CHAPTER i

THEORY AND LITERATURE REVIEW

This chapter considers the sun’s position and Genetic Algorithm (GA). Finally,
the design of the experiment and the statistical analysis of the data including factorial
designs, the 2" factorial design, 2" fractional factorial Designs, 3" factorial design,
fractional replication of 3" factorial design and analysis of variance (ANOVA) is

described.

1. The Sun’s Position

In order to understand how to collect energy from the sun, one must first be able
to predict the focation of the sun relative to the collection device. In this part describes
the necessary equations by use unique vector approach. This approach will be used in
this work to develop the equations for the sun’s position relative to a tracking solar

collector. (William & Michael, 2001)

1.1 The Hour Angle (@)

To describe the earih’s rotation about its polar axis, the concept of the hour
angle { @ ) is used. As shown in Figure 1, the hour angle is the angular distance between
the meridian of the observer and the meridian whose plane contains the sun (-180, 180
degrees). The hour angle is zero at solar noon {(when the sun reaches its highest point in
the sky). At this time the sun is said to be ‘due south’ (or due north’, in the Southern
Hemisphere) since the meridian plan of the observer contains the sun. The hour angle
increases by 15 degrees every hour.

Solar time is based on the 24-hour clock, with 12:00 as the time that the sun
is exactly due south. The concept of solar time is used in predicting the direction of

sunrays relative to appoint on the earth. Solar time is location (longitude) dependent and



is generally different from lecal clock time, which is defined by politically define time
zones and other approximations. An expression 1o calculate the hour angle from solar

time is

@ =15 (1 -12) {degrees) )

where 1 is solar time in hours
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Figure 1 The hour angle (@) (William & Michael, 2001)



1.2 Equation of Time (EOT)

The difference between mean solar time and solar time on a given date is
shown in Figure 2. This difference is called equation of time (EQT). Since solar time is
based on the sun being due south at 12:00 noon on any specific day, the accumulated
difference between mean solar time and true solar time can approach 17 minutes either
ahead of or behind the mean, with an annual cycle.

The level of accuracy required in determining the equation of time will
depend on whether the designer is doing system performance or developing tracking
equations. An approximation for calculating the equation of time in minutes is given by

Woolf (1968) and is accurate to within about 30 seconds during daylight hours.

EOT =0.258 cos x - 7.416 sin x — 3.648 cos 2x — 9.228 sin 2x  (minutes)  (2)

where the angle x is defined as a function of the day number N

_360(n-1)
365242 (degrees) (3)

where the day number N is the number of days since January 1. Table 1 has been

prepared as an aid in rapid determination of values of N from calendar dates.

Figure 2 The Equation of Time (EOT) (William & Michael, 2001)



Table 1 Date-to-Day Number Conversion {William & Michael, 2001)

Januaw 5 - e
Feb{uary d %31

Varch T gis0 | Add1fleapyear
April d+ 90 Add 1 if leap yéar
ay G120 | Add1ileap year
June o’l~@53 Add 1 if leap year
July } d+ 181 ) Add 1 if leap year
WAugust * I Add 1 if leap year
September d + 243 Add 1 if leap year
October d+ 273 Add 1 if leap year
November d -+ 304 Add 1 if leap year-
December J | d+334 Add 1 if leap year

Days of Special Solar Interest

Solar Event ] Date Day Number, N
Vernal equinox March 21 80
Summer solstice June 21§ 172
Autumnal equinox September 23 266
Winter solstice December 21 355
Note .

1. dis the day of the month

2. Leap years are 2000, 2004, 2008 etc.

3. Solstice and equinox dates may vary by a day or two. Also, add 1 to the

solstice and equinox day number for leap years.




