to the

topic addressed in this paper.

1.1 Preliminaries

In this section, some basic definitions, lemmas and theorems are mentioned.

Definition 1.1 {Hadamard fractional integral [1]). The Hadamard fractional integral

of order « € Ry for a function f: [g,00) = R is defined as

w—1
WIS f(F) = F(IT) / ’ (log;i:) gdn (t> n) (1.3)

provided the integral exists, where log(.) = log,(.).



Definition 1.2 (Hadamard fractional derivative [1]). The Hadamard fractional deriva-

tive of order « > 0, applied to the function f : [2,00) —= R is defined as
HD f(8) = "(mI}TOf (), n—1<a<n n=[a+1, (1.4)

where " = (t%)" and [«] denotes the integer part of the real number a.
Definition 1.3 (Hilfer-HHadamard fractional derivative [6, 33]). Let 0 < & < 1 and
0 < B <1, feLab). The Hilfer-Hadamard fractional derivative of order « and
type B of f is defined as

(WD) (1) = (1P 5, 17008 1y
= w0 =t B—ap
= ™ DL A,

where HI{SJr and HD.E+ are the Hadamard fractional integral and derivative defined

by (1.3) and (1.4), respectively.

The Hilfer-Hadamard fractional derivative may be viewed as interpolating
the Hadamard fractional derivative. Indeed for B = 0 this derivative reduces to the
Hadamard fractional derivative.

Defmition 1.4 {Hilfer-Hadamard fractional derivative [33]). Let # —1 < & < 1 and
0<B <1, fcLiab) The Hilfer-Hadamard fractional derivative of order « and

type B of [ is defined as
(D)) = (il 6" Il py )
= (I G v = w4 np— ap
= (P 4D (),

where HI,EfB and HDt(I'l are the Hadamard fractional integral and derivative defined

by (1.3} and (1.4), respectively.

We recommend some lemmas and theorems of the Hadamard fractional in-

tegral and derivative by Kilbas et al. [1].



Theorem 1.5. ([1], [34]) Let & > 0, n = [¢] + 1and 0 <a < b < o0. If f € L1(a,b)
and (I 7*F)() € AC][a, b], then

. N B ——n——I (5(11—}—1)(}{1;1-:«];))((1) . £ a—j—1
alf w5 N0 = 1) = 0 e IO (10 1)

where f(t) € ACY = {f : [a,b] — R : 6"V () € ACla,b],6 = td%}

Theorem 1.6. ([33]) Let # > 0,0 < B < 1L,y =a+nf—aB, n—1< v < n,
n=[e+1land 0 <a <b < oo If f € LY(a,b) and (gI'T7f)(£) € ACY[a, b],

then

IS, (aDyEA(E) = wlly (uDLOE) = F(H =Y

Bt (60D (LT )Y a) (
= Iy =)

From this theorem, we notice that if § = 0 the formulae reduces to the

formulate in the Theorem 2.5.

We will use the following well known fixed point theorems on Banach space
for proving the existence and uniqueness of Hilfer-Hadamard fractional differential

systems.

Theorem 1.7 (Leray-Schauder’s alternative [35]). Let T : E — E be a completely
continuous operator (i.e., & continnous map T restricted to any bounded set in E is
compact). Let E(T)—{x € E:x = AT(x),0 < A < 1}. Then, cither the set &(T)
is unbounded, or T has at least one fixed point.

Theorem 1.8. (Banach fixed point theorem [36)). Let X be a Banach space, D C X

closed and F : D —> D a strict contraction, i.e. ||Fx — Fy| < k||x — y|| for some

k€ (0,1) and all &,y € D. Then F has a fixed point in D.

log !

fl

)'r—i—l



CHAPTER 2

MAIN RESULTS

2.1 Existence and uniqueness results

In this section, we prove existence and unigueness of solutions for system of Hilfer-
Hadamard sequential fractional differential equations with boundary conditions
(1.1) and (1.2). The following lemma concerns & linear variant of the system (1.1)
and (1.2).

