ABBREVIATIONS

ANOVA analysis of variance

°C degree Celsius

X fold

g gram

HPLC high performance liquid chromatography

hr hour

HaCaT human keratinocyte primary cell

MML-1 human melanocyte cell line

liter

ı micro

μg microgram

μg/ml microgram per milliliter

μl micro liter

μm micrometer

mg milligram

mg/ml milligram per milliliter

ml milliliter

w/v weight by volume

%w/w percent weight by weight

Psi pounds per square inch

min minute

nm nanometer

N normality

SD standard deviation

TEM transmission electron microscope

UV-VIS ultraviolet-visible

LIST OF CONTENTS

Cr	Chapter p		
	i	INTRODUCTION	agrassion.
	11	REVIEWS OF RELATED LITERATURE AND RESEARCH	4
		Alpha Hydroxy Acids	4
		Tamarind	10
		Skin Structure	13
		Permeability Pathway	20
		Liposome	22
		Chitosan	29
		In vitro evaluation of liposome	30
	******	RESEARCH METHODOLOGY	32
		Materials	32
		Apparatus	33
		The Experimental Methods	34
		Preparation of tamarind pulp's extract	34
		Quantification of tartaric acid in the extract	34
		Liposome preparation	35
		Liposome Characterization	39
		Entrapment efficiency	40
		Determination of chitosan reacted with liposome	40
		In vitro release of tartaric acid	41
		In vitro efficacy of tamarind's AHAs on keratinocyte	
		proliferation	41
		In vitro efficacy of tamarind's AHAs on melanogenesis	
		inhibitory	43

LIST OF CONTENTS (CONT.)

Chapter	Page
IV RESULTS	46
The characteristics of tamarind fruit pulp's crude extract	46
The content of tartaric acid contained in tamarind fruit pulp's	
extract	47
The preparation of liposomes loaded tamarind fruit pulp's	
extract	48
Liposome characterization	49
Entrapment efficiency	50
TEM micrograph of chitosan coated liposome	51
The encapsulation efficiency of chitosan coated liposmes	53
Zeta potential of chitosan coated liposomes	55
Coating efficiency of liposomes by chitosan	57
In vitro release of tartaric acid	58
In vitro efficacy of tamarind's AHAs on keratinocyte proliferations	62
In vitro efficacy of tamarind's AHAs on melanogenesis inhibition	66
V DISCUSSION	69
VI CONCLUSION	78
REFERENCES	81
APPENDIX	86

LIST OF TABLES

Γa	able		Page
	1	Concentration and pH of AHA and AKA in water	5
	2	Composition of tamarind per 100 g	12
	3	Composition of two common phosphatidylcoline	24
	4	Compositions of liposomes containing tamarind pulp's extract	36
	5	Coded units of 3 ³ Factorial design for preparation of liposomes	
		coated chitosan	37
	6	Different parameters contained in each batch	38
	7	The optimum conditions in liposomes preparation	48
	8	Linear correlation values obtained from different kinetic models	61
	9	Mean peak area of tartaric acid standard determined by HPLC which	
		varied concentration to defined calibration curve	88
	10	Mean peak area of 10 mg/ml of tamarind fruit pulp's extract	
		determined by HPLC which calculated the tartaric acid content	
		from the calibration curve	88
	11	Mean peak area of tartaric acid in supernatant of liposomes after	
		centrifugation. The value was calculated to encapsulation	
		efficiency of liposome	89
	12	Mean peak area of tartaric acid in supernatant of chitosan coated	
		liposomes after centrifugation. The value was calculated to	
		encapsulation efficiency of chitosan coated liposomes	91
	13	Absorbance of chitosan reacted with 50 ug/ml congo red determined	
		by UV spectrophotometer at 575 nm	94
	14	Mean chitosan reacted with liposome calculated from chitosan	
		concentration in supernatant of chitosan coated liposomes after	
		centrifugation	95

LIST OF TABLES (CONT.)