1.3 Time Conversion
The conversion between solar time and clock time requires knowledge of the
location, the day of the year, and the local standards to which local clocks are set
Conversion between solar time, t, and local clock time (LCT) (in 24-hour rather than AM/

PM format) takes the form

EOT

LCT =t - +LC (hours) (4)

where EOT is the eguation of time in minutes and LC is a longitude correction defined as

follows:

Jongitude of standard]

(local longitude) —-[ - -
time zone meridian

LC= T3 {hours) (5

1.4 The Declination Angle (&)
The plane that includes the earth 's equator is called the equatorial plane. \f
a line is drawn between the center of the earth and the sun, the angle between this line
and the earth's equatorial plane is called the declination angle (&), as depicted in
Figure 3.
Accurate knowledge of the declination angile is important in navigation and

astronomy. One such approximation for the declination angle is

sin & = 0.39795c05[0.98563(N-173)] ' (6)

where the argument of the cosine here is in degrees and N is the day number defined for

Equation (3)




,#_P;,ola:is-
¥
'_""'"'"M""”"”’"'""_"——“““"‘~— Suin Ray
e 1 LD S0ITE
Dichination
angle, &
{ Equiatorial
plage’
/ Sun Ray
S
Varidtion of the déclination arigle
23.8%" F— o ittoim
1. W " Bummer o
= i Verfigh -solstice: Autimnat
) - Baquinox s B equinox
% 3
= .
20007 ] J
5y pec.
3
i) LY
N Winter
-sofstice
~23.45" = .

Figure 3 The Declination Angle (& }. The Earth is Shown in the Summer Solstice
Position When & = +23.45 Degrees. (William & Michael, 2001)

1.5 Latitude Angle (¢)

The latitude(¢ ) is the angle between a line drawn from a point on the earth's
surface to the center of the earth, and the earth’s equatorial plane. The intersection of the
equatorial plane with the surface of the earth forms the squalor and is designated as 0
degrees latitude. The earth’s axis of rotation intersects the earth’s surface at 90 degrees
jatitude (North Pole) and -90 degrees latitude (South Pole). Any location on the surface of
the earth then can be defined by the intersection of a longitude angle and a latitude

angle.



1.6 Solar Altitude ( @), Zenith (@), and Azimuth Angles (A)
The solar altitude angle (& ) is defined as the angle between the central ray
from the sun, and a horizontal plane containing the observer, as shown in figure 4. As an
alternative, the sun's altitude may be described in terms of the solar zenith angle (&)

which is simply the complement of the solar altitude angle or
g,= 9 - a (degrees) (7}

The other angle defining the position of the sun is the solar azimuth angle
{A). It is the angle, measured clockwise on the horizontal plane, from the north-pointing
coordinate axis to the projection of the sun's central ray.

There are other conventions for the solar azimuth angle in use in the solar
literature. One of the more common conventions is to measure the azimuth angle from
the south-pointing coordinate rather than from the north-pointing coordinate. Another is
to consider the counterclockwise direction positive rather than clo.ckwise. The information
in Table 2 will be an aid in recognizing these differences when necessary.

It is of the greatest importance in solar energy systems design, to be able to
calculate the solar altitude and azimuth angles at any location on the earth. This can be

done using the three angles: latitude (@), hour angle (@), and declination (J).

a = sin (sin & sin ¢ +cosdcosmcose) (degrees) {8)

4f sind - i
A cos 1(811‘1 €08 ¢ — cos & cos wsin ¢ ) (degrees) ©)

COosax

where if ; sinw >0 then A= 360° - A

otherwise: sinw < tan & and A=A
tang



Figure 4 Earth Surface Coordinate System for Observer at Q.

Table 2 Sign Convention for Important Angles (William & Michael, 2001)

2 {zemith)

{(William & Michael, 2001}

o o {east)

L i (niorth)

10

Positive
Title Symbol Zero Range
Direction
Earth-Sun Angles
L atitude Eguator Northern hemisphere + 9(}°
Declination S Equinox Summer +93.45°
Hour Angle i Noon afternoon +180°
Observer-Sun Angles
Sun Alfitude o Horizontal upward 0090
Sun Zenith Vertical Toward horizon 01090
Sun Azimuth A Due north clockwise 010 360
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2. Genetic Algorithm (GA)

Many optimization problems from the industrial engineering worid, in particular
the manufacturing systems, are very complex in nature and quite hard 10 soive by
conventional optimization techniques. Since the 1960s, there has been an increasing
interest in imitating living beings to solve such kinds of hard optimization problems.
Simulating the natural evolutionary process of human beings resuits in stochastic
optimization techniques called evolutionary algorithms, which can often outperform
conventional optimization methods when applied to difficult real-world problems. Genetic
algorithms are perhaps the most widely known type of evolutionary algorithms today.