Lemma 2.1. Let Iy, Ji; € C([1,¢], R). Then, u,v € C([1,¢], R} are solutions of the

system of fractional differential equations:

(DU kDM = 1y (1), 1< <2, £€ [Le],

(2.1)
{(nD{] a.B2 + ko DY lﬁZ)v(t) =hy(t), 1<y <2, tE(le,
supplemented with the boundary conditions (1.2} if and only if
A £
(o) = An(log )ty oy fH s [
1 ¢ t =1 }11(5) e ext-10 (S)
Tiw} - — g T1—1 e 1
i I'{&q) [fl (Iogs) . ds— (log t} /1 (logs) . s
(2.2)
and
tofa
v(t) = Ax(logt)™~ Ty ko | ( [ log £)72~ (b) [ iqb)dSJ
1§

i [ () 1hz<b>ds_ gt [ (g )" 2%

(2.3)



Proof. From the first equation of (2.1), we have
w1, By 2115 _
D u(t) + kD () = I (t), (2.4)
Taking the Hadamard fractional integral of order @1 to both sides of (2.4), we get
nIiuD Mﬁllf(f)JrleI DY M) = HIfi i (8).

By Lemma 2.6, one has

2711
u(t)—w&)gt

et (l00)

( —1)
= plih(t). (2.5)

(log #7172 + ky g I yD ™ Pru ()

From the equation (2.5), by Definition 2.4, we get

2 1 2—71
() - 2 r(?l)l)—(l)(o t)’*"l“_(f}l(lf;:—_u)l()l) ¥R\

= nlfhi(#). (2.6)

24 kigli+u(t)

The equation (2.6) can be written as follows

t f w1
_ 72 m-2 1u(s) 1 t hi(s) ,
u(t) = co(log )1 + ¢y (log Y™ k1/1 : n’s+r(“1)/1 Iogs —~ ds
(2.7}

In a similar way, one can obtain

w—1 .
o) = doflog )"+ s ogtft b 7 Dt i | (1089 126) g,
(2.8)

where cp, ¢y, dp and d; are arbitrary constants. Now, the boundary conditions (1.2)

together with (2.7), (2.8) yield

t(s a1y (s
(1) = cp(log 1)1~ 1+W—k1fl 'E ml)f ( ) ll()d _0,

o(1) = do(log 1) + Tk /l—ds+ lo )“2 lhz()d =0
= do(log (logH)2 2~ %) s Tw) i \ 8% =
(2.9)




from which we have ¢; = 0 and d7 = 0. Equations (2.9) can be written as

t f &1—1
_ _— u(s) 1 t Ii(s)
1(B) = cpllog M1 — &y /; s+ Fo f1 logs) s (210)

and

t £\ 1y (s)
) ) (logg) szs. (2.11)

Next, the boundary conditions (1.2) together with (2.10), (2.11) yield

u(e) = colloge)n™1 — ky f "(S)d S+ 1 /( og)" hl(s)d - Ay,
6 )

v(t) = do(log £)"2~1 — kg /t @ds +

fr—1 hz d —Az,

v(e) = dolloge) ! — k f ”(S)d +

e
T( ST
from which we have

-1
cp = A1+k1/ u(ss)db— “1)/ HI kls( )db,

1“2 3 hz(s)

d0=A2+k2/ (Ss)d _1“(«)

Substituting the values of ¢y, c1,dg, and dq in (2.7) and (2.8}, we get the integral
equations (2.2) and (2.3). The converse followed by direct computation. This

completes the proof. O

Let us introduce the Banach space X = C([1,¢]) endowed with the norm
defined by |[u|| := max;c(y. [ (£)}. Thus, the product space X x X equipped with
the norm || (1, )| = ||| + [|v|| is 2 Banach space. In view of Lemma 3.1, we define

an operator 7 1 X x X — X x X by
T (u,v){t) = (T1 (1, 0)(8), T2(w, v) (1)), (2.12)

where

Ti(u,0)(£) = Aj(log )1 + &y [(log pm-1 /e E[Elds — ft @ds]

f n—1 s,
+ﬁ[ [1 (1085) A u(s) v(s)) o
~ (log£yn~1 /1‘-’ (1og g)“l—l fls: u(ss),v(s)) ds], (2.13)
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and