Fable		Page
15	Cumulative tartaric acid in liposomes formulation with initial	
	tartaric acid content 1.37 mg/ml release from dialysis membrane	
	detected by HPLC at 215 nm	98
16	Cumulative tartaric acid in 0.1%chitosan coated liposomes	
	formulation with initial tartaric acid content 1.37 mg/ml release	
	from dialysis membrane detected by HPLC at 215 nm	99
17	Cumulative tartaric acid in 0.5%chitosan coated liposomes	
	formulation with initial tartaric acid content 1.37 mg/ml release	
	from dialysis membrane detected by HPLC at 215 nm	100
18	Cumulative tartaric acid in 0.5%chitosan coated liposomes	
	formulation with initial tartaric acid content 1.37 mg/ml release	
	from dialysis membrane detected by HPLC at 215 nm	101
19	Absorbance of XTT assay of tamarind crude extract at different	
	tartaric acid concentration effected on keratinocyte proliferation	
	at 490 nm	103
20	Absorbance of XTT assay of various formulation effected on	
	Keratinocyte proliferation at 490 nm	104
21	Cell number of MML-1 human melanocyte per time (day) determined	
	by trypan blue method	105
22	Absorbance determination of melanin content of MML-1 human	
	melanocyte after treated with various formulations at 490 nm	106

LIST OF FIGURES

Fi	igure		
	1	Structure of alpha hydroxy acids	4
	2	Tamarind	10
	3	Skin structure	13
	4	Epidermis structure	14
	5	Melanocyte structure	17
	6	Distribution of melanin in the epidermis	18
	7	Transcellular and intercellular route	21
	8	Follicular route	21
	9	Lipid bilayer structure and types of liposomes	23
	10	Structure of phospholipids	24
	11	Spontaneous arrangement of liposome	25
		Flowsheet for preparing drug or cosmetic carrying liposomes	27
	13	Structure of Chitosan	29
	14	Dialysis Process	31
	15	Tamarind fruit pulp's crude extract	46
	16	HPLC chromatogram of 10 mg/ml tartaric acid standard at 215 nm	47
	17	HPLC chromatogram of tamarind fruit pulp's crude extract at 215 nm	47
	18	Calibration curve of tartaric acid at 215 nm determined by HPLC	48
	19	Optical micrograph of unextruded liposome at magnification of	
		1000X	49
	20	Optical micrograph of extruded liposome at magnification of	
		1000X	49
	21	Effect of oil and water volume ratio on liposome encapsulation	
		efficiency	50
	22	Effect of lipoid and cholesterol molar ratio on liposome	
		encapsulation efficiency	51

LIST OF FIGURES (CONT.)

I'' I	gure	;	Pag
	23	TEM micrograph of uncoated liposome at magnification of 13500X	52
	24	TEM micrograph of chitosan coated liposome at magnification of	
		37000X	52
	25	Encapsulation efficiency of chitosan coated liposomes varied by	
		source of chitosan	53
	26	Encapsulation efficiency of chitosan coated liposomes varied by	
		concentration of chitosan	54
	27	Encapsulation efficiency of chitosan coated liposomes varied by	
		amount of chitosan solution	54
	28	Zeta potential of chitosan coated liposomes varied by source of	
		chitosan	55
	29	Zeta potential of chitosan coated liposomes varied by	
		concentration of chitosan	56
	30	Zeta potential of chitosan coated liposomes varied by amount of	
		chitosan solution	56
	31	Influence of chitosan concentration on coating efficiency of	
		chitosan coated liposomes	57
	32	Tartaric acid release profiles of liposomes;	
		The percentage of cumulative tartaric acid released was plotted	
		against time	58
	33	Tartaric acid release profiles of liposomes;	
		The log of cumulative tartaric acid released was plotted against	
		time	59
	34	Tartaric acid release profiles of liposomes;	
		The percentage of cumulative tartaric acid released was plotted	
		against square root of time	60

LIST OF FIGURES (CONT.)

= í	gure	3	Pag
	35	Morphology of HaCaT human keratinocyte cell of day 2 from	
		optical microscope at the magnification of 200X	62
	36	Proliferation of cell after treated with tamarind fruit pulp's extract	
		in various concentration of tartaric acid	63
	37	Proliferation of cell after treated with tamarind fruit pulp's extract	
		in various formulation	64
	38	Morphology of HaCaT human keratinocyte cell after treated with	
		1000 ug/ml tartaric acid loaded in liposomes from optical	
		microscope at the magnification of 200X	65
	39	Growth Curve of mml-1 Human Melanoma Cell Line	66
	40	Morphology of MML-1 human melanocyte	67
	41	The melanin content of MML-1 melanocyte cell after treated with	
		tamarind fruit pulp's extract	68
	42	The calibration curve of chitosan reacted with 50 ug/ml congo red	
		determined by UV spectrophotometer at 575 nm	94