Recently, genetic algorithms have received considerable atiention regarding
their potential as an optimization technique for complex problems and have been
successfully applied in the area of industrial engineering. The well-known applications
include scheduling and sequencing, reliability design, vehicle routing and scheduling,
group technology, facility layout and location, transportation, and many others. {Gen and

Cheng, 1997)

2.1 General Structure of Genetic Algorithms

The usual form of genetic algorithm was described by Goldberg. Genetic
algorithms are stochastic search techniques based on the mechanism of natural
selection and natural genetics. Genetic algorithms, differing from conventional search
technigues, start with an initial set of random solutions called population. Each individual
in the poputation is called a chromosome, representing a solution to the problem at
hand. A chromosome is a string of symbols; it is usually, but not necessarily, a binary bit
string. The chromosomes evolve through successive iterations, called generations.
During each generation, the chromosomes are evaluated, using some measures of
fitness. To create the next generation, new chromosomes, calted offspring, are formed
by either {a) merging two chromosomes from current generation using a crossover
operator or (b) modifying a chromosome using a mutation operator. A new generation is

formed by (a) selecting, according to the fitness valued, some of the parents and



12

offspring and (b) rejecting others so as to keep the population size constant. Fitter
chromosomes have higher probabilities of being selected. After several generations, the
algorithms converge to the best chromosome, which hopefully represents the optimum or
suboptimal solution to the problem. Let P{t) and C(t) be parents and offspring in current
generation t; the general structure of genetic algorithms {see Figure 5) is described as

follows:

Crossevber

1310010 I0Fg
Y110 11y

5 4

 Chromosimss,

Rl
L 0

Figure 5 The Simple Structure of Genetic Algorithm {Gen and Cheng, 1997)
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" Procedure: Genetic Algorithms
Begin

t4—0:
initialize P{1);
Evaluate F(1);
While (not termination condition) do
recombine P() 1o vield C(t};
evaluate C(t};
select P(t+1) from £(t) and C{1);
ta— 1+ 1
end

end

2.2 Operations in Genetic Algorithms

It is a modified version of Grefenstette and Baker's description. Usually,
inftialization is assumed to be random. Recombination typically involves crossover and
mutation to yield offspring. In fact, there are only two kinds of operations in genetic
algorithms:

2.2.1  Genetic operations; crossover and mutation

2.2.2 Evolution operation: selection
The genetic operations mimic the process of heredity of genes to create new offspring at
each generation. The evolution operation mimics the process of Darwinian evolution to
create populations from generation to generation. This description differs from the
paradigm given by Holland, where selection is made {o obtain parents for recombination.

Crossover is the main genetic operator. It operates on two chromosomes at
a time and generates offspring by combining both chromosomes’ features. A simple way
to achieve crossover would be to choose a random cut-point and generate the oifspring
by combining the segment of one parent to the left of the cut-point with the segment of

the other parent to the right of the cut-point.
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This method works well the bit string representation. The performance of
genetic aigorithms depends, to a great extent, on the performance of the crossover

operator used.

Chromosome 1

| Offspring 1

Chromosome 2 --> Offspring 2 |11 01

Figure 6 Crossover Operation for Chromosomes with Binary String.

The crossover rate (denoted by Pc) is defined ad the ratio of the number of
offspring produced in each generation to the population size (usually denoted by
pop_size). This ratio controls the expected number Pc X pop_size of chromoscmes to
undergo the crossover operation. A higher crossover rate aliows exploration of more of
the solution space and reduces the chances of settling for a false optimum; but if this
rate is too high, it results in the wastage of a lot of computation time in exploring
unpromising regions of the solution space.

Mutation is a background operator witch produces spontaneous random
changes in various chromosomes. A simple way to achieve mutation would be to alter
one or more genes. In genetic algorithms, mutation serves the crucial role of either (a)
replacing the genes lost from the population during the selection process $o that they
can be tried in a new context or (b) providing the genes that were not present in the

initial population.