Talu,v)(t) = Aplog )1 + Ky {(logt)'h‘l ]1 culs) 4 fl‘ %)_ ds}

5

— (log )72~} fle (log S)“z—l M(w?f—@ds] . (2.14)

We need the following hypotheses in the sequel:

(Hi) Assume that there exist real constants my;,n; > 0,{i = 1,2} and mgy > 0,
ng > 0, such that forall f € [1,e], 55 € R, i =1,2,
|f(t21, x0)| < g mgfxg| -+ g x|,

|g(t, x1, x2)| < ng+ npfxy| + na2|xa|.

(Hy) There exist positive constants L, L, such that for all £ € [1,€], u;,v; € R,
i=1,2,

(] uq,002) — f{tv1,0) | < L(|ln —vq] + 2 — va]),

lg (£, 101, u2) — g(,v1,v2)| < L{bug — vq| + |1g — va]).

2.2 Existence result via Leray-Schauder alternative

In the first theorem, we prove an existence result based on Leray-Schauder alter-

native.

Theoremn 2.2. Assume that (Hp) holds. In addition it is assumed that max{Q1, Q2} <

T where

i o] Fi13 12
= =2 .
& z(kl P+ Tt 1))’ oz (k2 T+ T T+ 1))

Then, the system (1.1}-(1.2) has at least one solution on [1,¢].
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Proof. We will use Leray-Schauder alternative to prove that 7, defined by (2.12),

has a fixed point. We divide the proof into two steps.

Step I : We show that the operator 7 : X x X — X x X, defined by (2.12),

is completely continuous.

First we show that 7 is continuous. Let {(lln,vu)} be a sequence such that

(tty,vy) — (1,v) in X x X. Then for each £ € [1,¢], we have

[T1(ten, v} (8) — T1(ue, v)(t)]

<k [|(logr)“ﬂ—1|

[ ) ) | [ ) =) ]
- 1 5

(log )al Y (f (s, 1n (), vu(s)) _f(s’u(s)’v(s)))dsl

4 L[
T(g)
+[(log )11

< ki [f |u” f 14, (5) u(a)|d]
a—1 \ N =AW . (. 3
i (log: 160508 s ) oD
)i f: (log g)m—l 1f(s, 1 (S)IUH(S))S_ e ”(S)’U(S))lds].

/ (IOg ot otals). () = Flonte) el ”

Since f is continuous, we get
|f (s, 100(8), vn(8)) — fs,u{s), v(s)] —— 0 as (un,vy) — (1,0}
Then
| T, vn) — Ti(,0)|| — 0 as (uy,v) — (1,0). (2.15)
In the same way, we obtain
| 72(ttn, v0) — T2(1, )| — 0 as  (uy,vn) — (10,0). (2.16}

It follows from (2.15) and (2.16) that |7 (sn, vu) = T (11, 0)|| — 0 as  (uy,vy) —

, 7). Hence 7 is continuous.
u,v). T t
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Now we show that 7 is compact. Let QO C X X X be hounded. Then, there
exists positive constants Ly and Ly such that | f(#, u(t), v(£))| < Ly, |g(t, u(t),v(5)}| <
Ly, Y{(u,v) € O. Let (4,v) € Q. Then, there exists M such that ||(u,v)|] =
ull + o]l < M, ¥(i,v) € Q0. We have

|Ta(n,0)(1)]

< Ar+k [f'lfg—)—ldwf;'ﬁ%sﬂds}
e o) eehnte,
[ g2y o0l
1 5 S

¢ Mg [HE)]pt maxseps (s
ﬂ - ds+ ﬁ ds

LA+ K .

