CHAPTER II

PRELIMINARIES

2.1 Permutations

In this section, we introduce some concepts of the permutation group and
its properties.
Definition 2.1.1. Let A be a set of elements, a permutation of A is a one-to-one

(1-1) function (mapping) from A onto A.

If {1,2,...,n} is a set of n elements, then the permutation of this set is
written as
i e s B A
o ==
loe 20 ... no

The rearrangement of columns in the above symbol for a permutation is immaterial.

For example
12 3 4 2 3 41

3 41 2 4 12 3

Theorem 2.1.1. {7, pp. 21-22] The set of all permutations on a set A forms a group

under the operation of composition, and denoted this group by {Sa,o0).

Definition 2.1.2. If A = {1,2,...,n} then the group of all permutations of Ais

the symmetric group of n letters, and is denoted by “ Syl
Note that S, has n! elements, where nl =n{n — 1){n —2)... (3}{(2)(1).
Example 2.1.1. Find the elements of S5 and show the group table of Ss.

Solution. S has 3! == 3.2.1 = 6 elements as follows

12 3 1 2 3 123
Op = y 1= ;y T2= 3

1 2 3 231 31 2

1 23 123 1 23
Ty = ) T R y T3 = |

13 2 3 21 213



The following is the group tables of 53

53:0 gg 01 O3 T To Tz

0y g U1 02 T T2 T3
o gy 0y Og Ta T3 T1
g lop 0p 01 T3 T1 T2+
T1 77 Ty Tg Og Oz U3

T2 Ty Ty Ts 01 Og Oz

T3 T3 T, T1 U2 01 Jo

There is another notation for a permutation which is often used.

Definition 2.1.3. A permutation ¢ € S, is a cycle of length r if there exists distinct

integers iy,%2, . . . , 4 such that
'igO' = ?:2, o0 = ig, ceny bl O = Ty il = i

and mo = m, if m & {i1,4,...,4}. We write such a cycle as (i1,42,...,9s) OF

(16 . ir).

A cycle of length 1 is clearly the identity permutation.
Note that

(igin. . .in) = (in- . Gpn) = (i dplay) = -+ = (brinip- . brs).

Example 2.1.2.

= (2341),
2341
1 2345

= (15342),
51423
12345

and = (231)(4)(5) = (231).

23145



Example 2.1.3. Let (1456) and (215) be cycles in the group Sg of all permutations

of {1,2,3,4,5,6}
93456
13265

(1 9 8 4 5 6)
(215)(1456) = .

(1456)(215)

il
P N
NN

61 ATE L

Hence (1456)(215) # (215)(1456). 0

Definition 2.1.4. Two cycles (iyiz...4,) and (jijz. .- Js) are disjoint if

{inyigs -t} O {d1 20000 3s} = 0.

Example 2.1.4. Consider the permutation

(1 9 3 45 6)
— (16)(253).
652431

Multiplication of two disjoint cycles is clearly commutative, so the order of the

factor (16) and (253) is not important. X

Definition 2.1.5. A cycle of length 2 is a transposition.
Theorem 2.1.2. [7, p. 27] Every cycle is a product of transpositions.

Example 2.1.5. Show that the expression of a permutation as a product of trans-

positions is not generally unique

(1234) = (12)(13)(14)
= (14)(24)(34)
= (32)(12)19)
~ (13)(24)(34)(12)(24).



Theorem 2.1.3. [7, pp. 27-28] If a permutation ¢ € Sy is a product of &k transpo-
sitions and also a product of m transpositions then either & and m are both even or

both odd.

Definition 2.1.6. A permutation is even or odd according it is a product of an

even or odd number of transpositions.
Example 2.1.6. Examine the following permutation for being even or odd
1234567
F ==
4 365 172
Solution. We first express ¢ as a product of cycles. So we write
o = (145)(2367) = (14)(15) (23)(26)(27)

as a product of 5 transpositions. This shows that o is an odd permutation. O

Theorem 2.1.4. {7, p. 30] Of the n! permutations on n symbols, half are even and

half are odd.

Theorem 2.1.5. [7, pp. 30-31] If n = 2 the collection of all even permutations of
finite set of n elements A, = {o € S, | 0 is even} forms a subgroup of order n! /2 of

the symmetric group S, and it is called the alternating group on n letters.
For example,

Ay = {1, (123), (132)}-

As = {1, (234), (243), (134), (143), (124), (142), (123), (132),
(12)(34), (14)(23), (13)(24)}.



2.2 Permutation Matrices

In this section, we introduce some concepts of the permutation matrices

and its properties.