Offspring 1

Mutated offspring 1 1

Figure 7 Mutation Operation for Chromosomes with Binary String.
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The mutation rate (denoted by Pm) is defined as the percentage of the total
number of genes in the population. The mutation rate controls the rate at which new
genes are introduced into the population for trial. If it is too low, many genes that would
have been useful are never iried out; but if it is too high, there will be much random
perturbation, the offspring will start losing their resemblance to the parenis, and the
algorithm will lose the ability to learn from the history of the search,

Genetic algorithms differ from conventional optimization and search
procedures in several fundamental ways. Goldberg has sumimarized this as follows:

1. Genetic algorithms work with a coding of solution set, not the solutions
themselves.

2. Genetic aigorithms search from a population of solution, not a single
sotution.

3.Genetic algorithms use payolf information {fitness function), not
derivatives or other auxiliary knowledge.

4.Genetic algorithms use probabilistic transition rules, not deterministic

rules.

3. The Design of the Experiment and the Statistical Analysis of the Data

In general, experiments are used to study the performance of processes and
systems. The process or system can be represented by the mode! shown in Figure 8. We
can usually visualize the process as a combination of machines, methods, people, and
other resources that transforms some input (often a material) into an output that has one
or more observable responses. (Montgomery, 1997)

Some of the process variable X,, X,...., X, are controliable, whereas other
variables z,, z,,..., Z, are uncontroliable {afthough they may be controfiable for purposes
of a test). The objectives of the experiment may include the following:

1. Determining which variables are most influential on the response y.

2. Determining where to set the influential X's so that y is almost always near the

desired nominal value,
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3. Determining where to set the influential X's so that variability in y is optimézed.
4. Determining where 1o set the influential X's so that the effects of the

uncontrollable variables z,, 2,,..., Z, are minimized.

Controliabla factors

XX %
Inputs Oulput;
F Process. SR
. bA
2 Za i )

Uncontroflable factors
Figure 8 General Model of a Process or System. (Montgomery, 1997)

3.1 Factorial Design
Many experiments involve the study of the effects of two or more factors. In
general, factorial designs are most efficient for this type of experiment. By a factorial
design, we mean that in each compiete trial or replication of the experiment all possible
combinations of the levels of the factors are investigated. For example, if there are a
levels of factor A and b levels of factor B, then each replicate contains all ab treatment
combinations. When factors are arranged in a factorial design, they are often said to be

crossed.

3.2 The 2" Factorial Design
The most important of these special cases is that of k factors, each at only
two levels, These levels may be qualitative, such as two machines, two operators, the

*high” and “low" levels of a factor, or perhaps the presence and absence of a factor. A
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complete replicate of such a design require 2 X2 X ... X2 = 2" observations and is
called a factorial design.

The 2" factorial design is particularly useful in the early stages of
experimental work, when there are likely to be many factors to be investigated. it
provides the smallest number of runs with which k faclors can be studied in a complete

factorial design.

3.3 The 2" Fractional Factorial Design

As the number of facterin a 2 factorial design increases, the number of
runs required for a complete replicate of the design rapidly outgrows the resources of
most experimenters. For example, a complete replicate of the 2° design requires 64 runs.
In this design only 6 of the 63 degrees of freedom correspond to main effect, and only 15
degrees of freedom correspond to two-factor interactions. The remaining 42 degrees of
freedom are associated with three-factor and higher interactions.

If the experimenter can reasonably assume that certain high-order interaction
are negligible, then information on the main effects and low-order interactions may be
obtained by running only a fraction of the complete factorial experiment. These Fractional
factorial designs are among the most widely used types of designs for product and
process design and for process improvement.

A major use of fractional factorials is in screening experiments. These are
experiments in which many factors are considered with the purpose of identifying those
factors (if any) that have large effects. Screening experiments are usuaily performed in
the early stages of a project when it is Itkely that many of the factors initially considered
have little or no effect on the response. The factors that are identified as important are

then investigated more thoroughly in subsequent experiments.

3.4 The 3" Factorial Design
The 3" factorial design is a factorial arrangement with k factors each at
three levels. Factors and interactions will be denoted by capital letter. The three levels

are low, intermediate, and high. There are several different notations used to represent
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these factor levels; one possibility is to represent the factor levels by the digit O (low}, 1
(intermediate), and 2 (high). Each treatment combination in the 3 design will be denoted
by k digits, where the first digit indicates the level of factor A, the second digit indicates
the level of factor B, ..., and the K digit indicates the level of factor K. For example, in a
<3 design, 00 denctes the treatment combination corresponding to A and B both at the
low tevel, and 01 denotes the treatment combination corresponding to A at the low level

and B at the intermediate level.