L t g ¢ ey 1 g
+———_F(nc1)[/1 (1°g;) <+ i (log) ‘;J

L1 -
< At kl”””[1 + (loge)] W F(ﬂ(l T 1) [(1083) + 1]!

which on taking the norm for t € [1,¢], yields

171 Ctn, on) || < A1 42 [klllif“ + Wf‘:—_“ﬁ] .

In the same way, we obtain

173l < Az +2] kool + ]

It follows that

L 1
|7 (u,v)|| < A1+A2+2[k1|lu[| + kg ||v|| + 1 2 ]

T +1) | Tl +1)

Ly Ly
< A+ Ay + 2| M(k .
S A1t Ap b [ (1+k2)+r(a1+1)+r(n2+1)]

This mean that there is P = Ay + A> + 2 {M(kl +kz) + T rc]I1+1) + I‘(«Zil)] such
that || 7 (1, v}|| < P. Hence 7 is uniformly bounded.
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Finally we show that 7 is equicontinuous. Let £,#y € [1,e| with fp < £.

Then we have

|T1(0,v) (£} — T1 (1, v) (£p)|

<Aq{(log )T — (log 1) + Ky [((logf)"”‘l — (log fo)™ 1)

f s [ 2] v g | [ ((mg Sf)“l_l ) (1°g %))1)

|f(s, u(ss),v(s))|ﬂ,s+ft: (log t)“l_l |f (s, IL(Z),U(S))|d3+ ((log £)7~1

s

— (log )11~ 1) ]1'8 (logg)m—l If(S,u(s),v(s))ldS]

S

< Ag[(log )71 — (logto) T 7] -+ Ky [Il"ll((l‘?’ng’“1 ~ (log to)"™")

Ly fo 2 -1 ds to to m-l ds
#ltogt —togio)| + | [ (log ) T [0 (log )" 2

f gl e 1 de
+ (logt) %;Lli—i—((loic;t)'rf'1~(logfg)'”“l)/1 (logg)“1 d—bJ

fy 5 5

< Ayf(log )T — (log ko)™ Y -+ oM [((log Y - (log tg)'“‘l) + (logt

< logt) | s | (0B ™ = (log 1)) + (log )™ — (log o))

(2.17)
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and

| T2 (1,0} (2) — T2(u, 0} (fo)]

< As[(log )71 — (log #0)" 1] + ko [((log 1171 — (log tp)727 1) /18 %S)lds

et () () )

HOIORIO) PR (logf)‘“‘l lg(s, 1(s), v
5 ty 5 &

+ ((og ™" — (ogra)n™) [ (1og £)" ™ 1802

< Ag[(log 1) 1 - (log fo) ] + k2 {llvll((log 17~ (log o) ™)

L by £\ 1 ds to o\ 2 ds

+ [[o]|(log £ —1081‘0)] ) [fl (lﬂg g) P A (108 g) "
t £\ 2 g e exwz—1ds

gt Y21 T2-1 ¢ e

+ (log ) iy + ((log£)* (log tg)7? )fl (logs) ]

108 ;
< Asl(log )21 — (log tg)"2 7] -+ koM [((log g2t
— (log £p)7271) + (log  — log k) | -+ \_49 ((log £}7271 — (log tg)72™4)
Flap +1)
+ ((logt)® — (log tg)“?)}. (2.18)
Take t — {p from (2.17) and (2.18), we have

|71 (0, v)(£) — T1(,v) (Fo)| —> 0 and | (i, 0)(#) — T2 (11, v)(}0)] — O as ¥ — tp.

Hence 7 is equicontinuous. By Arzeld-Ascoli theorem, we get that 7 () is com-

pact, that is 7 is compact on (). Therefore 7 is completely continuous.

Step II : We show that the set €={(x,v) € X x X | (1,v) = AT (i,v), 0 <
A < 1} is bounded.