Definition 2.2.1. [8, p. 14] A permutation matriz P € M.(R) is the identity I

‘with its rows permuted (reordered).

We can also think of a permutation matrix as an identity matrix whose

columns have been reordered. Formally:

Definition 2.2.2. 8, p. 14] A matrix P € M,(R) is a permutation matriz if it

contains a single 1 in each column and in each row, and 0 everywhere else.

Example 2.2.1. Consider the effect of multiplying of a 4 X 4 matrix A by concrete

permutation matrix P.

o - - = - e

0 010 @13 a1 a3 G4 a3y Ggp G33 O34
0 001 agr Ggp Qg3 Q24 | { Qa1 G4z Qa3 G4
01060 Q31 Gz 033 O34 @1 G2 Q23 G24
ml 0 0 0 ] h,a41 Qg G453 Gad | | 011 Gr2 Q13 014

Multiplying by the permutation matrix P on the left, we obtain a new matrix, where
the rows of initial the matrix are reordered exactly in the same way as the rows of

the identity I are reordered for getting P. Multiplying on the right,

a;1 a1 iy Qi 0010 G4 Q13 Q11 Q12
ag) Gp g3 O2 0 00 1| | 0 ass a2 G2
4 Ggp 033 Q84 0100 G4 Qg3 031 Qa2
| Gal Gaz Gas Cad | 1000] |au G G Ga

we obtain a new matrix, where the columns of the initial matrix are reordered in

the same way as the columns of the identity I are reordered for getting P. |

A matrix P obtained from I by a finite {possibly vacuous) sequence of
row swaps is called a permutation matrix. In other words, a permutation matrix is a

matrix P € M, (R) such that there are row swap matrices 51, S,.. ., 5k € M, (R) for




which P = 515, ... S. (Recall that a row swap matrix is by definition an elementary
matrix obtained by interchanging two rows of I.) Clearly, I is a permutation matrix,
and any product of permutation matrices is also a permutation matrix. It remains
to see that the inverse of a permutation matrix is also a permutation matrix. Let
P = 5,9,...5 be a permutation matrix. Then P~' = 5 b Sy !, But every row
swap S has the property that S = S7! so P~! is indeed a permutation matrix,

namely P! = S, ... 5;.

Definition 2.2.3. [8, p. 16] The set of all n x n orthogonal matrices is denoted by
O(n;R). We call O(n, R) the orthogonal group.

Proposition 2.2.1. [8, p. 16] O(n,R) is a subgroup of GL(n,R) where
GL(n, Ry = {A € Mu(R) | A" exists}.

Let P(n) denote the set of nXn permutation matrices. One can also describe
P{n) as the set of all matrices obtained from [ by permuting the rows of J. Thus
P(n) is the set of all n x n matrices whose only entries are 0 or 1 such that every
row and every column has exactly one non-zero entry. It follows from elementary
combinatorics that P(n) has exactly n! elements. The inverse of a permutation
matrix has a beautiful expression, P~! = PT, s0 P(n) is a subgroup of the orthogonal

group O(n, R), also P(n) is a subgroup of the linear group GL(n,R).

Example 2.2.2. From Example 2.1.1, there are one-to-one correspondent between
permutation in {0y, 0y, 09,71, 72, T3} and some matrices {Ag, Ay, Ag, By, By, Bs} as

the following, respectively.



Ag= 10 1 0], detdo=1 Ai=]1 0 0}, detd;=1,

A;=10 0 1|, detAg=1, By=1{0 0 1], detBy= -1

By=10 1 0, dethm——l, Bg= T 06 0., dethm-1.

0
Theorem 2.2.2. [8, p. 13] If A € M,{R) is an orthogonal matrix then det A = =+1.
Definition 2.2.4. An orthogonal matrix A with det A = 1 is a rotation matrix.
Definition 2.2.5. An orthogonal matrix A with det A ;-—'wl is a reflection matrix.

In Example 2.2.2, 4y, A1, Ay are rotation matrices and By, By, B are reflec-

tion matrices.

Definition 2.2.6. Matrices which are n X 1 or 1 X n are especially called vectors

and are often denoted by a bold letter. Thus

&£y

L2

Tn

is a n X 1 matrix also called a column vector while & 1 X n matrix of the form

[ L1 Tz ... Zn ] is referred to as a row vector.



Theorem 2.2.3. [1, pp. 346-348] If n x n matrix A has one of the following prop-

erties, then the following statement are equivalences:
1. The row vectors of A are linearly independent,
2. The column vectors of A are linearly independent,
3. A is invertible.

Theorem 2.2.4. (3, pp.131-132] Equivalent C-matrices have the same rank.