3.5 Fractional Replication of the 3 Factorial Design
A complete replicate of the 3" design can require a rather large number of

runs even for moderate vaiues of &, fractional replication of these designs is of interest.

3.5.1 The One-third Fraction of the 3" Factorial Design
The largest fraction of the 3 design is a one-third fraction containing
3" runs. It is called 3% fractional factorial design. To construct a 3" fractional factorial
design select a two-degrees-of-freecdom component of interaction (generally, the
highest-order interaction} and partition the full 3 design into three blocks. Each of the
three resulting blocks is a 3" fractional design, and any one of the blocks may be

selected for use.

3.5.2 Other 3*° Fractional Factorial Design

For moderate 1o large value of k, even further fractionation of the ch
_ : . 1 :
design is potentially desirable. In general, we may construct a (E ¥ fraction of the 3

design forp <k, where the fraction contains 3°® runs. Such a design is called a 3P
fractional factorial design. Thus, a 3 design is one-ninth fraction, a 3° design is a one-

twenty-seventh fraction, and so on.

3.6 Analysis of Variance (ANOVA)
This topic was described by Pongcharoen (2001). The Analysis of Variance

(ANOVA) is a commonly used approach for analyzing the results from factorial
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experiments. In general, a two factor factorial experiment is obtained as shown in Table 3
Where y, is the observed value (response) obtained by using factor A at the P tevel (I =

1,2, ..., & and factor B at the fh level (j=1, 2, ..., b} for the K" replicate (k= 1,2, ..., n).

Table 3 Observed Response Arrangement for Two-Factor Factorial Design

(Montgomery, 1997)

Factor B
1 2 b
1 y$11‘ Y‘I12,"" Y‘Hn Y‘l2$' Y122,”" Y‘!?n Y1b§' Y1bZ,"" \/Albn
2 YZH' Y212, M Y21n Y221' Y222. - Y22n YZDY Y2b2."" Y?bn
Factor A
a Y:'ﬂ;' Yai?,"" Ya‘ln Yam' Ya22.' o7 YBZn Yab?‘ Yabz ? Yat:n

The purpose of the ANOVA test is 1o establish whether a factor has a
statistically significant effect on the variable being measured. ANOVA partitions the total
variation within the resuits into its component parts, that is the variability due to each
factor or interaction of interest and background uncertainty or error. There are a number
of assumption behind ANOVA. Firstly, the results are independent of one another, that is,
the result of one trial is not affected by another. Secondly, that differences in repeat trial
would follow a normal distribution and finally that the error is normally distributed and is
approximately equal over the whole experimental region {(Kvanli et al., 1995). In general,
the ANOVA table contains source of variation, sum of squares (SS}, degrees of freedom

(DF), mean squares (MS) and F value as summarized in Table 4.
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Table 4 General ANOVA Table for the Two-Factor Factoriat Design (Kvanli et al., 1995},

Source of Degree of
Sum of Square Mean Square F Value
Variation Freedom
A 1& , -2 S8 MS,
SS, =— s -1 MS, = —4
treatments 4 b ; i ’ a1 MS,
B P& 3 S8 MS
SSp=—> 5 - b1 MS, =222 blides:3
treatments B an ;y'“" 4 B a1 MS,
ALY
a b - MS = | M,
interaction | S, = o > - Y ~S8,-88, | tenion) P (a-1B-D MSyp
Ry fel MSg
L SSg
Error SS, =88, =88, ~ 85, -85 5 Ab(n1} £ abin :ﬁ
a bk n o
Total SS,=3 0 v - s Abn-t

i=] =1 k=1

The Ftest is used for comparing population variances. The Fvalue is the

ration of the mean square of the factor divided by the mean square of the error. Iitis

therefore a ratio of two independent estimates of the population variance. The F value

indicates the p value, which is the probability that a good model is falsely rejected. The p

value is compared with a pre-specified significance level (&), it would lead to rejection of

the null hypothesis (that the variances are the same) if p > a for example if a 99%

confidence limit is used, rejection would occur if p > 0.05. The ANOVA can be

conveniently performed using a statistical analysis packages such as Minitab and SPSS.