Let (11, v) € €, then (i,v) = AT (4, v). For any t € [1,¢], we have u(f) =
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ATi(u,v)(t), v(t) = AT2(s, v)(#). Then, in view of the assumption (H; ), we obtain

[u(B)] < |Ta(ue, v)(£)]

e AT
9 |f(5,-;l(s),v(s))|ds N fﬂ (log E)n:lul £ (s, u(s),v(s))|d5]
5 1 5 p

4 f
T [ A e e

I'{x1)
f £\ g ¢ e\®1—1ds
* M (I"gg) A H ?}

(mg + myf|u|| + mzllv])
F(nq + 1)

< Ay k| [L+ (og )] + ((loge)*s +1],

which on taking maximum for { € [1, €], yields

el < Ar -+ 2Ky ]| + 2 (’”0 i ’;Eﬂi‘ﬂj)’@”””). (2.19)
In a similar manner, one can obtain
ol < Az + 2kjull + 2("0 Lol £ el (2.20)
From (2.19) and (2.20), we have
[l Gee o)l = Juel] - [l
<A1+ A2 r(jlmi 1) r(az;li 1)
+2(k+ I‘(mr;l-li- TG r(a:i—y ) el 2k + r(a;ni 7t I‘(ac:2+ 1)) o]
At Ayt o e max{Qn Q2 )
and consequently
Ay + Ay + 2mp 21y

I'(ey + 1) + I{az +1)
1 —max{Q, Q2} '

Therefore the set € is bounded. By Theorem 2.7, we get that the operator 7 has

G, )] <

al least one fixed point. Therefore, the problem (1.1)-(1.2) has at least one solution

on [1,¢el. W
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2.3 Existence and uniqueness result via Banacli’s fixed point theo-

rennl

Next, we prove an existence and uniqueness result based on Banach’s contraction

mapping principle.

Theorem 2.3. Assume that (H) holds. Then the system (1.1)-(1.2) has a unique

solution on [1,e], provided that

L L
o= 2(k1 ot sy b 1)) <1. (2.21)

Proof. We will use Banach fixed point theorem to prove that 7, defined by (2.12),
has a unique fixed point. Fixing N1 = max,ey g 1f(£0, 0)| < o0, Np = maX;e(q o |g(t,0,0}]|

< o0 and using the assumption (Hp), we obtain

(), ()] = |F{Eu(E), 0(8)) = f(£,0,0) + f(£0,0)] < L(||l| + [lol]) + Ny,

|g(t, u(t), o)) = |g(F u(t), v(t)) — g(£,0,0) +g(£ 0, 0)| < L{l[u]l + [[v]|) + Na.
(2.22)

We choose

N1 A N2 )
|\, T(e1+1) " T(az+1)

> - P
1= 2(Jy +ho + e F(n:2+1))

A1+A2+2(

We divide the proof into two steps.

Step I : First we show that 7(By}) C By, where B, = {(u,v) ¢ X x X:
N o)l < 7).
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Let (1,v) € By. Then, using {2.22), we obtain

1

MM oy, [ (105) W6l

< Ai+k

5 5

L([Jze]l -+ floll) + Ny f NOlgs e enm—lgs
T ) JACHERSYECS ';]

2
< —(Lr
<A; + 2k + NCES) (Lr+ Ny),

£ ZOIP [/ j(s)] ds]
1 5 1

which on taking the norm for f € [1,¢], yields

2
7o)l < Ay + 2k + m(b‘-}- Ny).

In the same way, one has

”75(1{, U) ” < Az + Zkor -+ ) (I.?‘ i NZ)

.z
I’(Kz +1

Then we have

7 (w0}l <A1+ Ag+2(k1 + ka)r+ Z(F(a1L+ o/ 4 r(azL+ 1))r

Ny Ny
< r.
+2(F(a1+1) +F(a2+1)) 24

Thus || 7 (1, 0)|| <r, thatis, 7 (1, v) € By. Hence T (B,) C B;.

Step 1 : We show that the operator 7 is a contraction,
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Let (1, v7), (111, v1) € X x X. Then, for auy f € [1,¢], we have

|71 (12, v2) () — Ti(u1,v1)(8)
<k [f: |”2(S);Il1(s)|ds+f]f |ua(s) —Ill(S)IdS]

8

U7 (100 DN 1 G, 12(8), wa(s)) = s, 101(s), oa(s))]
+ gyl (o55) : "

n h/: (log g)“l—l |f(5, Ilz(S)f UZ(S)) ';f(S, i (S)r Ul(S))lds]

<2kq |12 — us| + ulf + oo — v1]|)

L(”u —
T(ag + 1) 2

2L
L2k (||t - 14| + oo — o1]]) + = (|J1z — 11 || + v —v1]l),
<2y =l + o =oul) + 1 25l = ]+ om = )
which on taking the norm for ¢ € [1,¢|, yields
75z, 02) T Cen, o)) < (ks + ) (o [ + oz = wall). (2.23)
- F(a1 —+ 1)
Similarly,
|72 12, v2) — Ta(ag, v1)]| < (Zkz + L) (g — ]| + [Joz —v1]]). (2.24)
B Tlag +1)

It follows from (2.23) and (2.24) that ||'T(uz,v2) — T {ug,v1)lf < p(lluz —mf +
lloa — v1||), which, in view of (2.21), shows that the operator 7 is a contraction.
From Steps I and II, by Theorem 2.8, we get that the operator T has a unique
fixed point. Therefore the system (1.1)-(1.2) has a unique solution on [1,¢]. O

2.4 Examples

In this section, we give two examples to illustrate our main results.

Example 2.4. Consider the following system

TS TR ey . [(B)] [v(#)] 1
(D4 GuD4 )10 = gy e + om + o) * 36 £
$ _ sin(nu(t)) 1 lo(t)]

, te[Lel,
807t 15v/t+8  100(1+ [o(#)]) (14
1

(2.25)
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3 1 1 1 1
Here g = =, 0 =5 131—5, ﬁz—'z", A1—§, Azﬁzl‘f k1 =
11
6 2T 8

We see that (Hi) holds, because
Flu o) S gt geglul 4 gslol and [glbu0)] € g+ golul + 1010l
fltu o)l < 42 256’ and g =zt 100

with

1

My = iy = Hg = -ﬁ.

S 1 1 1
16 256 90" " a5’ 80
In addition, O =~ 0.3580 < 1, Oy & 0.2818 < 1 and max{(Qy, Uy } =~ 0.6420. Thus,

1
g = —, M=

the hypotheses of Theorem 2.2 are satished. Therefore, by Theorem 2.2, the system
(2.25) has at least one solution on [1,¢].

Example 2.5. Consider the following Hilfer-Tladamard system

( (o084 £ Lpb iy = ()] ) [v(8)] 1
(HD Ml )“(t)*(l“"gﬂ(mwlu(tn Tt pen T v te(Le]
bl L sin(u() 7 [o(?)
(wD¥? + 5uDH o) = G "HEe s oy TS
11) =0, ()=, v(1) =0, v(e) = 3.
(2.26)
Here ;t~3 —1 —lA—lA-—lk—-
ere iy = —, 2’—'2': ]B]_'_':'Z't 52_21 1_3r 2‘“51 1=
1!
70 T

Note that {H;} holds, because
1
LF(t 1y, 12) — f(E,v1,02)| < 5 (i —o1| + |12 — v2|)

and

1
lg(t, uy, u2) — g(t, vy, v2)] < E(lul —vy| + |ug - val),

with L = lo L= 4i In addition,
L + L
I{e; +1) T{ap+1)

o= 2(k1 + ko o+ ) ~ 0580854 < 1.
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Thus, all the conditions of Theorem 2.3 are satisfied. Therefore, by Theorem 2.3,

the system (2.26) has a unique solution on [1,e].
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CHAPTER 3

CONCLUSION

In this paper, we studied existence and uniqueness of solutions for system of Hilfer-
Hadamard sequential fractional differential equations with two-point boundary con-
ditions. The existence result is proved by using Leray-Schauder alternative while the
Banach contraction mapping principle is used to obtain the existence and unique-
ness result. Examples illustrating the obtained results are also presented. Our
results on system of Hilfer-Hadamard fractional derivative are new in the given
configuration. We emphasize that we used Hilfer-Hadamard derivative of order
1< a; <2,i=1,2.In the context of sequential fractional differential equations
with two-point boundary conditions, the present paper significantly contribute to
the existing literature on the topic. The problems studied in this paper can be

extended to cover other kinds of boundary conditions.
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